温控控制风扇电路

合集下载

自动温控风扇电路

自动温控风扇电路

自动温控风扇电路1我也有一台APS3005Si电源,和其他朋友说的一样,也存在风扇声音太吵的问题,今天改造了一下,感觉还不错。

热敏电阻RT是在一个电池组里弄到的。

30度室温时电阻大约8.6K,这时LM317的输出电压是5V多一些,风扇能低速运转;60度左右时输出电压接近12V,风扇全速运转。

个人感觉散热片温度不高时停转风扇的做法不太好,温度上来时风扇会因欠压而启动困难,尤其是风扇长时间使用后阻力变大,欠压启动会更难。

C1的作用是在打开电源的几秒钟内时使风扇全速运转,一则可以加快风扇启动,二则作为开机时的“自检”。

LM317固定在原来安温控开关的孔上,需要加绝缘垫,热敏电阻用导热胶粘在散热片的中央。

我按此电路搭成了,在室温23°C时输出电压6.4V,用电烙铁接近热敏电阻电压上升至10.6V后再不能升高了,无论怎样提高输入电压(提到过15V)输出电压始终在10.6V,电烙铁直接接触热敏电阻也无变化了,降至室温后输出电压又降至6.4V,风扇低转,可以用,但就是不能到12V输出,风扇也就不能满电压运转,不知何故?升降R1阻值,最高输出一样变化不大。

是热敏电阻电阻高温时的电阻值太高了点。

可以增大R1值(或用两个热敏电阻并联),但这样低温时输出电压也提高了。

需要试验用合适的阻值以兼顾高低温的情况。

若需要高低温输出电压变化比较大的话可以再加三极管放大。

2工作原理:风扇串一个150欧姆限流、降压电阻接12v电源,使之维持启动及低速运转,当机箱内温度上升时,热敏电阻阻值随之下降,大功率管逐步导通并逐步旁路掉150欧姆限流、降压电阻,使风扇电压逐步增高转速逐步增大,温度下降时热敏电阻阻值增大,逐步恢复到起始状态,达到机箱温度自动控制的目的。

34用N-MOS管制作的自动温控风扇电路一、选料 1、N-MOS管 选IRF540N 参数 33A 100V 0.040Ω VGS=10V 2、NTC 选负温度系数10K的 3、可调电阻 10K 4、电阻 选4.3K或4.7K 5、风扇 选12V风扇二、电路图三、安装用万用板按上述电路图焊接安装即可 负温度探头 NTC 10K 用导线加长连接引出 以方便温度探头安放在测温部位。

温控风扇原理

温控风扇原理

温控风扇原理
温控风扇是一种智能化的电器产品,它能够根据环境温度的变化自动调节风速,为人们带来了极大的便利。

那么,温控风扇是如何实现温度控制的呢?接下来,我们将从原理方面来详细介绍一下。

首先,温控风扇的核心部件是温度传感器。

温度传感器是一种能够感知环境温
度变化并将其转化为电信号输出的器件。

常见的温度传感器有热敏电阻、温度传感芯片等。

当环境温度发生变化时,温度传感器会感知到这一变化并将其转化为电信号,然后将信号传输给控制电路。

其次,控制电路是温控风扇中至关重要的一部分。

控制电路能够根据温度传感
器传来的信号进行相应的处理,最终控制风扇的转速。

一般来说,控制电路会设定一个温度范围,当环境温度超出这个范围时,控制电路会自动调节风扇的转速,以达到降低或提高环境温度的目的。

这种智能化的控制方式,使得温控风扇能够更加智能、节能。

最后,风扇部分是温控风扇的另一重要组成部分。

风扇的转速是由电机来控制的,而电机的转速又是由控制电路来控制的。

控制电路会根据温度传感器的信号来调节电机的转速,从而达到控制环境温度的目的。

这种智能化的控制方式,使得温控风扇能够更加智能、节能。

总的来说,温控风扇是通过温度传感器感知环境温度变化,然后通过控制电路
控制风扇的转速,从而达到控制环境温度的目的。

这种智能化的控制方式,使得温控风扇能够更加智能、节能。

希望通过本文的介绍,能够让大家对温控风扇的原理有一个更加深入的了解。

用常闭温度开关控制的自动温控风扇电路

用常闭温度开关控制的自动温控风扇电路

用常闭温度开关控制的自动温控风扇电路
近日为电脑加装了一只大电流(12V,2A)的涡轮风扇,于是想找一只BW9700型的45度常开温度开关来控制风扇的开、停运转。

由于手头上只有常闭温度开关,加之懒得再去找常开型的温度开关,就改用常闭温度开关控制三极管的办法来实现开关功能,达到了自动控制涡轮风扇开、停的目的。

为了改善风扇的噪音,本人还将12V的风扇改接5V的电压来使用,既达到了散热作用也解决了噪音问题。

下面是改装的电路图:
原理:当温度达到45度时常闭温度开关自动断开,三极管Q(8050)得电饱和导通,风扇启动运转;当温度降至38度左右时常闭温度开关闭合,三极管b极电位变为零,Q管失电截止,风扇停止运转,这样就起到了自动控制风扇开停的目的,从而达到了自动控温的效果。

如将该电路接入12V电压时,应将R的阻值调整为1K左右。

BW9700系列温度开关。

温控风扇

温控风扇

温控自动风扇系统摘要:本设计为一种温控风扇系统,具有灵敏的温度感测和显示功能,系统AT89S52 单片机作为控制平台对风扇转速进行控制。

可由用户设置高、低温度值,测得温度值在高低温度之间时打开风扇弱风档,当温度升高超过所设定的温度时自动切换到大风档,当温度小于所设定的温度时自动关闭风扇,控制状态随外界温度而定。

引言生活中,我们经常会使用一些与温度有关的设备。

比如,现在虽然不少城市家庭用上了空调,但在占中国大部分人口的农村地区依旧使用电风扇作为降温防暑设备,春夏(夏秋)交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。

虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,而且可能多次定时后最后一次定时时间太长,在温度降低以后风扇依旧继续吹风,使人感冒;第三方面是只有简单的到了定时时间就关闭风扇电源的单一功能,不能满足气温变化对风扇风速大小的不同要求。

又比如在较大功率的电子产品散热方面,现在绝大多数都采用了风冷系统,利用风扇引起空气流动,带走热量,使电子产品不至于发热烧坏。

要使电子产品保持较低的温度,必须用大功率、高转速、大风量的风扇,而风扇的噪音与其功率成正比。

如果要低噪音,则要减小风扇转速,又会引起电子设备温度上升,不能两全其美。

为解决上述问题,我们设计了这套温控自动风扇系统。

本系统采用高精度集成温度传感器,用单片机控制,能显示实时温度,并根据使用者设定的温度自动在相应温度时作出小风、大风、停机动作,精确度高,动作准确。

1、方案论证本系统实现风扇的温度控制,需要有较高的温度变化分辨率和稳定可靠的换档停机控制部件。

第15课实例一温控风扇

第15课实例一温控风扇

温控风扇
关键问题:如何利用温度数据来控制电机的转速 器材清单:LM35温度传感器 Arduino uno AFMOTOR L293直接电机驱动模块 直流电机 风扇叶
温控风扇
实现过程: 1、连接各部件,LM35需要传感模拟管脚 2、连接电机和风扇叶片 3、编制程序,上传并测试
硬件连接电路图
温控风扇
感谢观看
程序实现:
算法说明: 我们设定在40摄氏度时风扇达到满速运行,40*2.5刚
好等于100,此时电机100%满速运行,如果温度为35度, 35*2.5等于87.5,电机刚按87.5%的速度运行。
温控风扇
【探究思考】 虽然目5%的速度运行,然而此时并不需要风扇降温 。如何让它变得更智能?你可以思考一下,再试着做一做。
青年创客机器人营 第十五课 温控风扇
巴蜀中学选修课
温控风扇
项目需求: 风扇是电风扇的简称,是一种利用电动机
驱动扇叶旋转,从而使空气加速流通达到乘 凉效果的家用电器。随着科技的不断发展, 很多具有智能功能的风扇也随之出现,如定 时风扇、温控风扇、四季风扇等。我们需要 一台使用温度来控制风扇的转速的智能电风 扇,当气温越高,风扇转速越高,气温降低, 风扇转速也随之降低。

温控风扇系统设计与调试实验报告

温控风扇系统设计与调试实验报告

温控风扇系统设计与调试实验报告本次温控风扇系统设计与调试实验旨在探究温度控制的原理及实现方法,具体操作步骤如下:一、实验原理本实验主要采用的温控系统原理为负反馈控制,即将温度传感器检测到的温度与设定温度进行比较,并计算出误差值,通过控制器计算并输出PWM控制信号,控制风扇的转速,维持系统温度稳定。

二、实验器材和材料1、Arduino主控板 1块2、LM35温度传感器 1个3、风扇电机模块 1个4、杜邦线若干三、实验步骤1、接线将LM35温度传感器和风扇电机分别连接到Arduino主控板上。

LM35温度传感器的VCC引脚连接到Arduino主控板的5V引脚,GND引脚连接到GND引脚,OUT引脚连接到A0引脚。

风扇电机模块的VCC引脚连接到Arduino主控板的5V引脚,GND引脚连接到GND引脚,PWM 引脚连接到D3引脚。

2、编程1) 定义变量定义变量,包括控制器的Kp值、Ki值、Kd值、偏差量、偏差和、上一秒的偏差、输出值等。

2) 设置风扇转速和PID系数设置风扇最小转速和PID系数,根据实际情况进行选择。

3) PID控制通过PID控制计算PWM输出值,控制风扇转速,使系统温度稳定在设定温度附近。

4) 读取和处理温度值读取LM35温度传感器检测到的温度值,与设定温度进行比较,计算误差,调整风扇速度控制系统温度稳定。

5) 延时每一次计算后,让控制器等待一定时间再进行下次计算,从而保证控制精度。

3、调试完成编程后,上传到Arduino主控板,插入电源,进行调试。

在初始状态下,风扇停止工作,温度传感器开始检测环境温度。

当环境温度高于设定温度时,通过调整PWM输出控制风扇增加转速,降低温度,直至稳定在设定温度附近。

四、实验结果实验结果显示,本次设计的温控风扇系统能够稳定控制系统温度,并能根据环境温度实现调整风扇转速的功能。

五、实验总结通过本次实验,我们深入了解了PID控制器的原理和实现方法,在实践中,我们运用PID控制方案实现了温控风扇系统,掌握了基本的温控风扇系统设计和调试技能。

三极管温控风扇电路

三极管温控风扇电路

三极管温控风扇电路
三极管温控风扇电路是一种基于三极管的温度监测和控制方案,用于自动调节风扇的转速以维持设定的温度范围内。

电路原理:
在电路中加入一个温度传感器,它会根据环境温度变化输出一个电压信号。

通过调节三极管的工作状态,可以控制风扇的转速,从而达到控制温度的目的。

具体实现:
1. 温度传感器可采用常见的NTC热敏电阻,在温度升高时其电阻值会降低。

2. 将温度传感器与一个固定电阻串联,组成一个电压分压电路,接到三极管的基极上。

3. 通过电阻调节电路的灵敏度和温度响应速度。

4. 当温度升高,传感器的电压下降,导致三极管的工作状态改变,从而改变风扇的转速。

5. 可通过选定不同的电阻和三极管,调节电路的工作特性与匹配不同的风扇。

需要注意的是,三极管温控风扇电路常用于小功率电器中,若要用于高功率电器则需要进行适当的改进和扩展。

基于51单片机的智能温控风扇毕业设计

基于51单片机的智能温控风扇毕业设计

基于51单片机的智能温控风扇毕业设计基于51单片机的智能温控风扇毕业设计引言:近年来,随着科技的不断进步,智能家居设备已经成为了人们生活中不可或缺的一部分。

在众多智能家居设备中,智能温控风扇作为一个重要的家居电器,为我们的生活带来了极大的便利和舒适。

本文旨在介绍一种基于51单片机的智能温控风扇毕业设计,通过深入探讨其原理、设计和应用,展示其在实际生活中的价值和应用潜力。

一、背景与需求分析1.1 背景过去的传统风扇只能通过手动调节风速和转动方向,无法根据环境温度进行智能调节。

现如今,人们迫切需要一种能够根据温度自动调节风速的智能风扇,以提供更加舒适和节能的生活体验。

1.2 需求分析为了满足人们对舒适和节能的需求,我们提出了以下需求:- 风扇能够根据环境温度自动调节风速。

- 风扇能够根据人体活动感知温度变化。

- 风扇能够通过遥控或手机应用进行远程控制。

- 风扇能够具备智能化的系统保护功能。

二、设计方案与实施2.1 传感器选用为了实现风扇的智能温控功能,我们需要选用适当的温度传感器。

常用的温度传感器包括NTC热敏电阻、DS18B20数字温度传感器等。

根据需求,我们选择了DS18B20作为温度传感器,它能够准确地检测环境温度。

2.2 控制电路设计基于51单片机的智能温控风扇控制电路主要由以下几个部分组成:- 温度传感器模块:用于检测环境温度。

- 驱动电路:用于控制风扇的转速。

- 单片机板:用于处理温度数据和控制风扇运行状态。

- 通信模块:用于实现与遥控器或手机应用的远程通信。

2.3 系统设计与软件开发基于51单片机的智能温控风扇的系统设计主要包括以下几个方面:- 温度采集与处理:通过DS18B20温度传感器采集环境温度,并通过单片机进行数据处理。

- 控制与调速:根据采集到的温度数据,控制驱动电路实现风扇转速的智能调整。

- 远程控制:通过手机应用或遥控器与风扇进行远程通信,实现远程控制和监控。

三、系统实施与测试3.1 硬件实施根据设计方案,我们将电路图进行布局,选择合适的电子元件进行组装,完成基于51单片机的智能温控风扇的硬件实施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温控式电风扇调速器电路图
发布: | 作者:-- | 来源: -- | 查看:218次 | 用户关注:
温控式电风扇调速器电路图介绍的温控式电风扇调速器,能根据室内温度的高低自动调节电风扇的风速,使用十分方便。

电路工作原理该温控式电风扇调速器电路由稳压电路、多谐振荡器和控制执行电路组成,如图所示。

稳压电路由限流电阻器R4、滤波电容器C3和稳压一极管VS组成。

温控式电风扇调速器电路图介绍的温控式电风扇调速器,能根据室内温度的高低自动调节电风扇的风速,使用十分方便。

电路工作原理
该温控式电风扇调速器电路由稳压电路、多谐振荡器和控制执行电路组成,如图所示。

稳压电路由限流电阻器R4、滤波电容器C3和稳压一极管VS组成。

多谐振荡器由时基集成电路IC、电阻器Rl-R3、电容器Cl、C2和热敏电阻器RT组成。

控制执行电路由电阻器R5、晶闸管VT和风扇电动机M组成。

接通电源后,多谐振荡器振荡工作,从IC的3脚输出占空比可调的方波脉冲信号,使VT受触发而导通,驱动风扇电动机M运转。

多谐振荡器的工作频率由R3和C2的数值决定;方波脉冲的占空比由IC第7脚与5脚之间的电位差决定。

当室内环境温度升高时,RT的阻值降低,使IC的5脚电压上升,3脚输出方波脉冲的占空比提高,VT的导通角增大,风扇电动机M在单位时间内通电时间变长,运行时间延长,转速加快,从而加大风量以达到降温的目的。

反之,当室内环境温度下降时,RT的阻值升高,使IC的5脚电压下降,3脚输出方波脉冲的占空比降低,VT的导通角变小,M在单位时司内通电时司变短,运行时间缩短,转速下降,从而减小风量使室内温度回升。

元器件选择
Rl-R3和R5选用1/4W碳膜电阻器或金属膜电阻器;R4选用1/2W金属膜电阻器。

RT选用负温度系数的热敏电阻器 (在25℃常温下阻值为lOkΩ,加热至5O℃时阻值降至lkΩ)。

Cl选用耐压值为25V的铝电解电容器;C2和C3选用独石电容器或涤纶电容器。

VS选用lW、9.lV的硅稳压二极管。

VT选用3A、600V的双向晶闸管,例如TLC336A等型号。

相关文档
最新文档