煤气化工艺分类
国内最全的煤气化技术简介

国内最全的煤气化技术简介(最新整理)本文收集、整理、并汇总了国内当前大多数煤气化工艺(包括水煤浆、干煤粉、碎煤等加压气化工艺;固定床、流化床、气流床气化工艺;激冷流程、废锅流程;水冷壁、耐火砖等冷壁炉和热壁炉型),可作为煤化工、煤气化专业技术人员参考资料,是目前网络上公开交流的较为全面的一篇资料。
1、“神宁炉”粉煤加压气化技术(宁夏神耀科技有限责任公司)以高旋流单喷嘴大通量粉煤加压气化炉为目标载体,以多煤种理化特性数据为基础,构建了气化炉流场、传热分析等模型;基于燃烧器强动量传导机制,揭示了顶置式旋流气化场湍流燃烧的动力学机理;揭示了氧气和煤粉的强化反应规律,独创了高效无相变水冷壁反应室与“沉降-破泡式”激冷室相耦合的气化炉。
“神宁炉”干粉煤气化技术能源转化效率高,有效气成分≥91%,碳转化率≥98.5%。
固体灰渣好处理,灰渣中不含苯、酚、焦油等大分子有机物废物。
气化系统吨煤污水排放量控制在0.4—0.5t,废水处理后可完全回用。
高效、中空、高能点火系统,实现高压、惰性环境下点火成功率98%以上。
采用组合式燃烧器通道结构,控制火焰形成,确保气化炉内壁挂渣均匀。
2、“科林炉”CCG粉煤加压气化技术(德国科林工业技术有限责任公司)技术特点:(1)煤种适应性广:适用于各种烟煤、无烟煤、褐煤及石油焦等,对强度、热稳定性、结渣性、粘结性等没有具体要求。
对高灰分、高灰熔点、高硫含量的“三高”煤等低品质的煤种拥有很好的工业化业绩。
(2)技术指标高:因燃烧器采用多烧嘴顶置下喷的配置方式,原料在气化炉内碰撞混合更加充分,气化炉炉膛及顶部挂渣均匀,可实现较高的气化温度(1400~1700℃),碳转化率高达到99%以上,合成气中不含重烃、焦油等物质,有效合成气成分90~93%,冷煤气效率80~83%。
(3)投资低:根据项目规模不同,可提供日投煤量750吨/天至3000吨/天的不同气化炉炉型设计,主要设备制造已完全实现国产化,整个装置的投资建设成本低,建设周期短。
七种煤气化工艺介绍

七种煤气化工艺介绍煤气化是一种将固体煤转化为气体燃料的工艺,通常通过加热煤,使其在缺氧或氧气含量有限的条件下发生化学反应,生成焦炭、煤油和煤气等产物。
以下是七种常见的煤气化工艺的介绍。
1.固定床煤气化工艺:该工艺中,煤通过加热填充在固定的反应器中,在缺氧条件下进行气化。
在高温下,煤发生热解反应,生成固体残渣和一氧化碳、氢气等气体。
这些气体通常用于制造合成气或其他化学品。
2.流化床煤气化工艺:流化床煤气化工艺中,煤通过气化剂和促进剂的喷射,在气化炉内形成流体化床。
在床内,煤被高速的气流悬浮并在其表面上发生化学反应。
这种工艺适用于不同种类的煤,并能高效地产生合成气。
3.乌煤煤气化工艺:乌煤煤气化工艺是在低温和低压下对乌煤进行气化的一种方法。
乌煤是一种硬煤的变种,其含煤量高且易于破碎。
这种工艺能够产生较高浓度的一氧化碳和氢气,适用于燃料气和合成气的生产。
4. Lurgi煤气化工艺:Lurgi煤气化工艺采用干煤粉在喷射炉内与氧气和蒸汽进行气化。
这种工艺具有高效和灵活的特点,适用于各种煤种和煤粉尺寸。
其产气效率高,并且可以在高温下对产生的煤气进行分离和净化。
5. Koppers-Totzek煤气化工艺:Koppers-Totzek煤气化工艺是一种由德国公司开发的工艺。
该工艺利用煤在高温下与氧气和水蒸气进行反应,生成一氧化碳和氢气等气体。
这种工艺有助于减少硫化物和氨等有害物质的生成,并通过循环冷却来提高能源利用率。
6. Shell煤气化工艺:Shell煤气化工艺是一种高效的二代气化工艺,采用了先进的氧气冷喷射技术。
它将煤分解为焦炭和煤气,并将煤气用于合成气和其他化学品的生产。
该工艺具有高效能和较低的二氧化碳排放量。
7. Entrained Flow煤气化工艺:Entrained Flow煤气化工艺中,煤和氧气以高速混合,并通过特殊设计的喷射式燃烧器进行燃烧和气化。
这种工艺能够在高温下快速气化煤并生成高浓度的合成气。
煤气化制氢工艺配置与设备选型分析

煤气化制氢工艺配置与设备选型分析煤气化制氢是一种通过煤炭等碳质原料进行气化,生成合成气后,再进行净化纯化,最终得到高纯度氢气的工艺。
煤气化制氢工艺的配置与设备选型是该工艺实施过程中的关键环节,将直接影响到工艺效率和经济效益。
本文将对煤气化制氢工艺配置与设备选型进行详细分析。
一、煤气化制氢工艺配置分析1. 煤气化工艺种类煤气化制氢工艺主要有固定床煤气化、流化床煤气化和喷射床煤气化等不同类型。
固定床煤气化工艺利用高温下煤与氧气的反应生成合成气,具有工艺成熟、设备简单等特点。
而流化床煤气化则采用颗粒状催化剂使煤气化反应发生在流态的床层中,具有反应速度快、产气量大等优势。
喷射床煤气化工艺则是将煤粉与氧气直接混合并喷入可燃烧的床层中,具有投资少、操作简便等特点。
2. 煤气净化工艺煤气化产生的合成气中含有大量的杂质,如硫化氢、氨、苯等。
为了得到高纯度的氢气,需要进行净化处理。
常见的煤气净化工艺包括低温净化、吸附净化和催化净化等不同类型。
低温净化通过调整温度降低硫化氢、氨等杂质的溶解度,从而实现净化目的。
吸附净化则采用吸附剂吸附杂质气体,如活性炭吸附硫化氢。
催化净化是通过催化剂使有害物质在催化剂表面发生反应转化为无害物质。
3. 氢气纯化工艺经过煤气净化后得到的合成气含有一定的氢气,但其中仍然存在氮气、一氧化碳等非氢成分。
为了进一步提高氢气的纯度,需要进行纯化处理。
常见的氢气纯化工艺包括压力摩擦吸附(PSA)和膜分离等。
压力摩擦吸附是通过吸附剂在不同压力下对气体分子的选择性吸附使其分离。
膜分离则是利用不同气体在膜上的渗透速率不同来实现分离纯化。
二、煤气化制氢设备选型分析1. 煤气化设备煤气化设备主要包括煤气化炉、煤粉输送系统和废气净化系统等。
煤气化炉是进行煤气化反应的核心设备,其选型应考虑设备稳定性、煤气化效率等因素。
煤粉输送系统用于将煤粉送入煤气化炉,需要考虑输送速度、输送距离等因素。
废气净化系统用于处理煤气化过程中生成的废气,选型时需要考虑净化效率、能耗等因素。
煤的气化

。
鲁奇( Lurgi) 循环流化床粉煤气化 ( CFB)
• 鲁奇CFB 气化技术采用较高的操作气速( 5~7m/ s) 从而使流化床内粒子更活动, 可在较高温度下操作 ( 950~1100℃) 而无结渣危险, 可适用从高活性到 低活性的原料, 可分离流化床内半焦与灰渣使下部 排灰含碳< 2% ~ 3% , 在接近常压( 0.15MPa) 下, 使 用螺旋进料器, 满足进料器要求而不需昂贵的锁气 系统, 飞灰循环系统采用鲁奇公司多年来CFB 燃烧 成熟技术, 可靠实用。鲁奇CFB 气化技术的特点在 于不刻意追求单一气化炉达到最佳效率, 而在于整 个系统达到最佳效率, 将CFB 气化装置与CFB 燃烬 装置组织在一起, 构成一个系统, 此系统的总碳转 化率可达到95% ~99% 。
其他气化工艺
U—gas气化工业装置流程图
、
用太阳能进行煤炭气 化
• 美国新墨西哥州怀特沙漠试验 地区次莫尔实验室, 使用太阳能 对煤炭进行气化的第一次试验 获得成功。它是用太阳能将煤 炭加热到1920 ℃ , 生产出可燃 煤气。 成分为一氧化碳 26.9%, 氢50.9% , 甲烷 5.4%,碳氢化合 物0.7%,二氧化碳16.1%。 所 使用的日光屏是由许多可活动 的平面镜组成的。
煤炭气化的方法
• 固定床气化法:固体气化原料在高温下与 气化剂发生氧化还原反应,产生以H2、CO 和CH4为有效气体的煤气,气化炉内原料床 层相对稳定或随着原料的消耗缓慢向下移 动。固体原料由气化炉顶加入,灰渣从气 化炉底排除,气化剂由炉底通过炉栅送入 炉内,生成的煤气由炉顶导出。
、
• 流化床煤气化法:采用0 ~ 10 mm 的小颗 粒煤作为气化原料,气化剂为蒸气/空气或 蒸气/氧气,气化剂自下而上经过床层。依 据原料的力度分布和湿度,控制气化剂的 流速,使床内原料煤全部处于流化状态, 在剧烈搅动和回混中,煤粒和气化剂充分 接触,进行化学反应和热量传递。利用碳 燃烧放出的热量,使煤粒干燥干馏和气化。
煤气化技术简介

煤气化技术煤气化已有100多年的发展历史,先后开发了200多种气化工艺或气化炉型,有工业化应用前景的十余种。
煤气化可分为完全气化和不完全气化两大类:完全气化是指煤及其它固体原料与气化剂进行一步法化学反应,生成可燃气或合成气;不完全气化是指固体原料进行热加工时,除生成可燃气外还有含碳固体产物(如煤炼焦过程)。
这些产物又可进行加工利用。
国外为了提高燃煤电厂热效率,减少环境污染,对煤气化联合循环发电技术作了大量工作,促进了煤气化技术的开发。
目前已成功开发出了对煤种适应性广、气化压力高、生产能力大、气化效率高、污染少的新一代煤气化工艺,主要有荷兰壳牌(Shell)的粉煤气化工艺、德国克鲁伯—考柏斯(Krupp—Koppers)的Prenflo工艺,美国德士古(Texaco)和Destec 的水煤浆气化工艺以及德国黑水泵的GSP工艺等。
本章着重介绍我厂油改煤改造工程所引进的Shell粉煤气化工艺技术。
第一节煤气化技术分类及其发展一、煤气化技术分类最常用的气化分类方法是按煤和气化剂在气化炉内的相对运动来划分,大体可分成三种:逆流:固定床、移动床。
煤(焦)由气化炉顶部加入,自上而下经过干燥层、干馏层、还原层和氧化层,最后形成灰渣排出炉外;气化剂自下而上经灰渣层预热后进入氧化层和还原层(两者合称气化层)。
代表炉型为常压UGI炉和加压Lurgi炉,主要用于制取城市煤气。
固定床气化的局限性是对床层均匀性和透气性要求较高,入炉煤要有一定的粒(块)度及均匀性。
煤的机械强度、热稳定性、粘结性和结渣性等指标都与透气性有关,因此,固定床气化炉对入炉原料有很多限制。
并逆流或返混流:流化床、沸腾床。
气化剂由炉底部吹入,使细粒煤(<6mm)在炉内呈并逆流反应,通常称为流态化或沸腾床气化。
煤粒( 粉煤)和气化剂在炉底锥形部分呈并流运动,在炉上筒体部分呈并流和逆流运动。
为了维持炉内的“沸腾”状态并保证不结疤,气化温度应控制在灰软化温度(ST)以下。
三种煤气化工艺详述

三种煤气化炉技术介绍一、概述煤气化技术的开发与应用大约经历了200年的发展历史。
煤气化技术按固体和气体的接触方式可分为固定床、流化床、气流床和熔融床4种,其中熔融床技术还没有实际应用开发,各种煤气化炉的模式见图1。
图1 各种煤气化炉模式图1.固定床。
固定床气化炉是最早开发出的气化炉,如图1(a)所示,炉子下部为炉排,用以支撑上面的煤层。
通常,煤从气化炉的顶部加入,而气化剂(氧或空气和水蒸气)则从炉子的下部供入,因而气固间是逆向流动的。
特点是单位容积的煤处理量小,大型化困难。
目前,运转中的固定床气化炉主要有鲁奇气化炉和BGC-鲁奇炉两种。
2.流化床。
流化床气化炉如图1(b)所示,在分散板上供给粉煤,在分散板下送入气化剂(氧、水蒸气),使煤在悬浮状下进行气化。
流化床气化炉不能用灰分融点低的煤,副产焦油少,碳利用率低。
3.气流床。
气流床气化炉如图1(c)所示,粉煤与气化剂(O2、水蒸气)一起从喷嘴高速吹入炉内,快速气化。
特点是不副产焦油,生成气中甲烷含量少。
气流床气化是目前煤气化技术的主流,代表着今后煤气化技术的发展方向。
气流床按照进料方式又可分为湿法进料(水煤浆)气流床和干法进料(煤粉)气流床。
前者以德士古气化炉为代表,还有国内开发的多元料浆加压气化炉、多喷嘴(四烧嘴)水煤浆加压气化炉;后者以壳牌气化炉为代表,还有GSP炉以及国内开发的航天炉、两段炉、清华炉、四喷嘴干粉煤炉。
二、三种先进的煤气化工艺我国引进并被广泛采用的三种先进煤气化工艺——鲁奇气化炉、壳牌气化炉、德士古气化炉。
1.鲁奇气化炉(结构见图2)属于固定床气化炉的一种。
鲁奇气化炉是1939年由德国鲁奇公司设计,经不断的研究改进已推出了第五代炉型,目前在各种气化炉中实绩最好。
德国SVZ Schwarze Pumpe公司已将这种炉型应用于各种废弃物气化的商业化装置。
我国在20世纪60年代就引进了捷克制造的早期鲁奇炉并在云南投产。
1987年建成投产的天脊煤化工集团公司从德国引进的4台直径3800mm的Ⅳ型鲁奇炉,先后采用阳泉煤、晋城煤和西山官地煤等煤种进行试验,经过10多年的探索,基本掌握了鲁奇炉气化贫瘦煤生产合成氨的技术,现建成的第五台鲁奇炉已投产,形成了年产45万吨合成氨的能力。
煤气化工艺

煤气化工艺一、煤气化工艺概述进行煤炭气化的设备叫气化炉。
按照燃料在气化炉内的运动状态来分类是比较通行的方法,一般分为移动床(又叫固定床)、沸腾床(又叫流化床)、气流床和熔融床等。
使用的气化剂不同,生产的煤气的性质和用途不同。
如果以空气作为气化剂,生产的煤气称空气煤气;以空气在(富氧空气或纯氧)和水蒸气的混合物作为气化剂,生产的煤气称混合煤气;如果将空气(富氧空气或纯氧)和水蒸气分别交替送入气化炉内,间歇进行,生产的煤气叫水煤气;气体成分经过适当调整(主要是调整含氮气的量)后,生产的煤气符合合成氨原料气的要求,这种煤气叫做半水煤气。
此外,气化炉在生产操作过程中,根据使用的压力不同,又分为常压气化炉和加压气化炉,根据不同的排渣方式,可以分为固态排渣气化炉和液态排渣气化炉。
总的来说,各种不同结构的气化炉基本上由三大部分组成,即加煤系统、气化反应部分和排渣系统。
炉型不同,这三部分的具体结构有很大差异。
但一般地讲,加煤系统要考虑煤入炉后的分布和加煤时的密封问题。
气化部分是煤炭气化的主要场所,如何在低消耗的情况下,使煤最大限度地转化为符合用户要求的优质煤气,是这一部分首要考虑的问题。
当然,由于煤炭气化过程是在非常高的温度下进行的,为了保护炉体(也包括炉内布煤器或搅拌装臵)的作用,同时可以吸收气化区的热量而生产蒸汽,该部分蒸汽又可以作为气化时需用的蒸汽而进入气化炉内。
煤炭气化后的残渣即煤灰,由排渣系统定期地排出气化炉外,这样就保证了炉内料层高度的稳定,同时保证了气化过程连续稳定地进行,对移动床而言,由于炉箅(气化剂的分布装臵)和排渣系统结合在一起,气化剂均匀分布和排渣操作是生产上较为重要的两个问题。
不论采用何种类型的气化炉,生产哪种煤气,燃料以一定的粒度和气化剂直接接触进行物理和化学变化过程,将燃料中的可燃成分转变为煤气,同时产生的灰渣从炉内排除出去,这一点是不变的。
然而采用不同的炉型,不同种类和组成的气化剂,在不同的气化压力下,生产的煤气的组成、热值以及各项经济指标是有很大差异的。
初探煤气化工艺方案的选择

初探煤气化工艺方案的选择引言煤气化是一种将煤炭转化为可燃性气体的化学过程。
随着能源需求的增长和对环境友好能源的需求,煤气化技术在能源行业中扮演着重要的角色。
选择适合的煤气化工艺方案对于确保高效能源生产至关重要。
本文将探讨煤气化工艺方案的选择。
煤气化工艺方案的分类煤气化工艺方案可以根据煤气化过程中所产生的气体组成和工艺特点进行分类。
根据气体组成,煤气化工艺方案可分为固定床煤气化、流化床煤气化和喷射流床煤气化三种。
固定床煤气化是煤气化过程中最传统的方法之一。
在固定床煤气化中,煤炭放置在固定的床层中,通过燃烧过程对煤进行加热并转化为煤气。
该方法具有操作简单、投资成本低等优势。
然而,由于需用气化剂氧气或空气进行反应,固定床煤气化的操作温度比较高,因此对设备材料要求较高。
流化床煤气化流化床煤气化是一种通过在催化剂的帮助下,在高温下将煤炭转化为煤气的技术。
在流化床煤气化中,煤炭颗粒通过高速流化床,与催化剂进行反应,产生煤气。
该方法具有反应速度快、煤炭利用率高的优势。
然而,流化床煤气化对催化剂的选择较为关键,同时也需要解决流化床内部的热传递和固体颗粒的回收问题。
喷射流床煤气化是一种将煤炭喷射到高温反应器中,利用高速气流将煤炭转化为煤气的工艺。
该方法具有煤炭颗粒均匀分布、热传递效率高等优势。
然而,由于煤炭在高温下的反应过程中会生成大量灰渣和焦炭,因此喷射流床煤气化需要解决灰渣和焦炭的分离和处理问题。
选择煤气化工艺方案的考虑因素在选择煤气化工艺方案时,需要考虑多个因素,包括煤性质、产气要求、产气效率和经济性。
煤性质煤性质对煤气化工艺方案的选择具有重要影响。
不同种类的煤炭具有不同的热值、灰分含量和挥发分含量等特性。
不同的煤炭在煤气化过程中的反应特点也不同,因此需要根据煤的性质选择适合的煤气化工艺方案。
产气要求根据煤气用途的不同,产气要求也各不相同。
有些应用需要高纯度的合成气体,而有些应用仅需要低纯度的燃料气体。
因此,在选择煤气化工艺方案时,需要明确产气的要求,以确定适合的工艺方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
煤气化工艺分类
化工001
煤在气化炉中,高温条件下与气化剂反应,使固体燃料转化成气体燃料,只剩下含灰的残渣。
通常气化剂用水蒸气、氧(空气)和二氧化碳。
粗煤气中的产物是二氧化碳、氢气和甲烷,伴生气体是二氧化碳,水蒸气等,此外,还有硫化物,烃类产物和其它微量成分。
各种煤气组成取决于煤的种类、气化工艺、气化剂的组成,影响气化反应的热力学和动力学条件。
气化方法的分类有多种方法,如下:
一、按制取煤气的热值分类
以下按制取煤气在标准状态下的热值把煤气化工艺分成3类
1、制取低热值煤气方法,煤气热值低于8347kj/m3
(2000kcal/m3);
2、制取中热值煤气方法,煤气热值16747~33494kj/m3(4000~8000kcal/m3);
3、制取高热值煤气方法,煤气热值高于33494kj/m3
(8000kcal/m3)。
二、按供热方式分类
煤气化过程的整个热平衡表明,总的反应是吸热的,因此必须供给热量。
各种过程需要的热量各不相同,这主要由过程的设计和煤的性质决定的,一般需要消耗气化用煤发热量的15%~35%,顺流式气化取上限,逆流式气化取下限,其供热方式有几种途径1、自热式气化法
这是一种直接的供热方式,亦称部分气化方法,即气化过程中没有外界供热,煤与水蒸气气化反应所需要的热量,通过另一部分煤与气化剂中的氧气进行燃烧放热所提供。
这是目前各种工业气化炉中最常使用的供热方式。
含氧气体可以是工业氧气或富氧空气,也可以是空气。
气化过程可以是间歇蓄热或连续自热气化。
2、间接供热气化法
该法使煤仅与水蒸气进行气化反应,从气化炉外部通过管壁供给热量。
因而这类过程亦称为外热式(或配热式)煤的水蒸气化。
此类技术,多是采用流化床和气化床气化手段。
外热可采用电加热或核反应热。
3、煤的水蒸气气化和加氢气化相结合
煤与氢气在800~1800摄氏度范围内和加压下反应生成甲烷的反应是放热反应。
可利用该反应直接供热,进行煤的水蒸气气化。
该过程的原理在于煤首先加氢气化,加氢气化后的残焦再与水蒸气进行反应,产生的合成气为加氢阶段提供氢源。
4、热载体供热
在一个单独的反应器内,用煤或焦炭和空气燃烧加热热载体供热,热载体可以是固体(如石灰石),液体熔盐或熔渣。
三、按汽化剂分类
1、空气-蒸汽气化
以空气(或富氧空气)-蒸汽作为气化及。
其中又有空气-蒸汽内部蓄热的间歇制气和富氧空气-蒸汽自热式的连续制气方法两种。
一般以空气为气化剂制得的煤气称空气煤气,主要成分为大量氮气、二氧化碳
和一定量的一氧化碳和氧气。
以水蒸汽为汽化剂制得的煤气称水煤气,主要成分为氢气、一氧化碳、二氧化碳及甲烷。
以空气和水蒸气的混合物为汽化剂制得的煤气称发生炉煤气。
此外,合成氨工业中将(一氧化碳+氢气)≈3:1的煤气称为半水煤气
2、氧气-蒸汽气化
以工业氧和水蒸气作为汽化剂。
近代气化技术,几乎都是以工业氧和高压蒸汽作为汽化剂的。
3、氢气气化
煤气化过程中用氢气或富含氢气的气体作为气化剂可生成富含甲烷的煤气,该法亦称加氢气化法。
四、按固体燃料的运动状态分类
1、移动床(固定床)气化法
2、流化床气化法
3、气流床气化法。