扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

合集下载

雷达目标跟踪的转换坐标卡尔曼滤波算法

雷达目标跟踪的转换坐标卡尔曼滤波算法

我们在研究雷达目标跟踪过程中可以发现,要将雷达目标跟踪的问题解决好,是一个非常值得我们关注的环节。

对于如何进行科学化的跟踪,还需要不断地进行分析研究,找到一些具体的方法才是关键的任务所在。

当我们通过滤波处理后形成一种新的运行轨迹时,就会发现雷达的性能好坏直接影响到我们所要进行科学化跟踪的效果,通常情况下,雷达的具体跟踪效果主要来自其自身性能的高低。

因为雷达主要的任务在于通过跟踪环节工作来达到人们所预期的目标。

对于雷达跟踪的收敛速度而言,主要在于经过一系列的滤波精度来进行实际的操作,从而形成一种科学化的跟踪模式。

我们通过大量的研究目标跟踪的转换坐标卡尔曼滤波算法,可以逐渐掌握一些先进的技术,从而为整个雷达跟踪发展起到积极的推动作用。

1雷达信号检测与目标跟踪我们进行研究的雷达信号检测,主要在于利用它可以迅速地掌握一些目标的情况,随时将目标进行科学化的监测。

这样做主要在于经过一系列的目标跟踪后,我们可以将具体的目标给予科学化的监视,从而保障其跟踪任务的完成。

这种雷达信号检测和目标跟踪是有一定的联系的,主要在于通过雷达的检测可以为目标跟踪提供科学化的信息,从而避免出现一些假目标的误导。

这对于雷达目标跟踪的转换坐标卡尔曼滤波算法也会起到积极作用。

2卡尔曼滤波在雷达跟踪上的具体应用2.1研究题目假设有一个二坐标雷达对一平面上运动目标的进行观察,目标在t=0~400s 沿y 轴作恒速直线运功,运动速度为-15m/s ,目标的起点为(2000m ,10000m ),雷达扫描周期为2秒,x 和y独立地进行观察,观察噪声的标准差均为100m 。

试建立雷达对目标的跟踪算法,并进行仿真分析,给出仿真结果,画出目标真实轨迹、对目标的观察和滤波曲线。

2.2算法研究考虑利用卡尔曼滤波算法对目标的运动状态进行估计。

由于目标在二维平面内做匀速运动,因此这里只考虑匀速运动情况。

2.2.1跟踪算法由于目标沿y 轴做匀速直线运动,取状态变量S=x y v y ⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥状态方程:S(k+1)=AS(k)(1)观测方程:Z(k)=CS(k)+V(k)(2)其中,A=10001T 001[]C=100010[]Z=z x z y []V=v x v y[]对目标位置和速度的同时滤波与一步预测的方程组如下:预测估计方程:S ^(k/k-1)=AS ^(k-1)预测误差协方差:P(k/k)=AP(k-1)A T 滤波估计增益:B(k)=C T(k/k-1)C(k/k-1)C T+R ,其中,R=σ2x 00σ2y[]滤波估计方程:S^(k/k)=S ^(k/k-1)+B(k)[Z(k)-S ^(k/k-1)]滤波误差协方差:P(k/k)=[1-B(k)C]P(k/k-1)2.2.2初始化利用目标的前几个测量值建立状态的其实估计,采用两点起始法。

基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述雷达航迹跟踪算法是指通过对窄带雷达前端数据进行处理,提取目标运动参数,及时更新目标航迹状态并预测其运动趋势。

而卡尔曼滤波是一种广泛应用于目标跟踪中的预测算法,它基于线性系统理论,采用贝叶斯估计方法对系统状态进行估计和修正,大大提高了目标跟踪的准确性和效率。

卡尔曼滤波结构包括预测和修正两个步骤,其中预测步骤利用历史状态信息和运动模型预测目标在下一时刻的位置和速度;修正步骤采用测量数据进行状态更新,同时根据卡尔曼增益的大小决定历史状态和测量数据的权重,从而实现目标状态的估计和修正。

在雷达航迹跟踪应用中,卡尔曼滤波算法主要分为单目标跟踪和多目标跟踪两种类型。

单目标跟踪主要关注单个目标的运动状态估计,最常用的滤波方法是一维、二维或三维卡尔曼滤波;而多目标跟踪则需要同时估计多个目标的运动状态,常用的算法包括多维卡尔曼滤波和粒子滤波等。

对于雷达航迹跟踪算法而言,卡尔曼滤波的优点在于:首先,具有高效的滤波性能,可以通过在线实时计算实现目标状态的估计和预测;其次,支持多个传感器、多个目标和多个测量的输入,可以满足多种实际应用需求;最后,具有一定的容错性,能够自适应地处理噪声、模型误差以及目标突然出现、消失等情况。

然而,卡尔曼滤波算法在雷达航迹跟踪应用中也存在一些问题,如目标的失配、多传感器测量的一致性问题、目标运动模型的不确定性等。

因此,为实现更准确、稳健和高效的雷达航迹跟踪,需要深入研究卡尔曼滤波算法的各种变形和优化,创新性地设计新算法,以及运用机器学习、深度学习等技术,提升雷达航迹跟踪算法的性能和鲁棒性。

总之,基于卡尔曼滤波的雷达航迹跟踪算法是目前领先的目标跟踪方法之一,具有广泛应用前景。

未来的研究重点应该是在加强对目标状态的估计、提高对多目标、多传感器的处理能力,以及结合其他技术来提高雷达航迹跟踪的性能和实用性。

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

扩展卡尔曼滤波雷达目标在线跟踪轨迹算法

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。

目标跟踪理论在军、民用领域都有重要的应用价值。

在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。

本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。

0 引言目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。

线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。

但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。

1用扩展卡尔曼滤波算法预测机动目标轨迹首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。

扩展卡尔曼滤波算法

扩展卡尔曼滤波算法

扩展卡尔曼滤波算法1 卡尔曼滤波算法卡尔曼滤波(Kalman Filter,KF)是指根据系统过程的当前测量值来估计未来某时刻的状态参量值的算法。

它可以帮助我们进行最优估计和状态跟踪辨识,在实际应用中一般用于非线性系统的实时状态值的估计及系统的控制、导航定位和信号处理等密切相关的任务。

卡尔曼滤波算法根据观测结果及自身的建模,以多次观测水深数据为重点,将观测结果和系统估计值进行更新和修正,从而获得一种逐次改进的过程模型,从而得出更准确的系统状态估计值。

2 扩展卡尔曼滤波算法基于卡尔曼滤波算法的扩展技术,是普遍存在的技术,它集合了计算机、数据处理和系统建模的原理,可以更先进的估计数据和追踪目标,最常用的方法被称为扩展卡尔曼滤波(EKF)。

该算法包括线性和非线性估计,可以扩展表达能力,从而结合卡尔曼滤波算法带来的传感精度和稳定性,使物体行进轨迹推测、跟踪更准确。

3 应用扩展卡尔曼滤波算法的应用领域包括空气制动原理应用、机器视觉方位估计、太阳能机器人位置跟踪、磁测量器定位、自动攻击模块偏转角识别等,以及虚拟地铁位置估计和导航,用于智能领域的研究。

在机器人导航研究中,扩展卡尔曼滤波算法可以在环境变化较多或污染较大的条件下,快速实现机器人位置估计和路径规划,满足快速智能系统设计的需求。

4 小结扩展卡尔曼滤波算法是利用卡尔曼滤波算法所提供的精度、稳定性和可扩展性,发展出来的一种滤波技术。

它可以合理地估计和预测某系统的状态,并及时追踪物体行走的轨迹,有效的计算系统的位置,有利于智能系统、机器人导航系统以及虚拟实验系统的设计,从而使系统的优化以及最优化更贴近实际应用。

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。

在目标跟踪定位中,它可以用于估计目标的运动轨迹。

下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。

算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。

2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。

3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。

4. 迭代:重复步骤2和3,直到达到终止条件。

MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。

实际应用中,您需要根据具体问题和数据调整模型和参数。

```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。

deepsort 拓展卡尔曼滤波

deepsort 拓展卡尔曼滤波

deepsort 拓展卡尔曼滤波拓展卡尔曼滤波(Extended Kalman Filter, EKF)是一种常见的目标跟踪算法,而DeepSORT则是在EKF基础上进行的拓展,用于更加准确地实现目标跟踪。

下面将从EKF的基本原理开始,介绍DeepSORT 算法的原理以及其在目标跟踪领域的应用。

1.卡尔曼滤波(Kalman Filter)的基本原理卡尔曼滤波是一种递归滤波算法,用于估计在不完整和有噪声的测量数据下的状态变量。

简而言之,卡尔曼滤波算法通过结合先验信息和观测结果来实现对目标状态的最优估计。

卡尔曼滤波算法包括两个主要步骤:预测(Predict)和更新(Update)。

预测步骤中,根据上一时刻的状态估计和系统模型,通过状态转移方程得到当前时刻的状态预测。

预测的结果包括状态估计和状态协方差矩阵。

更新步骤中,利用预测的状态估计和观测模型,将测量结果与预测结果进行比对,得到当前时刻的最优状态估计。

更新的结果也包括状态估计和状态协方差矩阵。

通过不断迭代预测和更新步骤,卡尔曼滤波算法可以实现对目标状态的最优估计。

2. DeepSORT的原理DeepSORT是一种将深度学习与卡尔曼滤波相结合的目标跟踪算法,旨在提升目标跟踪的准确性与鲁棒性。

DeepSORT的核心思想是利用深度学习网络(如卷积神经网络)来提取目标特征,然后将这些特征作为观测值输入到卡尔曼滤波器中进行状态估计。

DeepSORT算法的主要步骤如下:(1)特征提取:利用预训练的深度学习网络,如ResNet、VGG等,对目标进行特征提取。

通过将目标图像输入到网络中,可以得到代表目标特征的向量。

(2)目标匹配:根据特征向量计算目标之间的相似度,并利用匈牙利算法或最小权重匹配算法来建立观测与目标的对应关系。

(3)卡尔曼滤波:对每个目标的运动进行预测,并将预测的结果作为观测值输入到卡尔曼滤波器中进行状态估计。

利用卡尔曼滤波器的预测步骤和更新步骤,可以得到每个目标的最优状态估计。

基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述

基于卡尔曼滤波的雷达航迹跟踪算法的综述卡尔曼滤波是一种经典的估计算法,用于从不完全、不准确的观测数据中估计动态系统的状态。

在雷达航迹跟踪领域,卡尔曼滤波被广泛应用于目标位置和速度的估计,以实现对目标航迹的跟踪和预测。

雷达航迹跟踪是指根据接收到的雷达测量数据,估计目标在时间上的位置、速度和加速度等动态信息。

常见的雷达测量数据包括距离、角度和径向速度等。

由于传感器误差、噪声干扰和外部干扰等因素的存在,测量数据往往是不完全和不准确的。

基于卡尔曼滤波的雷达航迹跟踪算法通过不断地根据测量数据进行状态估计和更新,可以在一定程度上消除测量误差,并提供更精确的航迹估计结果。

具体而言,该算法首先建立一个动态模型来描述目标的运动规律,然后根据雷达测量数据和模型预测的状态进行状态估计。

通过不断迭代更新和优化状态估计,得到最佳的目标航迹跟踪结果。

卡尔曼滤波算法的核心是通过合理的权衡预测值和测量值的权重,来减小估计误差。

卡尔曼滤波算法根据测量误差和动态模型的精确程度,自适应地调整权重,从而实现对目标航迹的准确跟踪。

卡尔曼滤波算法有两个基本的步骤:预测和更新。

在预测步骤中,通过运动模型和先前状态的信息,预测下一个时刻的目标状态。

在更新步骤中,将测量值与预测值进行比较,根据卡尔曼增益修正预测值,得到最终的状态估计结果。

值得注意的是,卡尔曼滤波算法假设系统遵循线性模型和高斯分布的噪声,因此在实际应用中,如果目标的运动模型非线性或者测量误差分布非高斯,需要采用扩展卡尔曼滤波(EKF)或者无迹卡尔曼滤波(UKF)等算法进行改进。

基于卡尔曼滤波的雷达航迹跟踪算法是一种常用且有效的方法,能够准确估计目标的航迹信息。

在实际应用中,可以根据具体的场景和需求选择合适的卡尔曼滤波算法,并结合其他辅助信息进行目标跟踪,从而提高跟踪的准确性和稳定性。

跟踪算法 卡尔曼滤波

跟踪算法 卡尔曼滤波

跟踪算法卡尔曼滤波卡尔曼滤波(K a l m a n F i l t e r)是一种经典的跟踪算法,它被广泛应用于多个领域,如机器人导航、目标跟踪、航空航天、无线通信等。

本文将详细介绍卡尔曼滤波算法的原理、应用以及一步一步的实现过程。

1.引言在实际应用中,我们经常需要对物体进行连续的跟踪,以获取其运动状态的估计或预测。

然而,由于存在噪声、不确定性等因素,我们无法直接获得准确的测量值。

卡尔曼滤波算法通过融合过去的状态估计和当前的测量信息,可以准确地估计出物体的状态,从而实现对物体的跟踪。

2.卡尔曼滤波原理卡尔曼滤波算法基于贝叶斯滤波理论,将状态估计问题建模为一个线性系统,并假设系统的噪声为高斯噪声。

根据贝叶斯推断,卡尔曼滤波算法通过递归地更新状态估计和协方差矩阵,以不断优化跟踪结果。

卡尔曼滤波算法的核心有两个步骤:2.1.预测步骤在预测步骤中,根据系统的动力学模型和上一时刻的状态估计,预测出当前时刻的状态估计和协方差矩阵。

具体地,可以使用状态转移矩阵A 和控制输入矩阵B来描述系统的动力学模型,通过以下公式进行预测:\h a t{x}_{k k-1}=A\h a t{x}_{k-1}+B u_{k-1}P_{k k-1}=A P_{k-1}A^T+Q其中,\h a t{x}_{k k-1}是当前时刻的状态估计,\h a t{x}_{k-1}是上一时刻的状态估计,P_{k k-1}是当前时刻的协方差矩阵,P_{k-1}是上一时刻的协方差矩阵,Q是系统的过程噪声协方差矩阵。

2.2.更新步骤在更新步骤中,利用当前时刻的测量值,根据测量模型和预测结果,计算出当前时刻的状态估计和协方差矩阵的更新值。

具体地,可以使用测量矩阵C和测量噪声协方差矩阵R来描述测量模型,通过以下公式进行更新:\t i l d e{y}_k=z_k-C\h a t{x}_{k k-1}S_k=C P_{k k-1}C^T+RK_k=P_{k k-1}C^T S_k^{-1}\h a t{x}_{k k}=\h a t{x}_{k k-1}+K_k\t i l d e{y}_kP_{k k}=(I-K_k C)P_{k k-1}其中,\t i l d e{y}_k是测量的残差,z_k是当前时刻的测量值,S_k是残差协方差矩阵,K_k 是卡尔曼增益,\h a t{x}_{k k}是当前时刻的状态估计,P_{k k}是当前时刻的协方差矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于扩展卡尔曼滤波的雷达目标在线跟踪轨迹的算法摘要:目标跟踪是指根据传感器(如雷达等)所获得的对目标的测量信息,连续地对目标的运动状态进行估计,进而获取目标的运动态势及意图。

目标跟踪理论在军、民用领域都有重要的应用价值。

在军用领域,目标跟踪是情报搜集、战场监视、火力控制、态势估计和威胁评估的基础;在民用领域,目标跟踪被广泛应用于空中交通管制,目标导航以及机器人的道路规划等行业。

本文利用差分方程模型计算目标点的速度与加速度,基于卡尔曼滤波算法建立扩展型卡尔曼滤波算法的目标跟踪模型。

0 引言
目前,对机动目标的跟踪滤波与预测算法主要有线性自回归滤波、两点外推滤波、维纳滤波、加权最小二乘滤波、与滤波、简化的卡尔曼滤波和卡尔曼滤波。

线性自回归滤波完全忽视了状态噪声对估值的影响;两点外推滤波利用最后一个数据点和最后两个数据点分别确定目标位置与目标速度,因此,之前所测的数据点并不能起到预测作用;维纳滤波不适合机动目标的瞬间变化过程,从而在一定程度上限制了它的应用范围;与滤波是两种简单并且易于工程实现的常增益滤波方法,最大优点在于其增益矩阵可以离线计算,而且在每次滤波循环中可节约大约70%的计算量;卡尔曼滤波与预测执行的是均方根误差最小准则,并且通过协方差矩阵可以很方便的对估计精度进行度量,目前应用较多而且误差相对较小的目标跟踪算法是卡尔曼滤波算法。

但基本的卡尔曼滤波算法在跟踪机动目标时存在不足:当系
统达到稳态时,其预测协方差很小,使得滤波器的增益也趋于极小值,此时若目标发生机动,系统残差增大,预测的协方差和滤波器的增益不能随残差随时改变,系统将不能保证对突变状态的跟踪能力。

1用扩展卡尔曼滤波算法预测机动目标轨迹
首先由目标初始准确的状态对下一状态进行预测,得到下一状态的预测值,同时由计算所得的对应于初始状态的协方差得到下一状态的协方差预测值;接着由雷达观测误差、状态向量及所得协方差预测值可以得到卡尔曼增益值,进而最终得到下一状态的最优估算值,同时更新对应的协方差。

至此,第一轮目标轨迹预测已完成,同理,进行下一轮的目标轨迹预测。

模型的具体方程如下:本时刻系统的状态向量由上一时刻系统的最优预测状态向量求得,初始状态需要知道目标的状态向量。

这里通过差分方程数学模型计算出目标在三个坐标上速度变化情况:
其中、、表示所测数据第i时刻速度沿着方向三个的速度分量值。

然后使用卡尔曼滤波预测目标的运动轨迹,假定离散时间控制系统状态方程和观测方程为:
式中是k时刻的非线性实值状态向量,是k时刻的系统量测向量,表示系统状态噪声,表示系统测量噪声,A和B为状态向量,H为非线性函数。

由公式4和公式5构成的系统状态方程和测量方程均为线性方程,其过程噪声都为高斯白噪声,可用标准卡尔曼滤波算法进行滤波。

扩展的卡尔曼滤波基本方程为:
基于系统的上一状态预测出现在状态的公式:
接着由上一状态的协方差预测出现在状态的协方差:
由现在状态的预测值得到最优化估算值的方程为:
其中为卡尔曼增益,
上式中为雷达观测误差矩阵。

最后由协方差的预测值和当前卡尔曼增益得到对应于最优化估算值的协方差,其方程为:
上式中为单位矩阵。

2.实验结果分析
以下所用的机动目标及雷达数据取自第十一届全国研究生数学建模竞赛,结果经Matlab进行数据拟合而得,分别是基于直角坐标系由两个雷达同时对同一个目标的观测所得的航迹图,每个图都同时描出了分别在X、Y、Z轴上使用了卡尔曼滤波和未使用卡尔曼滤波的情况下的航迹图:
本所给的量测数据,经过小波阈值去噪,数据压缩合并、坐标系转换后,通过建立差分方程模型、扩展卡尔曼滤波算法计算出的目标机动的轨迹与未使用卡尔曼滤波所得的运动轨迹明显有差别。

通过扩展的卡尔曼滤波算法跟踪目标的运动轨迹其模型的收敛性较好,将此模型用于被动目标的定位系统,仿真结果令人满意,验证了此算法的正确性。

3.总结
为了利用卡尔曼滤波算法的优点(线性、无偏、误差方差最小),本文将非线性过程结合当前的状态估计线性模型,然后用卡尔曼滤波算法解决突变系统的滤波问题,通过扩展的卡尔曼滤波算法预测存在机动情况下目标的运动轨迹,并且经过以上实验结果证明是可行的。

参考文献
[1]邓自立. 卡尔曼滤波与维纳滤波:现代时间序列分析方法[M]. 哈尔滨工业大学出版社, 2001.
[2]Grewal M S, Andrews A P. Kalman filtering: theory and practice using MATLAB[M]. John Wiley & Sons, 2011.
[3]Kalman filtering: theory and application[M]. IEEE,1960.
[4]Frühwirth R. Application of Kalman filtering to track and vertex fitting[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment, 1987, 262(2): 444-450.
[5]Davis M H,Khotanzad A,Flamig D P,et al. A physics-based coordinate transformation for 3-D image matching[J]. Medical Imaging, IEEE Transactions on, 1997,16(3): 317-328.。

相关文档
最新文档