半导体发光器件(led常识)
半导体发光器件

11.2.2半导体激光器的分类
半导体激光器种类很多,可依据半导体材料,器件结构, 输出功率和用途等不同方式划分。 1.按材料划分:激光二极管主要集中在 Ⅲ-Ⅴ族的AlGaAs , GaInAsP , InGaAlP , InGaN Ⅱ-Ⅵ族的ZnSSe , ZnO等材料, 应用最多的是AlGaAs , InGaAlP 和GaInAsP , InGaN 2.按波长划分:分可见光,红外光,远红外光。 3.按应用领域分:半导体激光器主要应用于光纤通信,光 盘存储,光纤传感,激光仪器等。
近似地正比于电流密度地增加,不易饱和,适用于脉冲下使用。
LED的驱动
LED基本直流电路如右图所示。 在工作过程中电流不得超过规定的极限值, 因此应在电路中加限流电阻 RL ,其值为:
RL UCC UF / I F
U UCC 为电源电压, F 和 I F 分别为管子的 正向电压和正向电流,可在相关的产品参数表 中查的
一般说来,GaAs的电流选用20mA,GaP的电流选用10mA, 便可得到足够地亮度
LED光源的特点
电压:LED使用低压电源,供电电压在6~24V,所以它是一个 比使用高压电源更安全的电源,特别适用于公共场所。 效能:消耗能量较同光效的白炽灯减少80%。 适用性:很强,每个单元LED小片是3~5mm的正方形,所以 可以制备成各种形状的器件,并且适合易变环境。 响应时间:其白炽灯地响应时间为ms级,LED灯为ns级 对环境污染:无有害金属汞 颜色:改变电流可以变色,可方便地通过化学修饰方法,调整 发光二极管的能带结构和带隙,实现红、黄、绿、蓝、 橙多色发光。 价格:LED价格比较昂贵,较之白炽灯,LED的价格就可以 与一只白炽灯相当,而通常每组信号灯需300-500只 LED构成。
led的半导体

led的半导体LED(Light Emitting Diode)是一种半导体器件,能够将电能转化为光能。
它具有低功耗、高效率、长寿命、快速开关等优点,因此广泛应用于照明、显示、通信、传感等领域。
下面将介绍LED的半导体原理、制造工艺以及应用领域。
半导体原理:LED是一种二极管,由P型半导体和N型半导体组成。
当外加电压施加在LED上时,电子从N型半导体区域向P型半导体区域注入,同时空穴从P型区域向N型区域注入,两者在P-N结附近复合释放出能量,产生光子。
这个过程被称为电致发光,LED的发光色彩和能量大小取决于P-N结材料的选择。
制造工艺:LED的制造工艺主要包括基片制备、外延生长、光刻、薄膜沉积、接触金属化、切割、封装等步骤。
基片制备是LED制造的第一步,常用的基片材料有蓝宝石、硅等。
外延生长通过气相沉积的方法,在基片上沉积一层P型或N型材料。
光刻是通过光刻胶和掩膜,在外延片上形成所需的模式。
薄膜沉积则用于改变材料的光学和电学性质,如增加透明度和反射率等。
接触金属化是为了使电流能均匀地流过整个芯片,提高LED的亮度和效率。
切割是将大面积的外延片切割成小芯片的过程。
最后,LED芯片会通过封装,保护和固定芯片,并将引线与外部电源连接。
LED的应用领域:1. 照明:由于LED的高效率、低功耗和长寿命,LED照明已经成为替代传统照明技术的主流选择。
LED灯泡、LED灯管、LED路灯等产品得到了广泛应用。
2. 显示:LED在平板显示器、电视、手机屏幕等领域被广泛采用。
由于LED的自发光特性和对比度较高,LED显示屏显示效果更为清晰、色彩更为鲜艳。
3. 通信:LED被用于光纤通信中的光源和光接收。
它具有高速调制、小尺寸、低功耗的特点,适用于高速、长距离的数据传输。
4. 传感:LED可以用作光电传感器,用于测量光强度、距离、颜色等参数。
例如,LED被应用在汽车行业的自动驾驶技术中,用于识别障碍物和交通标志。
总结:LED作为一种半导体器件,利用半导体原理将电能转化为光能。
LED的分类

LED的分类LED(Light Emitting Diode)是一种半导体发光器件,具有高效能、高亮度、低功耗、长寿命等优点,被广泛应用于照明、显示、通信等领域。
根据其不同的特性和应用,LED可以分为以下几类。
一、按照颜色分类:1. 白光LED:白光LED是通过混合不同颜色的发光材料来实现的,常见的有蓝光LED加黄色荧光粉或蓝光LED加磷光材料的组合。
白光LED具有高亮度、高效能和节能等优点,被广泛应用于照明领域。
2. 单色LED:单色LED只能发射一种颜色的光,常见的有红色LED、绿色LED、蓝色LED等。
单色LED具有较高的亮度和色彩饱和度,适用于显示屏、指示灯等应用。
二、按照封装方式分类:1. 顶部发光LED:顶部发光LED是指发光芯片位于封装器件的顶部,光线主要向上发射。
这种LED封装方式适用于需要聚光和点光源的应用,如汽车前大灯、手电筒等。
2. 侧面发光LED:侧面发光LED是指发光芯片位于封装器件的侧面,光线主要通过封装器件的侧面发射。
这种LED封装方式适用于需要侧面照明的应用,如背光源、指示灯等。
三、按照功率分类:1. 低功率LED:低功率LED通常功率在0.1瓦以下,适用于电子产品的指示灯、背光源等应用。
2. 高功率LED:高功率LED功率通常在0.5瓦以上,具有较高的亮度和发光效率,适用于照明、广告显示等高亮度应用。
四、按照应用场景分类:1. 室内照明LED:室内照明LED主要用于家庭、办公室、商场等室内照明场所,具有高亮度、节能、环保等优点。
2. 室外照明LED:室外照明LED主要用于路灯、景观灯、广告牌等室外照明场所,具有高亮度、抗震抗风、长寿命等特点。
3. 汽车照明LED:汽车照明LED主要用于汽车前大灯、尾灯、仪表盘等照明应用,具有高亮度、节能、快速响应等优势。
4. 显示屏LED:显示屏LED主要用于电视、电脑显示器、手机屏幕等显示设备,具有高亮度、色彩饱和度高、反应速度快等特点。
发光二极管LED介绍

发光二极管LED介绍发光二极管(LED)是一种半导体发光器件,由一个p型半导体和一个n型半导体构成的,具有单向导电性。
LED通过在p-n结处施加正向电压时,电子会从n型半导体的导带跃迁到p型半导体的价带,导致电子和空穴复合并释放能量而发光。
LED具有以下几个主要特点:1.高效:相比传统光源,LED的电光转换效率更高。
目前市场上的LED芯片的光电转换效率可以达到20-30%左右。
这使得LED在能源消耗方面更具优势。
3.节能:LED的能耗非常低,相较于白炽灯和荧光灯可以节能80%以上。
这对于节约能源和减少温室气体排放非常有益。
4.快速启动:与传统的光源相比,LED灯具具有快速启动的优点。
在瞬间亮起,无需预热时间。
5.抗震性好:LED芯片采用的是固态发光器件,没有玻璃壳体和薄玻璃管等易碎物质,抗震性能较强。
6.尺寸小:LED芯片的尺寸比较小,非常适合微型化灯具设计,可以用于各种复杂形状的灯具。
7.颜色丰富:通过对LED芯片进行不同材料的掺杂和处理,可以实现不同颜色的发光,包括红、绿、蓝、黄、橙、紫等,还可以实现多彩变化的灯光效果。
8.环保:LED不含有对环境有害的汞和铅等重金属,不会对环境造成污染。
并且LED可以进行可靠的回收和再利用。
除了以上特点,LED还有一些应用方面的优势。
例如:1.室内照明:LED灯具可以提供高质量的照明效果,可以调节亮度和颜色,并且有较好的光色还原性。
由于其高效、节能的特点,逐渐取代传统的照明光源,成为室内照明的主流选择。
2.屏幕显示:LED在显示行业中应用广泛,例如LED电视、显示屏和背光源等。
其高亮度、高对比度和高刷新率等特点,使得LED显示具有更好的图像质量,广泛应用于广告牌、室内外大屏幕等领域。
3.交通信号:LED具有快速响应和长寿命的优势,逐渐替代传统的交通信号灯,提供更可靠的信号指示。
4.汽车照明:LED在汽车照明方面的应用也非常广泛,例如车灯、日间行车灯、转向灯等。
半导体发光器件——LED和LD简介_郑志胜

三、LED和LD的调制特性 和 的调制特性
1.限制因素
低电流时,是 P-N结的空间电荷电容CJ; 高电流时,是注入复合区的少数载流子的寿命τ。
2.增加带宽的方法
例 增加复合区中掺杂剂的浓度,但会减小量子效率;增加电流密度。 巴勒斯LED的3dB带宽小于100MHz; 改进的顶发射LED的3dB带宽约为500MHz; 侧面发射LED的3dB带宽小于400MHz; 普通通讯LD的调制带宽均在1GHz以上。
普通结构
点接触
巴勒斯结构
环形接触
p n SiO2
特点:结构简单; 特点:圆对称性结构; 外部耦合效率较差 ; 辐射率高; 辐射率低。 光谱远场图有圆对称性。
2.侧面发射二极管类型 侧面发射二极管类型
结构图如下
接触
SiO2
条形接触
特点:功率小; 发射区尺寸小; 发散角小; 辐射度高。
二、半导体激光二极管 半导体激光二极管
半导体发光器件——LED和LD简介 和 简介 半导体发光器件
报告人:郑志胜
一、发光二极管(LED) 发光二极管(
顶端发射二极管 LED分类 侧面发射型发光二极管 辐射机理:当某种外部扰动(电压,电流)产生了电子-空穴对时,电 子-空穴对的复合会产生一个辐射。
1.顶端发射二极管类型 顶端发射二极管类型
1.结构图
P-GaAlAs P-GaAs
a
SiO2
2.激光管驱动阈值
当注入载流子产生的增益系数等于激光器的损耗时,此时的电 流称为阈值电流。阈值越小越好 。
3.激光器发射的若干问题
激光二极管的模式 在激光管中一般存在3个模式,m,s和q。也就是在三个轴线 上的光场波腹数。m对应于y轴,称为横模;s对应于x轴,称为侧 模;q对应于z轴,称为纵模。
半导体发光显示器件LED

1.5
2.0
2.5
上。
U (V)
2.3、亮度与电流关系
自发辐射情况下 由于存在非辐射复全以及隧道电流
在低电流密度下,m=1.3~1.5;在高电流密 度下,扩散电流起支配作用,m≈1。
2.4、LED的驱动
(2.4)
RL (U CC U F ) / I F
2.5、LED光源的特点
电压:LED使用低压电源,供电电压在6-24V之间,根据产品不同而 异,所以它是一个比使用高压电源更安全的电源,特别适用于公共场 所。
汽车信号灯也是LED光源应用的重要领域。1987 年,我国开始在汽车上安装高位刹车灯,由于 LED响应速度快(纳秒级),可以及早让尾随车 辆的司机知道行驶状况,减少汽车追尾事故的发 生。
另外,LED灯在室外红、绿、蓝全彩广告显示屏 得到了广泛的应用。
360ቤተ መጻሕፍቲ ባይዱLED环型显示器
工作原理
分辨率的计算方法
P-N结发光原理
2.2、LED的伏安特性
120
开启电压与材料有关,
100
I (mA)
对 于 GaAs 是 1.0V ;
80
GaAs1-xPx 、 Ga1-
60
xAlxAs大致是1.5V;发
40
红光的GP是1.8V,发绿
光的GaP是2.0V。反向
20
击 穿 电 压 一 般 在 -5V 以
0 1.0
2.1、P-N结发光原理
由于少数载流子在电场作用下能量增加,
这些载流子在同质结或异质结区的注入与 复合而产生的发光叫做结型电致发光(又 称注入式电致发光)。概据这种发光现象 制成的发光器件称为结型电致发光显示器 件。
LED基础知识

(一)LED简介1、 LEDLED为Light Emitting Diode(发光二极管)的缩写。
LED是一种半导体固体器件,LED的最显著优点是使用节能,环保,和使用寿命长。
由于采用了鎵、砷、磷三种元素,所以俗称这些LED为三元素发光管。
而GaN(氮化镓)的蓝光 LED 、GaP 的绿光 LED和GaAs红外光LED,被称为二元素发光管。
而目前最新的工艺是用混合铝(Al)、钙(Ca) 、铟(In)和氮(N)四种元素的AlGaInN 的四元素材料制造的四元素LED,可以涵盖所有可见光以及部份紫外光的光谱范围。
2.LED照明术语波长:光的色彩强弱是可以通过数据来描述,这种数据叫波长。
能见到的光的波长,范围在380至780nm之间。
单位:纳米(nm)亮度:亮度是指物体明暗的程度,定义是单位面积的发光强度。
单位:尼特(nit)光强:指光源的明亮程度。
也即表示光源在一定方向和范围内发出的可见光辐射强弱的物理量。
单位:烛光(cd)光通量:光源每秒钟所发出的可见光量之总和。
单位:流明(Lm)光效:光源发出的光通量除以光源的功率。
它是衡量光源节能的重要指标。
单位:每瓦流明(Lm/w)。
显色性:光源对物体呈现的程度,也就是颜色的逼真程度。
通常叫做"显色指数"。
单位:Ra。
色温:光源发射光的颜色与黑体在某一温度下辐射光色相同时,黑体的温度称为该光源的色温。
单位:开尔文(k)。
眩光:视野内有亮度极高的物体或强烈的亮度对比,所造成的视觉不舒适称为眩光,眩光是影响照明质量的重要因素。
同步性:两个或两个以上LED灯在不规定时间内能正常按程序设定的同步方式运行,同步性是LED灯实现协调变化的基本要求。
防护等级:IP防护等级是将灯具依其防尘、防湿气之特性加以分级,由两个数字所组成,第一个数字代表灯具防尘、防止外物侵人的等级(分0-6级),第二个数字代表灯具防湿气、防水侵人的密封程度(分0-8级),数字越大表示其防护等级越高。
光致发光半导体

光致发光半导体光致发光半导体(Light Emitting Semiconductor,简称LED)是一种半导体器件,当通过半导体材料的电流流动时,该材料会发射光。
LED广泛用于照明、显示、通信等领域,因其高效、寿命长、耐用、低功耗等优点而备受青睐。
以下是LED的一些关键特点和原理:1.半导体材料:LED使用半导体材料作为发光源。
通常,LED采用的半导体材料包括镓砷化物(GaAs)、磷化铝(AlP)、硒化镉(CdSe)等。
这些材料的能带结构使得电子和空穴在材料内部复合并释放光子。
2.能带结构:LED的工作基于半导体材料的能带结构。
当电流通过半导体时,电子会从价带跃迁到导带,形成电子-空穴对。
当它们复合时,产生的能量以光子的形式释放,形成可见光。
3.发光颜色:使用不同的半导体材料或通过添加不同的杂质,可以实现不同颜色的发光。
例如,镓砷化物LED通常用于制造红色和红外线LED,而硒化镉LED可用于制造绿色和蓝色LED。
4.LED结构:典型的LED结构包括一个P型半导体层和一个N型半导体层之间的活性层。
在这个活性层中,电子和空穴发生复合并释放光子。
LED还包括外部封装,通常使用透明的材料,以保护LED并改善光的传播。
5.照明应用:LED广泛应用于照明领域。
LED灯具比传统的白炽灯和荧光灯更为高效,能够产生更亮的光,并具有更长的寿命。
LED还具有可调光性和颜色温度可调性的优势。
6.显示技术:LED也用于各种显示技术,如LED显示屏、LED电视和LED 背光。
LED显示具有高对比度、鲜艳的颜色和快速的响应时间。
总体而言,LED作为一种先进的光源技术,在多个领域都取得了显著的进展,并在能源效率、环保性和可靠性等方面展现了明显的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
半导体发光器件(led常识)半导体发光器件包括半导体发光二极管(简称led)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。
事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。
一、半导体发光二极管工作原理、特性及应用(一)led发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。
因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。
此外,在一定条件下,它还具有发光特性。
在正向电压下,电子由N区注入P区,空穴由P区注入N区。
进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。
假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。
除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。
发光的复合量相对于非发光复合量的比例越大,光量子效率越高。
由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。
理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/E g(mm)式中Eg的单位为电子伏特(eV)。
若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。
比红光波长长的光为红外光。
现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。
(二)led的特性1.极限参数的意义(1)允许功耗Pm:允许加于led两端正向直流电压与流过它的电流之积的最大值。
超过此值,led发热、损坏。
(2)最大正向直流电流I Fm:允许加的最大的正向直流电流。
超过此值可损坏二极管。
(3)最大反向电压V Rm:所允许加的最大反向电压。
超过此值,发光二极管可能被击穿损坏。
(4)工作环境t opm:发光二极管可正常工作的环境温度范围。
低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。
2.电参数的意义(1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。
由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。
(2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。
若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。
由于一般led的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。
(3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔.(4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。
半值角的2倍为视角(或称半功率角)。
图3给出的二只不同型号发光二极管发光强度角分布的情况。
中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。
显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。
由此图可以得到半值角或视角值。
(5)正向工作电流If:它是指发光二极管正常发光时的正向电流值。
在实际使用中应根据需要选择I F在0.6·I Fm以下。
(6)正向工作电压V F:参数表中给出的工作电压是在给定的正向电流下得到的。
一般是在I F=20mA时测得的。
发光二极管正向工作电压V F在1.4~3V。
在外界温度升高时,V F将下降。
(7)V-I特性:发光二极管的电压与电流的关系可用图4表示。
在正向电压正小于某一值(叫阈值)时,电流极小,不发光。
当电压超过某一值后,正向电流随电压迅速增加,发光。
由V-I曲线可以得出发光管的正向电压,反向电流及反向电压等参数。
正向的发光管反向漏电流IR<10μA以下。
(三)led的分类1.按发光管发光颜色分按发光管发光颜色分,可分成红色、橙色、绿色(又细分黄绿、标准绿和纯绿)、蓝光等。
另外,有的发光二极管中包含二种或三种颜色的芯片。
根据发光二极管出光处掺或不掺散射剂、有色还是无色,上述各种颜色的发光二极管还可分成有色透明、无色透明、有色散射和无色散射四种类型。
散射型发光二极管和达于做指示灯用。
2.按发光管出光面特征分按发光管出光面特征分圆灯、方灯、矩形、面发光管、侧向管、表面安装用微型管等。
圆形灯按直径分为φ2mm、φ4.4mm、φ5mm、φ8mm、φ10mm及φ20mm等。
国外通常把φ3mm的发光二极管记作T-1;把φ5mm的记作T-1(3/4);把φ4.4mm的记作T-1(1/4)。
由半值角大小可以估计圆形发光强度角分布情况。
从发光强度角分布图来分有三类:(1)高指向性。
一般为尖头环氧封装,或是带金属反射腔封装,且不加散射剂。
半值角为5°~20°或更小,具有很高的指向性,可作局部照明光源用,或与光检出器联用以组成自动检测系统。
(2)标准型。
通常作指示灯用,其半值角为20°~45°。
(3)散射型。
这是视角较大的指示灯,半值角为45°~90°或更大,散射剂的量较大。
3.按发光二极管的结构分按发光二极管的结构分有全环氧包封、金属底座环氧封装、陶瓷底座环氧封装及玻璃封装等结构。
4.按发光强度和工作电流分按发光强度和工作电流分有普通亮度的led(发光强度<10mcd);超高亮度的led(发光强度>100mcd);把发光强度在10~100mcd间的叫高亮度发光二极管。
一般led的工作电流在十几mA至几十mA,而低电流led的工作电流在2mA以下(亮度与普通发光管相同)。
除上述分类方法外,还有按芯片材料分类及按功能分类的方法。
(四)led的应用由于发光二极管的颜色、尺寸、形状、发光强度及透明情况等不同,所以使用发光二极管时应根据实际需要进行恰当选择。
由于发光二极管具有最大正向电流I Fm、最大反向电压V Rm的限制,使用时,应保证不超过此值。
为安全起见,实际电流I F应在0.6I Fm以下;应让可能出现的反向电压V R<0。
6V Rm。
led被广泛用于种电子仪器和电子设备中,可作为电源指示灯、电平指示或微光源之用。
红外发光管常被用于电视机、录像机等的遥控器中。
(1)利用高亮度或超高亮度发光二极管制作微型手电的电路如图5所示。
图中电阻R限流电阻,其值应保证电源电压最高时应使led的电流小于最大允许电流I Fm。
(2)图6(a)、(b)、(c)分别为直流电源、整流电源及交流电源指示电路。
图(a)中的电阻≈(E-V F)/I F;图(b)中的R≈(1.4V i-V F)/I F;图(c)中的R≈V i/I F式中,Vi——交流电压有效值。
(3)单led电平指示电路。
在放大器、振荡器或脉冲数字电路的输出端,可用led表示输出信号是否正常,如图7所示。
R为限流电阻。
只有当输出电压大于led的阈值电压时,led才可能发光。
(4)单led可充作低压稳压管用。
由于led正向导通后,电流随电压变化非常快,具有普通稳压管稳压特性。
发光二极管的稳定电压在1.4~3V间,应根据需要进行选择V F,如图8所示。
(5)电平表。
目前,在音响设备中大量使用led电平表。
它是利用多只发光管指示输出信号电平的,即发光的led数目不同,则表示输出电平的变化。
图9是由5只发光二极管构成的电平表。
当输入信号电平很低时,全不发光。
输入信号电平增大时,首先LED1亮,再增大LED2亮……。
(五)发光二极管的检测1.普通发光二极管的检测(1)用万用表检测。
利用具有×10kΩ挡的指针式万用表可以大致判断发光二极管的好坏。
正常时,二极管正向电阻阻值为几十至200kΩ,反向电阻的值为∝。
如果正向电阻值为0或为∞,反向电阻值很小或为0,则易损坏。
这种检测方法,不能实地看到发光管的发光情况,因为×10kΩ挡不能向led提供较大正向电流。
如果有两块指针万用表(最好同型号)可以较好地检查发光二极管的发光情况。
用一根导线将其中一块万用表的“+”接线柱与另一块表的“-”接线柱连接。
余下的“-”笔接被测发光管的正极(P区),余下的“+”笔接被测发光管的负极(N区)。
两块万用表均置×10Ω挡。
正常情况下,接通后就能正常发光。
若亮度很低,甚至不发光,可将两块万用表均拨至×1Ω若,若仍很暗,甚至不发光,则说明该发光二极管性能不良或损坏。
应注意,不能一开始测量就将两块万用表置于×1Ω,以免电流过大,损坏发光二极管。
(2)外接电源测量。
用3V稳压源或两节串联的干电池及万用表(指针式或数字式皆可)可以较准确测量发光二极管的光、电特性。
为此可按图10所示连接电路即可。
如果测得V F在1.4~3V之间,且发光亮度正常,可以说明发光正常。
如果测得VF=0或VF≈3V,且不发光,说明发光管已坏。
2.红外发光二极管的检测由于红外发光二极管,它发射1~3μm的红外光,人眼看不到。
通常单只红外发光二极管发射功率只有数mW,不同型号的红外led发光强度角分布也不相同。
红外led的正向压降一般为1.3~2.5V。
正是由于其发射的红外光人眼看不见,所以利用上述可见光led的检测法只能判定其PN结正、反向电学特性是否正常,而无法判定其发光情况正常否。
为此,最好准备一只光敏器件(如2CR、2DR型硅光电池)作接收器。
用万用表测光电池两端电压的变化情况。
来判断红外led加上适当正向电流后是否发射红外光。
其测量电路如图11所示。