分子生物学 第5章 分子生物研究法(上)
分子生物学-第5章-分子生物研究法(上)精选全文完整版

限制性核酸内切酶
限制性核酸内切酶(restriction endonuclease, RE)
一类能识别和切割双链DNA分子中特定碱基顺序的核酸 水解酶
Bam HⅠ
GGATCC CCTAGG
GCCTAG+
GATCC G
分类: Ⅰ、Ⅱ、Ⅲ (基因工程技术中常用Ⅱ型)
命名
Hin dⅢ
Haemophilus influenzae 自主 复制能力的 DNA分子( vector),如 病毒、噬菌体 和质粒等小分 子量复制子都 可以作为基因 导入的载体。
1970年Mandel和Higa发现,大肠杆菌细胞经适量氯化钙处 理后,能有效地吸收λ噬菌体DNA。
1972年,Cohen等人又报道,经氯化钙处理的大肠杆菌细 胞同样能够摄取质粒DNA。
把磷酸基团加到多聚核苷酸链的5'-OH末端(进行末端标记 实验或用来进行DNA的连接 在双链核酸的3'末端加上多聚单核苷酸
从DNA链的3'末端逐个切除单核苷酸
从DNA链的5'末端逐个切除单核苷酸 切除位于DNA链5'或3'末端的磷酸基团
1972 - Paul Berg,
Produced first recombinant DNA using
5.1 重组DNA技术回顾 5.2 DNA基本操作技术 5.3 RNA基本操作技术 5.4 SNP的理论与应用 5.5 基因克隆技术 5.6 蛋白质组与蛋白质组学技术
5.1 重组DNA技术回顾
三大成就 :
1. 40年代确定了遗传信息的携带者,即基因的分子载体 是DNA而不是蛋白质,解决了遗传的物质基础问题;
• 基因工程是指在体外将核酸分子插入病毒、质粒 或其它载体分子,构成遗传物质的新组合,使之 进入原先没有这类分子的寄主细胞内并进行持续 稳定的繁殖和表达。
现代分子生物学(第三版)课后答案 第五章分子生物学研究方法(上)

第五章分子生物学的研究方法(上)西南大学生命科学学院09级XX(仅代表个人观点)1,哪些重要的科学发现和实验推动了DNA重组技术的产生和发展?答:1,确定遗传信息的携带者是DNA而不是蛋白质;2,DNA的双螺旋结构模型和半保留复制机制的提出;3,中心法则,操纵子学说的提出和密码子的破译;4,重组工具酶的发现;5,运载体重组质粒的发现。
2,如何理解PCR扩增的原理和过程。
答:原理:DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,并设计引物做启动子,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制。
过程:1,变性,将DNA在临近沸点的温度下加热使变性,双链打开;2,退火,引物与模版的相结合;3,链的延伸,DNA合成。
3,简述定量PCR的原理和过程。
答:实时定量PCR反应在带透明盖的塑料小管中进行,激发光可以直接头孤傲管盖,使其中的荧光探针被激发。
一逛探针事先混合在PCR反应液中,只有与DNA 结合之后,才能被激发发出荧光。
随着新和成DNA片段的增加,结合到DNA上的荧光探针,即被激发产生的荧光增加。
4,基因组DNA文库和cDNA文库在构建原理和用途上的主要区别是什么?答:基因组DNA是把某种生物的基因组DNA切成适当大小,分别与载体结合,导入微生物细胞形成克隆。
应用:主要用于基因组作图、测序和克隆序列的对比。
cDNA文库是以mRNA为模版反转录而成的序列,与适当的载体(常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖扩增。
应用:筛选目的基因、大规模测序、金银芯片杂交等功能基因组学的研究。
5,基因克隆的方法主要有哪几种?简述各种方法的作用和用途。
答:1,RACE技术,用于在已知cDNA序列的基础上克隆5’端和3’端缺失的序列;2,应用cDNA差示分析法克隆基因,在没有任何探针的情况下,通过降低cDNA群体复杂性和更换cDAN两端接头的方法特异性的扩增目的基因片段。
分子生物学课程教学大纲

分子生物学课程教学大纲课程名称:分子生物学(Molecular Biology)课程编号:1313072215课程类别:专业课总学时数:68 课内实验时数:18学分:3.5开课单位:生命科学学院生物技术教研室适用专业:生物技术适用对象:本科(四年)一、课程的性质、类型、目的和任务分子生物学为高等学校生物技术专业学生必修的一门专业基础课,是从分子水平研究生命本质为目的的一门新兴边缘学科,主要研究核酸、蛋白质等生物大分子的功能、形态结构特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
通过分子生物学的教学,应使学生了解分子生物学的发展历史以及最新研究成果;熟练掌握DNA的结构与功能、RNA在蛋白质合成中的功能、蛋白质的结构与功能、遗传密码及基因表达调控的本质;了解现代分子生物学基本研究方法,并能运用分子生物学的理论知识分析、研究和解决问题,为进一步学习有关专业课程及从事基因工程领域的研究工作奠定基础。
二、本课程与其它课程的联系与分工从学科角度来讲,分子生物学涵盖面非常广,与生物学、生物化学和细胞生物学、遗传学等生命科学课程有交叉,《生物化学》是先修课程。
三、教学内容及教学基本要求[1]表示“了解”;[2]表示“理解”或“熟悉”;[3]表示“掌握”;△表示自学内容;○表示略讲内容;第一章绪论第一节引言创世说与进化论[1];细胞学说[2];经典的生物化学和遗传学[3];DNA的发现[2]第二节分子生物学简史[1]第三节分子生物学研究的主要内容分子生物学的含义[3];DNA重组技术、基因工程技术概念[3];分子生物学研究的主要内容[3]第四节展望分子生物学的一些分支学科[1];分子生物学发展的趋势[1]重点:分子生物学的含义和研究内容难点:分子生物学的研究内容教学手段:多媒体教学教学方法:讲授法作业:1.简述阵德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
分子生物学-第五章--蛋白质的生物合成可编辑全文

遗传密码的连续性
遗传密码的摆动配对
密码的简并性具有的生物学意义
它允许生物体的DNA碱基有较大变异 的余地,使基因突变可能造成的为害降至 最低程度,而不影响物种形状的表达,对 环境的适应和物种遗传的稳定。
例如细菌DNA中G+C含量变动很大, 但不同G+C含量的细菌却可以编码出相同 的多肽链。
这归因于同义密码子的分布规则。
摇摆假说
由于同义密码子的第1、2个碱基是保守的,第3个碱 基是可变的,因此解读同义密码子的tRNA的反密码子的 第1个碱基必定具有最小的专一性,也就是说它与密码子 第3个碱基之间的配对原则具有一定范围的灵活性。
由于反密码子位于tRNA的突环上,因此反密码子三 联体的排列就会呈弯曲弧线,不能与密码子保持完全的平 行,加上反密码子的第1个核苷酸位于非双链结构的松弛 环内,摇摆的自由度较大,从而导致密码子的第3个核苷 酸和反密码子的第1个核苷酸之间可能形成非标准的碱基 配对,反密码子的这一位点也被称为摇摆位点(一般为第 34位碱基)。
在原核生物和真核生物中,均存在另一种 携带蛋氨酸的tRNA,识别非起始部位的蛋氨 酸密码,AUG。
tRNA在将密码的信息及排列转换为多肽链中 的氨基酸序列的过程中起着中心及桥梁的作用。
最简单的tRNA只有74个核苷酸,而最大的也 很少超过94个核苷酸。这个特点使得tRNA成为最 先被定序的核酸。
序列测定的结果揭示tRNA是同源性相对较高 的RNA分子,tRNA分子含有大量修饰核苷酸和可 能存在各种碱基配对的二级结构。
能 够 识 别 mRNA 中 5′ 端 起 始 密 码 AUG 的 tRNA是一种特殊的tRNA,称为起始tRNA。
在 原 核 生 物 中 , 起 始 tRNA 是 一 种 携 带 甲 酰蛋氨酸的tRNA,即tRNAifmet;
分子生物学第五章分子生物学研究法(上)

分子生物学第五章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术第三节RNA操作技术第四节SNP的理论与应用第五节基因克隆技术第六节蛋白质组与蛋白质组学技术夏玉琼2013-10-10目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建切割位点用四碱基特异性的限制性内切酶部分消化DNA 片段,有的仍有切割位点质粒DNA将DNA 克隆进质粒DNA细菌克隆每个细菌都带有不同片段的DNA细菌转化分子生物学 夏玉琼 西安电子科技大学cDNA文库的构建cDNA的长度0.5-8 kb载体:质粒载体和噬菌体类载体完整的cDNA文库包含大于5*105的独立克隆分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术cDNA文库的构建基因文库的筛选SNP的理论与应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学基因文库的筛选含义通过某种特殊方法从基因文库中鉴定出含有所需重组DNA分子的特定克隆的过程筛选方法核酸杂交法PCR筛选法免疫筛选法分子生物学 夏玉琼 西安电子科技大学核酸杂交法培养基上的菌落盖上硝酸纤维素膜移去硝酸纤维素膜裂解、中和去除细菌蛋白DNA 印迹32P 标记探针杂交放射自显影图像挑出阳性克隆保存母板分子生物学 夏玉琼 西安电子科技大学PCR筛选法需获得基因特异性引物将整个基因文库保存在多孔培养板上用设计好的基因探针对每个孔PCR筛选,挑出阳性的孔对阳性的孔再稀释到次级多孔板中PCR筛选重复稀释重复筛选直到与目的基因对应的单个克隆分子生物学 夏玉琼 西安电子科技大学免疫筛选法文库铺于E.coli 形成噬菌斑转移到硝酸纤维素膜吸收λ噬菌体中表达的外源蛋白保存原板,加入一抗筛选膜上的噬菌斑印迹洗去未结合的抗体加入酶偶联的二抗加底物显色从保存板上挑出阳性噬菌斑一抗:第一抗体,识别目标蛋白二抗:抗体的抗体,能增强信号,增加该方法的灵活性分子生物学 夏玉琼 西安电子科技大学目录RNA操作技术SNP的理论与应用SNP概述SNP的检测技术SNP的应用基因克隆技术蛋白质与蛋白质组学技术分子生物学 夏玉琼 西安电子科技大学SNP概述single nucleotide polymorphism,pronounced “snips”单核苷酸多态性基因组DNA序列中由于单个核苷酸的突变而引起的多态性,发生频率1%或更高例如:某些人的染色体上的某个位置为A,而另外一些人的同样位置是T,染色体DNA同一位置上的每个碱基类型叫做一个等位位点继RFLP和SSR之后的第三代遗传标记遗传标记:在遗传分析上用作标记的基因分子生物学 夏玉琼 西安电子科技大学第一代遗传标记:RFLPRFLP标记是发展最早的DNA标记技术。
现代分子生物学考试重点

第二章染色体与DNA2.什么是核小体?简述其形成过程。
由DNA和组蛋白组成的染色质纤维细丝是许多核小体连成的念珠状结构。
核小体是由H2A,H2B,H3,H4各两个分子生成的八聚体和由大约200bp的DNA组成的。
八聚体在中间,DNA分子盘绕在外,而H1则在核小体外面。
每个核小体只有一个H1。
所以,核小体中组蛋白和DNA的比例是每200bpDNA有H2A,H2B,H3,H4各两个,H1一个。
用核酸酶水解核小体后产生只含146bp核心颗粒,包括组蛋白八聚体及与其结合的146bpDNA,该序列绕在核心外面形成1.75圈,每圈约80bp。
由许多核小体构成了连续的染色质DNA细丝。
核小体的形成是染色体中DNA压缩的第一阶段。
在核小体中DNA盘绕组蛋白八聚体核心,从而使分子收缩至原尺寸的1/7。
200bpDNA完全舒展时长约68nm,却被压缩在10nm的核小体中。
核小体只是DNA压缩的第一步。
核小体长链200bp→核酸酶初步处理→核小体单体200bp→核酸酶继续处理→核心颗粒146bp3简述真核生物染色体的组成及组装过程除了性细胞外全是二倍体是有DNA以及大量蛋白质及核膜构成核小体是染色体结构的最基本单位。
核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)各两个分子构成的扁球状8聚体。
蛋白质包括组蛋白与非组蛋白。
组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。
非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构---- 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。
2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。
分子生物学考点整理1

分子生物学考点整理符广勇朱兰第一章.绪论一、分子生物学概念分子生物学是从分子水平研究生命本质为目的的一门新兴边缘学科,是研究核酸、蛋白质等所有生物大分子结构与功能相互关系的科学,是人类从分子水平上真正揭开生物世界奥秘、由被动地适应自然界转向主动地改造和重组自然界的基础学科。
二、重组DNA技术又称基因技术,是20世纪70年代初兴起的技术科学,目的是将不同的DNA片段按照人们的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状。
三、基因表达的调控基因表达的调控主要表现在信号传导研究、转录因子研究及RNA剪辑三个方面。
四、转录因子转录因子是能与基因5`端上游特定序列专一结合,从而保证目的基因以特定的强度在特定的时间与空间表达的蛋白质分子。
第二章.染色体与DNA一、染色体上的蛋白质染色体上的蛋白质主要包括组蛋白和非组蛋白。
根据凝胶电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4。
这些组蛋白都含有大量的赖氨酸和精氨酸。
二、组蛋白的特性1.进化上的极端保守性不同种生物组蛋白的氨基酸组成是十分相似的,特别是H3、H4。
2.无组织特异性到目前为止,仅发现鸟类、鱼类及两栖类红细胞不含H1而带有H5,精细胞染色体的组蛋白是鱼精蛋白这两个例外。
3.肽链上氨基酸分布的不对称性碱性氨基酸集中分布在N端的半条链上。
4.组蛋白的修饰作用包括甲基化、乙酰化、磷酸化、泛素化及ADP核糖基化。
5.富含赖氨酸的组蛋白H5三、HMG蛋白叫高迁移率蛋白四、真核细胞DNA序列的分类1.不重复序列2.中度重复序列3.高度重复序列重复序列的意义:若某一重复序列出现错误,对基因的影响不大,稳定性较高;在短时间内可同时产生大量的基因产物。
重复序列的应用:应用于分子标记的作用:卫星DNA(便于分子标记)和微卫星DNA五、真核生物基因组与原核生物基因组的区别1.真核基因组庞大,原核生物基因组小2.真核基因组存在大量的重复序列,原核基因组没有重复序列3.真核基因组大部分是非编码序列,原核基因组大多是编码序列4.真核基因组的转录产物为单顺反子,原核基因组转录产物多为多顺反子5.真核基因是断裂基因,有内含子结构,原核基因为连续基因,几乎没有内含子结构6.真核基因组存在大量的顺式作用原元件,包括启动子、增强子和沉默子等,原核基因组基本没有增强子和沉默子7.真核基因组存在大量的DNA多态性,原核基因组很少有8.真核基因组具有端粒结构,原核基因组没有端粒结构六、重叠基因(Overlapping gene)指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上的基因的组成部分。
5第五章现代分子生物学研究方法——DNA、RNA及蛋白质操作技术

DNA的基本操作技术——核酸凝胶电泳 以琼脂糖凝胶电泳为例:
DNA的基本操作技术——核酸凝胶电泳
凝胶浓度的高低影响凝胶介质孔隙的大小,浓度越高,孔隙越小, 其分辨能力就越强。反之,浓度降低,孔隙就增大,其其分辨能力 就越弱。
DNA的基本操作技术——核酸凝胶电泳
溴化乙锭(ethidium bromide,EB)能插入到DNA或RNA分子的相 邻碱基之间,并在紫外灯光照射下发出荧光,所以常用EB来检测凝 胶介质中的核酸条带。
x 25 中的聚合酶可能很多正处于复制状态,
如果此时降到室温,将会影响最终产 率。所以再留出5分钟,以使正在复制 中的DNA能够复制完全,以合成更多 的目的分子。
DNA的基本操作技术——重组载体构建 PCR完成之后,需要有什么操作?
DNA的基本操作技术——重组载体构建
DNA的基本操作技术——重组载体构建
转化(transformation):是指重组质粒DNA分子通过与膜蛋白结合 进入受体细胞(一般指细菌),并在受体细胞内稳定维持与表达的 过程。
转染(transfection):是真核细胞主动或被动导入外源DNA片段而 获得新的表型的过程。(与转化类似,只是受体细胞不同)
转导(transduction):是指通过病毒(如λ噬菌体)颗粒感染宿主细 胞将外源DNA分子导入到受体细胞内并稳定遗传的过程。
DNA的基本操作技术——聚合酶链式反应技术
DNA的基本操作技术——聚合酶链式反应技术
常用的PCR反应体系:引物、DNA聚合酶、dNTP、模板、缓冲液。
常用的PCR反应程序:
预变性 95℃ 3 min
变性 95℃ 30 s
退火 55℃ 30 s
x 25
延伸 72℃ 1 min
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
——DNA、RNA及蛋白质操作技术
从20世纪中叶开始,分子生物学研究得到高速 发展,主要原因之一是研究方法,特别是基因操作 和基因工程技术的进步。
基因操作主要包括DNA分子的切割与连接、核 酸分子杂交、凝胶电泳、细胞转化、核酸序列分析 以及基因人工合成、定点突变和PCR扩增等,是分 子生物学研究的核心技术。
Herbert Boyer
表明:
(1)像pSC101这样的质粒DNA分子可 以作为基因克隆的载体,从而把外源 DNA导入寄主细胞;
(2)像非洲爪蟾这样的高等生物的 基因也可以被成功地转移到原核细胞 中并实现其功能表达;
(3)质粒DNA-大肠杆菌细胞作为一 种成功的基因克隆体系,有可能在 重组DNA或基因工程研究中发挥重要 作用。
从此,大肠杆菌就成了分子克隆中最常用的转化受体 。
1973 - Boyer, Cohen & Chang
Transform E. coli with recombinant plasmid
Kanamycin resistance gene
Stanley Cohen & Annie Chan
Plasmid pSC101
• 基因工程是指在体外将核酸分子插入病毒、质粒 或其它载体分子,构成遗传物质的新组合,使之 进入原先没有这类分子的寄主细胞内并进行持续 稳定的繁殖和表达。
• 基因工程技术是核酸操作技术的一部分,只不过 它强调了外源核酸分子在另一种不同的寄主细胞 中的繁衍与性状表达。
• 事实上,这种跨越物种屏障、把来自其它生物的 基因置于新的寄主生物细胞之中的能力,是基因 工程技术区别于其它技术的根本特征。
C. Yanofsky和S. Brenner等人证明,多肽链上的氨基酸序列与 该基因中的核苷酸序列存在着共线性关系。
1965
S. W. Holley完成了酵母丙氨酸tRNA的全序列测定; 科学家证明细菌的抗药性通常由"质粒"DNA所决定。
1966
M.W.Nirenberg,S.Ochoa、H.G.Khorana、F.H.C.Crick等人破译 了全部遗传密码。
两大技术保证: 1.DNA的体外切割和连接
1962年Arber 发现限制性核酸内切酶,1967Gellert发现了 DNA 连接酶DNA ligase covalently links two DNA strands
3’
5’
Restriction enzyme
Ligase
5’
3’
Restriction enzyme
SV40 DNA
仅仅能在体外利用限制性核酸内切酶和DNA连接 酶进行DNA的切割和重组远不能满足基因研究的需 要。
DNA片段在体外不具备自我复制能力,要想得到 足够量和足够纯度的DNA,必须将它们连接到具备 自主复制能力的DNA分子上(载体上),并转入寄 主细胞中进行繁殖。
这就是基因克隆,或分子克隆 。
1964
重组DNA技术历史上的主要事件
事件
F Miescher首次从莱茵河鲑鱼精子中分离DNA。 O.T. Avery证实DNA是遗传物质。 A.D. Hershey和M.Chase再次证实和噬菌体的遗传物质是DNA。
J.D.Watson和F.H.C.Crick提出DNA分子结构的双螺旋模型。 M.Wilkins用X-射线衍射法证实了这一结构。
EcoRI EcoRI recognition sites
EcoRI cuts DNA into fragments
λ phage
DNA
Sticky end
The two fragments stick together by base pairing
Recombinant DNA
DNA ligase
属系 株 序
第一个字母取自产生该酶的细菌属名,用大写; 第二、第三个字母是该细菌的种名,用小写; 第四个字母代表株; 用罗马数字表示发现的先后次序。
Ⅱ类酶识别序列特点—— 回文结构(palindrome)
即反相重复结构,是 DNA分子中以某一处为轴,其两侧核苷酸排列 呈回文对称的序列。
GGATCC CCTAGG
Second replication
Matt Meselson
Conservative Model
Semiconservative Model
3. 50年代末至60年代,相继提出了"中心法则"和操纵子 学说,成功地破译了遗传密码,充分认识了遗传信息的流 动和表达。
Jacob and Monod
但是,如果没有分离和富集单一DNA 分子的技术,科学家就无法对这类物质 进行直接的生化分析。
2.DNA的核苷酸序列分析技术
DNA核苷酸序列分析法是在核酸的酶学和生物化 学的基础上创立并发站起来的一门重要的DNA技术 学,这门技术,对于从分子水平上研究基因的结构与 功能的关系,以及克隆DNA片断的操作方面,都有 着十分广泛的使用价值。
年份 1869 1944 1952 1953
1957 1958 19591960 1961
Heat killed S cells
mixed with living R
cells
Living S cells in blood
sample from dead
mouse
Injection
Results
1952年Hershey和Chase证实噬菌体DNA侵染细菌实验
2. 50年代揭示了DNA分子的双螺旋结构模型和半 保留复制 机制,解决了基因的自我复制和世代交替问题;
5.1 重组DNA技术回顾 5.2 DNA基本操作技术 5.3 RNA基本操作技术 5.4 SNP的理论与应用 5.5 基因克隆技术 5.6 蛋白质组与蛋白质组学技术
5.1 重组DNA技术回顾
三大成就 :
1. 40年代确定了遗传信息的携带者,即基因的分子载体 是DNA而不是蛋白质,解决了遗传的物质基础问题;
把磷酸基团加到多聚核苷酸链的5'-OH末端(进行末端标记 实验或用来进行DNA的连接 在双链核酸的3'末端加上多聚单核苷酸
从DNA链的3'末端逐个切除单核苷酸
从DNA链的5'末端逐个切除单核苷酸 切除位于DNA链5'或3'末端的磷酸基团
1972 - Paul Berg,
Produced first recombinant DNA using
Tetracycline resistance gene
E. coli transformed with recombinant plasmid
Transformed cells plated onto medium with kanamycin and tetracycline
Only cells with recombinant plasmid survive to produce
1975-1977
F.Sanger与A.Maxam、W.Gilbert等人发明了DNA序列测定技术。 1977年完成了全长5387bp的噬菌体φ174基因组测定。
1978
首次在大肠杆菌中生产由人工合成基因表达的人脑激素和人胰 岛素。
1980 1981
美国联邦最高法院裁定微生物基因工程可以专利化。
R. D. Palmiter和R. L. Brinster获得转基因小鼠; A. C. Spradling和G. M. Rubin得到转基因果蝇。
A.Kornberg从大肠杆菌中发现了DNA聚合酶I。 M. Meselson和F. W. Stahl提出了DNA的半保留复制模型。 S. Ochoa发现RNA聚合酶和信使RNA,并证明mRNA决定了蛋 白质分子中的氨基酸序列。
Nirenberg破译了第一相遗传密码;F. Jacob和J. Monod提出了 调节基因表达的操纵子模型。
Rosalind Franklin
X-ray source
Crystallized DNA
Photograph ic film
Maurice Wilkins1953- Franklin & Wilkins
Description of the 3-D structure of DNA
Francis Crick & James Watson
分子克隆的载 体----具备自主 复制能力的 DNA分子( vector),如 病毒、噬菌体 和质粒等小分 子量复制子都 可以作为基因 导入的载体。
1970年Mandel和Higa发现,大肠杆菌细胞经适量氯化钙处 理后,能有效地吸收λ噬菌体DNA。
1972年,Cohen等人又报道,经氯化钙处理的大肠杆菌细 胞同样能够摄取质粒DNA。
1970
H.O.Smith,K.W.Wilcox和T.J.Kelley分离了第一种限制性核酸内 切酶。H.M.Temin和D.Baltimore从RNA肿瘤病毒中发现反转录 酶。
1972-1973
H.Boyer,P.Berg等人发展了DNA重组技术,于72年获得第一个 重组DNA分子,73年完成第一例细菌基因克隆。
切口 :平端切口、粘端切口
HindⅡ
GTCGAC CAGCTG
Bam HⅠ
GGATCC CCTAGG
GTC CAG
+
GAC CTG
平端切口
G+
CCTAG
GATCC G
粘端切口
▪ DNA连接酶: 通过磷酸二酯键把两个或多个DNA片 断连接成一个整体DNA分子。
▪ T4¯DNA连接酶 ▪ EcoR I 连接酶
1958 -Matthew Meselson & Franklin Stahl proved that DNA replication in bacteria follows the semiconservative pathway