第2章-线性系统的数学模型

合集下载

第2章 自动控制系统的数学模型

第2章 自动控制系统的数学模型

二、一阶惯性环节(一阶滞后环节)
1、数学表达式 :
2、特点 一阶惯性环节含有一个储能元件,输入 量的作用不能立即在输出端全部重现出来, 而是有一个延缓,即有惯性。 3、实例
例2-2 如图2-2所示的RC串联电路,以总电压ur 为输入,电容上电压uC为输出,试建立其微分方程。
图2-2 RC网络
解(1)确定系统的输入、输出变量,如图已知ur为输入,电 容电压uC为输出; (2)列微分方程组: 由基尔霍夫第二定律有: uR +uC =ur ① 由欧姆定律有: uR=R i ② 1 由电容充放电特性,有:uC= ∫idt ③ c (3)消去中间变量
n υ 他激直流电动
五、振荡环节(二阶滞后环节)
1、自动控制原理的研究对象是自动控制系统 的基本结构,这是本章的重点,要求通过实例掌 握自动控制系统各组成部分及其功能。 2、经典控制理论讨论的是按偏差进行控制的 反馈控制系统,应该了解其控制的目的、控制的 对象和控制的过程;熟悉对控制系统动态性能的 基本要求,即稳、快、准;为进一步掌握控制系 统的性能指标打好基础。
d n c(t ) d n 1c(t ) dc(t ) a0 a1 a n 1 a n c(t ) n n 1 dt dt dt d m r (t ) d m 1 r (t ) dr (t ) b0 b1 bm 1 bm r (t ) m m 1 dt dt dt
第2章 线性系统的数学模型
第2章 线性系统的数学模型
六、纯滞后环节(纯延迟环节)
表达式: c(t)=r(t-τ) 特点:输出比输入滞后一个时间τ。 实例:延时继电器。
2-2 传递函数
传递函数是线性定常连续系统最重要的数 学模型之一,是数学模型在复频域内的表示形 式。利用传递函数,不必求解微分方程就可以 求取初始条件为零的系统在任意形式输入信号 作用下的的输出响应,还可以研究结构和参数 的变化对控制系统性能的影响。经典控制理论 的主要研究方法——根轨迹分析法和频域分析 法都是建立在传递函数基础上的。

自动控制原理课件2

自动控制原理课件2

Tm

GD 2 R 375 cecm
uf Kfn
K f 反馈电压和转速之间的 比例系数
(3)消去中间变量得直流调速系统的动态微分方程
1 T d T K m kd d 2 n 2t 1 T m K kd d n tn ( 1 K K r k )C eU g
其中 Kr K1K 为s正向通道电压放大系数
R(S)
E(S)
G(S)
-
B(S)
H(S)
Y(S)
2.结构图的组成: (1)信号线:带箭头的直线,箭头表示信号传递方向。 (2)引出点(分离点):表示信号引出或测量的位置。 (3)比较点(相加点):对两个以上信号加减运算。 (4)方框:方框图内输入环节的传递函数。
3 .动态结构图的绘制步骤: (1)确定系统输入量与输出量。 (2)将复杂系统划分为若干个典型环节。 (3)求出各典型环节对应的传递函数。 (4)作出相应的结构图。 (5)按系统各变量的传递顺序,依次将各元件的结构图连接起来。
二、结构图的简化法则 常用的结构图变换方法可归纳为两类:一类是环节的合并,另一类是信号的分支点或相
加点的移动。 结构图的变换必须遵循的原则是:变换前后的数学关系保持不变,因而也称为结构图的
等效变换。
(一)环节的合并 法则一 环节串联,传递函数相乘。
法则二 环节并联,传递函数相加。
法则三 反馈连接的等效传递函数。
(6)延迟环节 (时滞环节、滞后环节) 特点:输出信号经过一段延迟时间τ 后,可完全复现输入信号。
y(t)/r(t)

r(t) y(t)
t
G(s) es R(s) e s Y(s)
2.4 系统动态结构图
一、概念 1.动态结构图:是描述系统各组成元件之间信号传递关系的数学图形,它 表示了系统的输入输出之间的关系。

自动控制原理课件 第二章 线性系统的数学模型

自动控制原理课件 第二章 线性系统的数学模型



c(t ) e
dt Leabharlann t

c( s )
g ( ) r ( ) d e s ( ) d 0 0 g ( )e s r ( )e s d d 0 0





0
g ( )e
5) 闭环系统传递函数G(s)的分母并令其为0,就是系统的特征方 程。
• 涉及的是线性系统 非线性系统必须 进行线性化处理
§2-6 信号流程图
系统很复杂,为方便研究,也为了与 实际对应,通常将复杂系统分解为 若干典型环节的连接
数学模型的定义 数学模型: 描述系统变量间相互关系的动态性能的运动方程 建立数学模型的方法:
解析法: 依据系统及元件各变量之间所遵循的物理或化学规律列写出相 应的数学关系式,建立模型。 自动控制系统的组成可以是电气的,机械的,液压的,气动的等等,然 而描述这些系统的数学模型却可以是相同的。因此,通过数学模型来研 究自动控制系统,就摆脱了各种类型系统的外部关系而抓住这些系统的 共同运动规律,控制系统的数学模型是通过物理学,化学,生物学等定 律来描述的,如机械系统的牛顿定律,电气系统的克希霍夫定律等都是 用来描述系统模型的基本定律。 实验法: 人为地对系统施加某种测试信号,记录其输出响应,并用适当 的数学模型进行逼近。这种方法也称为系统辨识。 数学模型的形式 时间域: 复数域: 频率域: 微分方程 差分方程 传递函数 结构图 频率特性 状态方程
1 例1 : F ( s) ( s 1)(s 2)(s 3) c c c 1 2 3 s 1 s 2 s 3
1 1 c1 [ ( s 1)]s 1 ( s 1)(s 2)(s 3) 6 1 1 c2 [ ( s 2)]s 2 ( s 1)(s 2)(s 3) 15 1 1 c3 [ ( s 3)]s 3 ( s 1)(s 2)(s 3) 10 1 1 1 1 1 1 F ( s) 6 s 1 15 s 2 10 s 3 1 1 1 f (t ) e t e 2t e 3t 6 15 10

夏德钤《自动控制原理》(第4版)-名校考研真题-第2章 线性系统的数学模型【圣才出品】

夏德钤《自动控制原理》(第4版)-名校考研真题-第2章 线性系统的数学模型【圣才出品】
2 / 28
圣才电子书

【答案】C
十万种考研考证电子书、题库视频学习平 台
二、填空题
1.系统的微分方程是 输入量,该系统是______。[南京邮电大学研]
其中 c(t)为输出量,r(t)为
【答案】线性系统
【解析】由于系统的微分方程中没有交叉项,也没有高于一次的项,满足线性系统要

于是该系统的传递函数模型为
10.由运算放大器组成的控制系统模拟电路如图 2-7 所示,求闭环传递函数 [中科院研]
8 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 2-7 解:设第一个运算放大器的输出电压为 ,第二个运算放大器的输出电压为 ,则可 以得到:
求,为线性系统。
2.函数
的拉氏变换式是______。[华南理工大学 2006 年研]
【答案】3/(s+6)
3.积分环节的传递函数表达式为 G(s)=______。[华南理工大学 2006 年研] 【答案】
三、计算题 1.试判断下列用微分方程描述的系统是线性系统还是非线性系统?[大连理工大学研]
解:(1)线性系统; (2)非线性系统; (3)非线性系统; (4)非线性系统。
解:(1)
图 2-3
6.已知 解:
,求
[大连理工大学研]
7.某系统如图 2-4 所示,已知: 研]
,试确定
[大连理工大学
解:由
图 2-4 在零初始条件下两边同时拉普拉斯变换并整理得
6 / 28
圣才电子书

十万种考研考证电子书、题库视频学习平 台
8.设定描述系统的微分方程。图 2-5 中 B 是阻尼器摩擦因数, 是弹簧的弹性系

自动控制理论_哈尔滨工业大学_2 第2章线性系统的数学模型_(2.4.1) 典型环节的传递函数PPT

自动控制理论_哈尔滨工业大学_2  第2章线性系统的数学模型_(2.4.1)  典型环节的传递函数PPT

0
t
积分环节在单位阶跃输入下的响应
例:积分器
i2
C
ui R
_
i1
uo
+i1 i2Fra bibliotek1 Rui
(t)

C
d dt
u0
(t )
uo
(t)


1 RC
ui (t)dt
G(s) Uo (s) 1 1 Ui (s) RC s
二、几种典型环节的数学模型
4.微分环节
c(t) d r(t)
斜率1/T

t
例: • 汽车加速、火箭升空; ——作用力和输出速度
• 加热系统; ——加热量和温度变化
• 励磁回路; ——输入电压和励磁电流
惯性大小用τ来量度。 ——τ越大,接近目标值越慢 ,惯性越大;τ越小,接近 目标值越快,惯性越小。
几乎任何物理系统都包含 大大小小的惯性。
二、几种典型环节的数学模型
滞后环节
二、几种典型环节的数学模型
1.比例环节
y(t) Ku(t)
G(s) Y(s) K U (s)
K——称为比例系数或放大系数,也称为环节的增益,有量纲。
输出量无失真、无滞后、成比例地复现输入。
• 无弹性变形的杠杆;
——作用力和输出力
• 忽略非线性和时间迟后的运算放大器;
——比例放大器的输入电压和输出电压
τ=RC—时间常数
当 r(t) 1(t) 时, R(s) 1
s
Y(s) s 1 1 s 1 s s 1
t
y(t) e
t=0时,输出幅值为1;
t→∞时,指数衰减至0。
二、几种典型环节的数学模型

机械工程控制基础课件 第2章: 系统的数学模型

机械工程控制基础课件 第2章: 系统的数学模型
统,而闭环控制系统则是指系统中存在反馈环节的控制系统。
控制系统的状态空间模型
要点一
总结词
控制系统的状态空间模型
要点二
详细描述
状态空间模型是一种描述控制系统动态行为的数学模型, 它通过建立系统的状态方程和输出方程来描述系统的动态 特性。在状态空间模型中,系统的状态变量、输入变量和 输出变量都被表示为矩阵和向量的形式,从而能够方便地 描述系统的动态行为。状态空间模型具有直观、易于分析 和设计等优点,因此在控制工程中得到了广泛应用。
传递函数模型的求解
通过求解传递函数模型中的代数方程或超 越方程,得到系统在给定输入下的输出响 应。
04
控制系统的数学模型
控制系统的定义与分类
总结词
控制系统的定义与分类
详细描述
控制系统的定义是:控制系统是一种能够实现自动控制和调节的装置或系统,它能够根 据输入信号的变化,自动调节输出信号,以实现某种特定的控制目标。控制系统可以分 为开环控制系统和闭环控制系统两类。开环控制系统是指系统中没有反馈环节的控制系
状态空间模型的求解
通过数值计算方法求解状态空间模型中的微分方程或差分方程,得到 系统状态变量的时间响应。
非线性系统的传递函数模型
总结词
传递函数模型的建立、性质和求解
传递函数模型的性质
传递函数模型是非线性的,具有频率响应 特性,可以描述系统在不同频率下的行为
特性。
传递函数模型的建立
通过拉普拉斯变换将非线性系统的微分方 程或差分方程转换为传递函数的形式,从 而建立非线性系统的传递函数模型。
03
非线性系统的数学模型
非线性系统的定义与性质
总结词
非线性系统的定义、性质和特点
非线性系统的定义

自动控制原理 线性系统的数学模型传递函数

自动控制原理 线性系统的数学模型传递函数

(5)传递函数分母多项式的阶次总是大于或等于分子
多项式的阶次,即n≥m。这是由于实际系统的惯性
所造成的。系数为实数。
6/47
§2.3 传递函数
(6)传递函数与微分方程有相通性。把微分方程
中的
d dt
用s代替就可以得到对应的传递函数。
(7)传递函数G(s)的拉氏反变换是脉冲响应g(t)。
(8)传递函数分母多项式称为特征多项式,记为
K1 R
14/47
§2.3 传递函数
3. 积分环节
输出量正比于输入量的积分的环节称为积分 环节,其动态特性方程:
c(t) 1
t
r(t)dt
Ti 0
其传递函数: G(s) C(s) 1 R(s) Ti s
式中Ti为积分时间常数。
15/47
§2.3 传递函数
积分环节的单位阶跃响应为: C(t) 1 t Ti
§2.3 传递函数
4. 微分环节
理想微分环节的特征输出量正比于输入量的
微分,其动态方程
c(t)
Td
dr(t) dt
其传递函数
G(s)
C(s) R(s)
Td
s
式中Td称微分时间常数
它的单位阶跃响应曲线 c(t) Td (t)
它随时间直线增长,当输入突然消失,积分停止, 输出维持不变,故积分环节具有记忆功能,如图所 示。
16/47
§2.3 传递函数
上图为运算放大器构成的积分环节,输入ui(t),输 出u0(t),其传递函数为
G(s) U0 (s) 1 1 Ui (s) RCs Ti s
式中Ti = RC
17/47
9/47
§2.3 传递函数
2.2.3 典型环节的传递函数

第二章控制系统数学模型

第二章控制系统数学模型
s s 后,再求 F (s) 的极限值来求得。条件是当 t 和s 0时,等式两边各
有极限存在。
终值定理在分析研究系统的稳态性能时(例如分析系统的稳态误差,求取系统
输出量的稳态值等)有着很多的应用。因此终值定理也是一个经常用到的运算
定理。
7.初值定理: lim f (t) lim sF (s)
18
2
例2-1:写出RLC串联电路的微分方程。
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri
1 C
idt
ui

uo
1 C
idt

由②: i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
3
例2-2 设一弹簧、质量块、阻尼器组成的系统如图所示,当外力 F(t)作用于系统时,系统将产生运动。试写出外力F(t)与质量块的 位移y(t)之间的微分方程。
uR uc Us
把 uR i R

ic
C
duc dt
代入电路,可得到电路的
微分方程:
RC
duc dt
uc
Us
23
现在对于上面的微分方程,我们用Laplace变换求解。
首先,利用Laplace变换中的微分定理,将微分方程变换成如下形式:
RC
duc dt
uc
Us
RCsU c (s) Uc (s) Us R(s)
利用待定系数法可求得:
A 1 ARC B 0
F (s) L[ f (t)] f (t)e st dt 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑶ f (t)est dt 。 0
F(s) —象函数,f(t) —原函数。
记f (t) L1[F (s)]为反拉氏变换。
14
复习拉氏变换
②性质:
⑴线性性质:L[f1(t) f2 (t)] F1(s) F2 (s)
⑵微分定理:L[ f(t)] sF (s) f (0)
L[ f(t)] s2F (s) sf (0) f(0)
第 2 章 线性系统的数学模型
1
本章的主要内容
2.1 控制系统的微分方程-建立和求解 2.2 微分方程的线性化 2.3 传递函数 2.4 方框图(结构图) 2.5 信号流图-梅逊公式 补充:各种数学模型的相互转换
2
概述
概述
[数学模型]:描述控制系统输入、输出变量及内部各变量之间 动态关系的数学表达式。 [建立方法]:解析法和实验法 常用的数学模型有微分方程,传递函数,结构图,信号流图, 频率特性以及状态空间描述等。
L[ f (n) (t)] sn F (s) sn1 f (0) sn2 f(0) ... f (n1) (0)
⑶积分定理:(设初值为零)
L[
f(t)dt]源自F (s) s⑷时滞定理:L[ f (t T )] e st f (t T )dt esT f (s) 0
⑸初值定理:lim f (t) lim sF (s)

则y可0 近f似(x为10:, x20 )
y K1x1 K2x2
式中:x x1 ,x10 x2。 x2 x20
为K与1 工xy作1 |xx点12xx1有200 , K关2 的 常xy2数|xx12。xx1200
12
线性系统微分方程的编写步骤
线性系统微分方程的编写步骤: ⑴确定系统和各元部件的输入量和输出量。 ⑵对系统中每一个元件列写出与其输入、输出量有关的物理 的方程。 ⑶对上述方程进行适当的简化,比如略去一些对系统影响小 的次要因素,对非线性元部件进行线性化等。 ⑷从系统的输入端开始,按照信号的传递顺序,在所有元部 件的方程中消去中间变量,最后得到描述系统输入和输出关 系的微分方程。
Fk
F kx
m
m
f
x
fx
mx
图1
图2
[解]:图1和图2分别为系统 原理结构图和质量块受力分 析图。图中,m为质量,f 为粘性阻尼系数,k为弹性 系数。
6
相似系统
根据牛顿定理,可列出质量块的力平衡方程如下: mx fx kx F
这也是一个两阶定常微分方程。X为输出量,F为输入量。 在国际单位制中,m,f和k的单位分别为:kg, N.s / m, N / m [讨论]:相似系统
建立控制系统的数学模型是对系统进行分析的第一步也是最 重要的一步。
3
2.1 线性系统的微分方程
4
控制系统的微分方程
微分方程的编写应根据组成系统各元件工作过程中所遵循 的物理定理来进行。例如:电路中的基尔霍夫电路定理,力学 中的牛顿定理,热力学中的热力学定理等。
[例1]:写出RLC串联电路的微分方程。
dy dx
| x x0
x
Kx
式中,K为与工作点有关的常数,显然,上式是线性方程,
是非线性方程的线性表示。为了保证近似的精度,只能在工 作点附近展开。
11
非线性环节微分方程的线性化
对于具有两个自变量的非线性方程,也可以在静态工作点附
近展开。设双变量非线性方程为:y f (x1,,x2工) 作点为
注意到:例1和例2的微分方程形式是完全 一样的。
可见,同一物理系统有不同形式的数学模型,而不同类型的系 统也可以有相同形式的数学模型。
7
[定义]具有相同的数学模型的不同物理系统称为相似系统。 [作用]利用相似系统的概念可以用一个易于实现的系统来模拟 相对复杂的系统,实现仿真研究。
8
2.2 微分方程的线性化(选)
13
复习拉氏变换
复习拉氏变换 ①定义:如果有一个以时间t为自变量的函数f(t),它的定 义域t>0,那么下式即是拉氏变换式:
F (s) f (t)estdt,式中s为复数。记作 F(s) L[ f (t)] 0
一个函数可以进行拉氏变换的充分条件是: ⑴t<0时,f(t)=0; ⑵t≥0时,f(t)分段连续;
ui
L
R
i
C
uo
ui 输入
uo 输出
[解]:据基尔霍夫电路定理:
L di dt
Ri 1 C
idt
ui

uo
1 C
idt

5
控制系统的微分方程
由②:i C d,uo代入①得: dt
LC
d 2uo dt 2
RC
duo dt
uo
ui
这是一个线性定常二阶微分方程。
[例2] 求弹簧-阻尼-质量的机械位移系统的微分方程。输 入量为外力F,输出量为位移x。
y
则将函数在该点展开为泰勒级
数,得:y
f
(x0 )
df (x) dx
| x x0
y0
(x x0 )
y0
y0
1 df 2(x) 2! dx2
| x x0
(x
x0 )2
...
0
B y f (x) A
x0 x0 x x
若 x很小,则 y
y0
dy dx
| x x0
(x x0 ) ,即y
9
非线性环节微分方程的线性化
若描述系统的数学模型是非线性(微分)方程,则相应
的系统称为非线性系统,这种系统不能用线性叠加原理。在
经典控制领域对非线性环节的处理能力是很小的。但在工程
应用中,除了含有强非线性环节或系统参数随时间变化较大
的情况,一般采用近似的线性化方法。对于非线性方程,可
在工作点附近用泰勒级数展开,取前面的线性项。可以得到
t 0
s
15
复习拉氏变换
⑹终值定理:lim f (t) lim sF (s)
t
s0
⑺卷积定理:L[
t 0
f1 (t
)
f2 ( )d ]
F1(s)F2 (s)
③常用函数的拉氏变换:
单位阶跃函数:f (t) 1(t), F(s) 1
单位脉冲函数:F
(s)
L[
(t)]
s
1
单单正位位弦斜抛函坡物数函线:f数函(t):数 :fs(intf)(tt),t,FF12((sts)2),Fs(s12s2)s123
等效的线性环节。
设具有连续变化的非线性函数为:y=f(x), y
若取某一平衡状态为工作点, 图,A(附x0,近y0有) 点为
如y0 y0
y0
B(x x, y y),当 x很小时,AB段
B y f (x) A
可近似看做线性的。
0 x0 x0 x x
10
非线性环节微分方程的线性化
设f(x)在 A(x0, y0 )点连续可微,
相关文档
最新文档