甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案

合集下载

2020高考冲刺数学总复习压轴解答:椭圆相关的综合问题(附答案及解析)

2020高考冲刺数学总复习压轴解答:椭圆相关的综合问题(附答案及解析)

专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,2PF =. (1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值.【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b a b +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.(2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率e =且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率32e =,且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点(22,1).(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b +=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.(2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由.2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率e =,且经过点1,2⎛ ⎝⎭.(1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上. (1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围.5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率; (Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 .6. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值.7.(2020·河南鹤壁高中高三月考)已知椭圆2222:1(0)x y E a b a b+=>>的左右焦点分别为12,F F ,P 是椭圆短轴的一个顶点,并且12PF F ∆是面积为1的等腰直角三角形. (1)求椭圆E 的方程;(2)设直线1:1l x my =+与椭圆E 相交于,M N 两点,过M 作与y 轴垂直的直线2l ,已知点3(,0)2H ,问直线NH 与2l 的交点的横坐标是否为定值?若是,则求出该定值;若不是,请说明理由.8.(2020·江西高三)已知椭圆C :22221(0)x y a b a b+=>>过点1)2-.(1)求椭圆C 的方程.(2)若A ,B 是椭圆C 上的两个动点(A ,B 两点不关于x 轴对称),O 为坐标原点,OA ,OB 的斜率分别为1k ,2k ,问是否存在非零常数λ,使当12k k λ=时,AOB ∆的面积S 为定值?若存在,求λ的值;若不存在,请说明理由.9.(2020·甘肃省岷县第一中学期末)已知椭圆C :22221x y a b +=(0a b >>)(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:||||AN BM ⋅为定值.10.(2020·江苏高三期末)已知椭圆2222:1x y C a b+=(0)a b >>的左右焦点分别为12,F F ,焦距为4,且椭圆过点5(2,)3,过点2F 且不平行于坐标轴的直线l 交椭圆与,P Q 两点,点Q 关于x 轴的对称点为R ,直线PR 交x 轴于点M .(1)求1PFQ 的周长; (2)求1PF M 面积的最大值.11.(2020·河南高三期末)已知椭圆C :()222210x y a b a b+=>>过点31,2⎛⎫ ⎪⎝⎭,过坐标原点O 作两条互相垂直的射线与椭圆C 分别交于M ,N 两点.(1)证明:当229a b +取得最小值时,椭圆C . (2)若椭圆C 的焦距为2,是否存在定圆与直线MN 总相切?若存在,求定圆的方程;若不存在,请说明理由.12.(2020·四川高三月考)已知椭圆()2222:10x y C a b a b+=>>的短轴顶点分别为,A B ,且短轴长为2,T 为椭圆上异于,A B 的任意-一点,直线,TA TB 的斜率之积为13- (1)求椭圆C 的方程;(2)设O 为坐标原点,圆223:4O x y +=的切线l 与椭圆C 相交于,P Q 两点,求POQ △面积的最大值.13.(2020·内蒙古高三)已知椭圆()2222:10x y C a b a b +=>>的离心率为3,以原点O 为圆心,椭圆C 的长半轴长为半径的圆与直线260x -+=相切. (1)求椭圆C 的标准方程;(2)已知点A ,B 为动直线()()20y k x k =-≠与椭圆C 的两个交点,问:在x 轴上是否存在定点E ,使得2EA EA AB +⋅为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.14.(2020·河北高三期末)设椭圆2222:1(0)x y C a b a b+=>>的一个焦点为0),四条直线x a =±,y b =±所围成的区域面积为(1)求C 的方程;(2)设过(0,3)D 的直线l 与C 交于不同的两点,A B ,设弦AB 的中点为M ,且1||||2OM AB =(O 为原点),求直线l 的方程.15.(2020·山东高三期末)已知椭圆C :22221x y a b +=(0a b >>)的短轴长和焦距相等,左、右焦点分别为1F 、2F ,点1,2Q ⎛ ⎝⎭满足:122QF QF a +=.已知直线l 与椭圆C 相交于A ,B 两点.(1)求椭圆C 的标准方程;(2)若直线l 过点2F ,且222AF F B =,求直线l 的方程;(3)若直线l 与曲线ln y x =相切于点(),ln T t t (0t >),且AB 中点的横坐标等于23,证明:符合题意的点T 有两个,并任求出其中一个的坐标.16.(2020·安徽高三)已知椭圆2222:1(0)x y a b a b Γ+=>>过点(1,1)M 离心率为2.(1)求Γ的方程;(2)如图,若菱形ABCD 内接于椭圆Γ,求菱形ABCD 面积的最小值.17.(2020·福建省福州第一中学高三开学考试)已知O 为坐标原点,椭圆E :()222210x y a b a b+=>>的焦距为y x =截圆O :222x y a +=与椭圆E 所得的弦长之比为2,椭圆E 与y 轴正半轴的交点分别为A .(1)求椭圆E 的标准方程;(2)设点()00,B x y (00y ≠且01y ≠±)为椭圆E 上一点,点B 关于x 轴的对称点为C ,直线AB ,AC分别交x 轴于点M ,N .试判断OM ON ⋅是否为定值?若是求出该定值,若不是定值,请说明理由.18.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b+=>>过点31,2P ⎛⎫ ⎪⎝⎭,且离心率为12.(1)求椭圆C 的方程;(2)已知点31,2Q ⎛⎫- ⎪⎝⎭是椭圆上的点,,A B 是椭圆上位于直线PQ 两侧的动点,当,A B 运动时,满足APQ BPQ ∠=∠,试问直线AB 的斜率是否为定值?请说明理由.19.(2020·甘肃高三期末)设椭圆2222:1y x C a b +=(0)a b >>的离心率是2,直线1x =被椭圆C 截得的弦长为(1)求椭圆C 的方程;(2)已知点M 的直线l 与椭圆C 交于不同的两点A ,B ,当MAB △的面积最大时,求直线l 的方程.20.(2020·江西高三期末)已知椭圆2222:1(0)x y C a b a b +=>>,F 为椭圆C 的右焦点,2D ⎛ ⎝⎭为椭圆上一点,C 的离心率2e =(1)求椭圆C 的标准方程;(2)斜率为k 的直线l 过点F 交椭圆C 于,M N 两点,线段MN 的中垂线交x 轴于点P ,试探究||||PF MN 是否为定值,如果是,请求出该定值;如果不是,请说明理由.21.(2020·青海高三期末)已知椭圆22221(0)x y a b a b+=>>的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆M 的方程; (2)若斜率为12的直线l 与椭圆M 交于C 、D 两点,点3(1)2P ,为椭圆M 上一点,记直线PC 的斜率为1k ,直线PD 的斜率为2k ,试问:12k k +是否为定值?请证明你的结论22.(2020·四川高三期末)在平面直角坐标系中,已知点(2,0)A -,(2,0)B ,动点(,)P x y 满足直线AP 与BP 的斜率之积为34-.记点P 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)若M ,N 是曲线C 上的动点,且直线MN 过点10,2D ⎛⎫⎪⎝⎭,问在y 轴上是否存在定点Q ,使得MQO NQO ∠=∠若存在,请求出定点Q 的坐标;若不存在,请说明理由.23.(2020·山西高三期末)已知()()122,0,2,0F F -是椭圆()2222:10x y C a b a b+=>>的两个焦点,M 是椭圆C 上一点,当112MF F F ⊥时,有213MF MF =. (1)求椭圆C 的标准方程;(2)设过椭圆右焦点2F 的动直线l 与椭圆交于,A B 两点,试问在x 铀上是否存在与2F 不重合的定点T ,使得22ATF BTF ∠=∠恒成立?若存在,求出定点T 的坐标,若不存在,请说明理由.专题三 压轴解答题第二关 椭圆相关的综合问题【名师综述】纵观近三年的高考题,解析几何题目是每年必考题型,主要体现在解析几何知识内的综合及与其它知识之间的综合,且椭圆考查的最多,,同时可能与平面向量、导数相交汇,每个题一般设置了两个问,第(1)问一般考查曲线方程的求法,主要利用定义法与待定系数法求解,而第(2)问主要涉及最值问题、定值问题、对称问题、轨迹问题、探索性问题、参数范围问题等.这类问题综合性大,解题时需根据具体问题,灵活运用解析几何、平面几何、函数、不等式、三角知识,正确构造不等式,体现了解析几何与其他数学知识的密切联系.【考点方向标】 方向一 中点问题典例1.(2020·山东高三期末)已知椭圆(222:12x y C a a +=>的右焦点为F ,P 是椭圆C 上一点,PF x ⊥轴,PF =(1)求椭圆C 的标准方程;(2)若直线l 与椭圆C 交于A 、B 两点,线段AB 的中点为M ,O 为坐标原点,且OM ,求AOB ∆面积的最大值.【答案】(1)22182x y +=;(2)2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题知,点,2P c ⎛⎫±⎪ ⎪⎝⎭,b =则有222212c a ⎛⎫⎪⎝⎭+=,2234c a ∴=,又22222a b c c =+=+,28a ∴=,26c =, 因此,椭圆C 的标准方程为22182x y +=;(2)当AB x ⊥轴时,M 位于x 轴上,且OMAB ⊥,由OM =AB12AOB S OM AB ∆=⋅=; 当AB 不垂直x 轴时,设直线AB 的方程为y kx t =+,与椭圆交于()11,A x y ,()22,B x y ,由22182x y y kx t ⎧+=⎪⎨⎪=+⎩,得()222148480k x ktx t +++-=. 122814kt x x k -∴+=+,21224814t x x k-=+,从而224,1414kt t M k k -⎛⎫ ⎪++⎝⎭已知OM =()2222214116k t k+=+.()()()22222212122284814141414kt t AB k x x x x k k k ⎡⎤--⎛⎫⎡⎤=++-=+-⨯⎢⎥ ⎪⎣⎦++⎝⎭⎢⎥⎣⎦()()()222221682114k t k k -+=++. 设O 到直线AB 的距离为d ,则2221t d k=+, ()()()222222221682114114AOBk t t S k k k ∆-+=+⋅++. 将()2222214116k t k+=+代入化简得()()2222219241116AOB k k S k ∆+=+.令2116k p +=,则()()()22222211211192414116AOBp p k k S p k ∆-⎛⎫-+ ⎪+⎝⎭==+211433433p ⎡⎤⎛⎫=--+≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦.当且仅当3p =时取等号,此时AOB ∆的面积最大,最大值为2. 综上:AOB ∆的面积最大,最大值为2. 【举一反三】(2020·河南南阳中学高三月考)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点与抛物线2y =的焦点重合,且椭圆C 的离心率为2. (1)求椭圆C 的标准方程;(2)直线l 交椭圆C 于A 、B 两点,线段AB 的中点为(1,)M t ,直线m 是线段AB 的垂直平分线,求证:直线m 过定点,并求出该定点的坐标.【答案】(1)2214x y +=;(2)直线m 过定点3,04⎛⎫ ⎪⎝⎭,详见解析.【解析】(1)抛物线2y =的焦点为,则c =椭圆C 的离心率c e a ==2222,1a b a c ==-=. 故椭圆C 的标准方程为2214x y +=.(2)方法一:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,易知0t ≠,设直线l 的方程为(1)y k x t =-+, 代入椭圆方程并化简得22222(14)(88)48440k x kt k x k kt t ++-+-+-=.设11(,)A x y ,22(,)B x y ,则212288214kt k x x k -+=-=+,解得14k t =-. 因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-.令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭.当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方法二:显然点(1,)M t 在椭圆C 内部,故t <<,且直线l 的斜率不为0. 当直线l 的斜率存在且不为0时,设11(,)A x y ,22(,)B x y ,则有221114x y +=,222214x y +=,两式相减得12121212()()()()04x x x x y y y y +-++-=.由线段AB 的中点为(1,)M t ,则12122,2x x y y t +=+=, 故直线l 的斜率121214y y k x x t-==--.因为直线m 是线段AB 的垂直平分线,故直线:4(1)m y t t x -=-,即(43)y t x =-. 令430x -=,此时3,04x y ==,于是直线m 过定点3,04⎛⎫⎪⎝⎭. 当直线l 的斜率不存在时,易知0t =,此时直线:0m y =,故直线m 过定点3,04⎛⎫ ⎪⎝⎭.综上所述,直线m 过定点3,04⎛⎫ ⎪⎝⎭.方向二 垂直问题典例2.(2020·安徽期末)已知椭圆C :22221(0)x y a b a b +=>>的离心率2e =,且过点(22.(1)求椭圆C 的方程;(2)如图,过椭圆C 的右焦点F 作两条相互垂直的直线,AB DE 交椭圆分别于,,,A B D E ,且满足12AM AB =,12DN DE =,求MNF ∆面积的最大值. 【答案】(1)2212x y +=;(2)19.【解析】(1)根据条件有22222{13124a b a b=+=,解得222,1a b ==,所以椭圆22:12x C y +=. (2)根据12AM AB =,12CN CD =可知,,M N 分别为,AB DE 的中点, 且直线,AB DE 斜率均存在且不为0,现设点()()1122,,,A x y B x y ,直线AB 的方程为1x my =+,不妨设0m >, 联立椭圆C 有()222210m y my ++-=, 根据韦达定理得:12222m y y m +=-+,()12122422x x m y y m +=++=+, 222,22m M m m -⎛⎫ ⎪++⎝⎭,MF =,同理可得12NF m =⎛⎫-+ ⎪⎝⎭, 所以MNF ∆面积2112142MNFm m S MF NF m m ∆+==⎛⎫++ ⎪⎝⎭,现令12t m m =+≥, 那么21124294MNF t S t t t∆==≤++,所以当2t =,1m =时,MNF ∆的面积取得最大值19. 【举一反三】(2020·吉林东北师大附中高三月考)已知椭圆C :22221x y a b+=(0a b >>)的左焦点为F ,P 是C 上一点,且PF 与x 轴垂直,A ,B 分别为椭圆的右顶点和上顶点,且AB OP ,且POB ∆的面积是12,其中O 是坐标原点. (1)求椭圆C 的方程.(2)若过点F 的直线1l ,2l 互相垂直,且分别与椭圆C 交于点M ,N ,S ,T 四点,求四边形MSNT 的面积S 的最小值.【答案】(1)2212x y +=;(2)169【解析】(1)依题意画出下图可设2(,)b P c a-,(,0)A a ,(0,)B b ,则有:22221122OPAB POB b b k k ac a S bc b c a∆⎧-===⎪-⎪⎪==⎨⎪+=⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,Ⅰ椭圆C 的标准方程为2212x y +=;(2)Ⅰ当1l x ⊥,2//l x 时,22122222MSNTb S a b a===; Ⅰ当1l ,2l 斜率存在时,设1l :1x ky =-,2l :11x y k=-,分别联立椭圆方程2212x y +=,联立22112x ky x y =-⎧⎪⎨+=⎪⎩得()222210k y ky +--=, Ⅰ12222k y y k +=+,12212y y k -=+, ⅠMN==)2212k k +=+,同理)22221111122k k ST k k⎫+⎪+⎝⎭==++, Ⅰ12S MN ST =()()()22228112221k k k +=++()()()222241221k k k +=++()2222241221()2k k k +≥+++()22224(1)169914k k +==+,当且仅当22221k k +=+即21k =即1k =±时等号成立, 故四边形MSNT 的面积S 的最小值min 169S =.方向三 面积问题典例3.(2020·安徽高三月考)已知椭圆()2222:10x y E a b a b+=>>的左焦点为()1,0F -,经过点F 的直线与椭圆相交于M ,N 两点,点P 为线段MN 的中点,点O 为坐标原点.当直线MN 的斜率为1时,直线OP 的斜率为12-.(1)求椭圆C 的标准方程;(2)若点A 为椭圆的左顶点,点B 为椭圆的右顶点,过F 的动直线交该椭圆于C ,D 两点,记ACD ∆的面积为1S ,BCD ∆的面积为2S ,求21S S -的最大值.【答案】(1)2212x y +=(2【解析】(1)设()11,M x y ,()22,N x y ,则点1212,22x x y y P ++⎛⎫⎪⎝⎭,由条件知直线MN 的斜率为12121y y x x -=-,直线OP 的斜率为121212y y x x +=-+,而22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得,22221212220x x y y a b --+=, 所以()()()()22212121222212121212y y y y y y b a x x x x x x -+--===---+,即222a b =, 又左焦点为()1,0F -,所以22222221c a b b b b =-=-==,所以椭圆E 的标准方程为2212x y +=.(2)设直线CD 的方程为1x my =-,记C ,D 过标为()11,x y ,()22,x y ,则1121212S AF y y y y =⋅-=-,2121212S BF y y y y =⋅-=-, 所以2112S S y y -=-.联立方程,22221x y x my ⎧+=⎨=-⎩,消去x ,得()222210m y my +--=,所以12222m y y m +=+,12212y y m =-+,12y y -==,令21tm =+,则1t ≥,且()()()2222818882122122m tt mt t+==≤=+++++,当且仅当1t =时等号成立, 所以2112S S y y -=-21S S -.典例4.(2020·河南高三月考)已知椭圆()2222:10x y C a b ab +=>>的离心率2e =,且椭圆过点)(1)求椭圆C 的标准方程;(2)设直线l 与C 交于M 、N 两点,点D 在椭圆C 上,O 是坐标原点,若OM ON OD +=,判定四边形OMDN 的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】(1)22142x y+=;(2. 【解析】(1)设椭圆C 的焦距为()20c c >,由题意可得222222211c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得24a =,22b =,因此,椭圆C 的标准方程为22142x y +=;(2)当直线l 的斜率不存在时,直线MN 的方程为1x =-或1x =.若直线l 的方程为1x =,联立221142x x y =⎧⎪⎨+=⎪⎩,可得1x y =⎧⎪⎨=⎪⎩此时,MN =OMDN的面积为122=同理,当直线l 的方程为1x =-时,可求得四边形OMDN; 当直线l 的斜率存在时,设直线l 方程是y kx m =+,代人到22142x y +=,得()222124240k x kmx m +++-=,122412km x x k -∴+=+,21222412m x x k -=+,()228420k m ∆=+->, ()12122221my y k x x m k∴+=++=+,12MN x x =-==,点O 到直线MN的距离d =,由OM OC OD +=,得122421D km x x x k =+=-+,122212D my y y k =+=+, 点D 在椭圆C 上,所以有222421212142km m k k -⎛⎫⎛⎫⎪ ⎪++⎝⎭⎝⎭+=,整理得22122k m +=,由题意知,四边形OMDN 为平行四边形,∴平行四边形OMDN的面积为1222OMDN OMNS S MN d ∆==⨯⨯=()222121k k +====+故四边形OMDN . 【举一反三】(2020·全国高三专题练习)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b +=>>线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅰ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.【答案】(Ⅰ)2241x y +=;(Ⅰ)(Ⅰ)见解析;(Ⅰ)12S S 的最大值为94,此时点P的坐标为1,)24【解析】(Ⅰ=,解得2a b =. 因为抛物线的焦点为10,2F ⎛⎫ ⎪⎝⎭,所以11,2a b ==,所以椭圆的方程为2241x y +=.(Ⅰ)(1)设2,(0)2m m P m ⎛⎫> ⎪⎝⎭,由22x y =可得y x '=,所以直线l 的斜率为m ,其直线方程为2()2m y m x m -=-,即22my mx =-. 设()()()112200,,,,,A x y B x y D x y ,联立方程组2222m y mx x y ⎧=-⎪⎨⎪=⎩消去y 并整理可得()223441410m x m x m +-+-=,故由其判别式>0∆可得0m <<3122441m x x m +=+, 故312022241x x m x m +==+,代入22m y mx =-可得()202241m y m =-+, 因为0014y x m =-,所以直线OD 的方程为14y x m=-. 联立14y x m x m⎧=-⎪⎨⎪=⎩可得点的纵坐标为14y =-,即点M 在定直线14y =-上. (2)由(1)知直线l 的方程为22m y mx =-,令0x =得22m y =-,所以20,2m G ⎛⎫- ⎪⎝⎭,又()2322212,,,0,,2241241m m m P m F D m m ⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 所以()2111||124S GF m m m ==+,()()22202211||2841m m S PM m x m +=⋅-=+, 所以()()()221222241121m m S S m ++=+,令221t m =+,则1222(21)(1)112S t t S t t t -+==-++, 因此当112t =,即2t =时,12S S 最大,其最大值为94,此时2m =满足>0∆,所以点P 的坐标为1,24⎛⎫ ⎪⎪⎝⎭,因此12S S 的最大值为94,此时点P 的坐标为1,24⎛⎫ ⎪ ⎪⎝⎭. (2020·重庆高三月考)已知椭圆2222:1x y C a b +=(0)a b >>的离心率2e =,且圆221x y +=经过椭圆C的上、下顶点.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,且与椭圆22122:144x y C a b+=相交于M ,N 两点,证明:OMN 的面积为定值(O 为坐标原点).【答案】(1)2214x y +=;(2)见解析.【解析】(1)解:因为圆221x y +=过椭圆C 的上、下顶点,所以1b =.又离心率2e ==,所以21314a -=,则24a =. 故椭圆C 的方程为2214x y +=.(2)证明:椭圆221:1164x y C +=,当直线l 的斜率不存在时,这时直线l 的方程为2x =±,联立2221164x x y =±⎧⎪⎨+=⎪⎩,得y =||MN =则12||2OMN S MN ∆=⨯⨯= 当直线l 的斜率存在时,设:l y kx m =+,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418410k x kmx m +++-=,由0∆=,可得2241m k =+. 联立221164y kx m x y =+⎧⎪⎨+=⎪⎩,得()()222418440k x kmx m +++-=.设()11,,M x y ()22,N x y ,所以1228,41km x x k +=-+()21224441m x x k -=+,则||MN ==.因为原点到直线l的距离d ==1||2OMNS MN d =⋅=. 综上所述,OMN ∆的面积为定值方向四 范围与定值问题典例5.(2020·内蒙古高三期末)已知椭圆C :()222210x y a b a b +=>>的离心率e =且圆222x y +=过椭圆C 的上,下顶点. (1)求椭圆C 的方程. (2)若直线l 的斜率为12,且直线l 交椭圆C 于P 、Q 两点,点P 关于点的对称点为E ,点()2,1A -是椭圆C 上一点,判断直线AE 与AQ 的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.【答案】(1)22182x y +=;(2)是,0. 【解析】(1)因为圆222x y +=过椭圆C的上,下顶点,所以b =又离心率2e =3a c =,于是有222b a a bc ⎧=⎪⎪=⎨⎪=+⎪⎩,解得a =b =所以椭圆C 的方程为22182x y +=; (2)由于直线l 的斜率为12,可设直线l 的方程为12y x t =+,代入椭圆C :2248x y +=, 可得222240x tx t ++-=.由于直线l 交椭圆C 于P 、Q 两点,所以()2244240t t ∆=-->, 整理解得22t -<<设点()11,P x y 、()22,Q x y ,由于点P 与点E 关于原点的对称,故点()11,E x y --,于是有122x x t +=-,21224x x t =-.若直线AE 与AQ 的斜率分别为AE k ,AQ k ,由于点()2,1A -,则21211122AE AQ y y k k x x ---+=++-+()()()()()()122121212122x y x y x x ---++=+-, 又Ⅰ1112y x t =+,2212y x t =+. 于是有()()()()12212121x y x y ---++()()2112211224y y x y x y x x =--++--()211212124x x x x tx tx x x =--+++--()12124x x t x x =-+--()()224240t t t =-----=,故直线AE 与AQ 的斜率之和为0,即0AE AQ k k +=.典例6.(2020·全国高三专题练习)已知顶点为原点的抛物线C 的焦点与椭圆2221y x a+=的上焦点重合,且过点.(1)求椭圆的标准方程;(2)若抛物线上不同两点A ,B 作抛物线的切线,两切线的斜率121k k =-,若记AB 的中点的横坐标为m ,AB 的弦长()g m ,并求()g m 的取值范围.【答案】(1)2215y x +=;(2)[)8,+∞. 【解析】(1)由题意可知,设抛物线方程为:22x py =点在抛物线C 上,所以抛物线C 的方程为28x y =,所以椭圆的上焦点为(0,2),所以椭圆的标准方程为2215y x +=;(2)设211,,8x A x ⎛⎫ ⎪⎝⎭222,8x B x ⎛⎫ ⎪⎝⎭,在A 点处的切线的斜率114x k =,在B 点处的切线的斜率224x k =,又1212116x xk k ⋅==-,所以 22212188ABx x k x x -=-218x x +=,4m =212x x m +=,而12|||AB x =-===所以g()m =20m ≥,所以()8g m ≥.【举一反三】(2020·全国高三专题练习(理))已知椭圆C :()222210x y a b a b+=>>的长轴长是离心率的两倍,直线l :4430x y -+=交C 于A ,B 两点,且AB 的中点横坐标为12-. (1)求椭圆C 的方程;(2)若M ,N 是椭圆C 上的点,O 为坐标原点,且满足2234OM ON +=,求证:OM ,ON 斜率的平方之积是定值.【答案】(1)22241x y +=(2)证明见解析【解析】由椭圆C :22221(0)x y a b a b+=>>的长轴长是离心率的两倍得22a e =,即2a c =………..Ⅰ 设1122(,),(,)A x y B x y联立22221x y a b+=和4430x y -+=整理得222222239()0216a b x a x a a b +++-=; 所以2122232ax x a b +=-+, 依题意得:22232=1aa b--+,即222a b =……..Ⅰ· 由ⅠⅠ得依题意得:2211,24a b ==,所以椭圆C 的方程为22241x y +=.(2)设3344(,),(,)M x y N x y ,由223||||4OM ON +=得2222334434x y x y +++= 因为3344(,),(,)M x y N x y 在椭圆C 上,所以22332244241,241,x y x y ⎧+=⇒⎨+=⎩223412x x +=, 22223422342222343411(12)(12)44OM ON x x y y K K x x x x -⋅-⋅===222234342234112()4)1164x x x x x x -++=( (2020·四川石室中学高三月考(文))已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是短轴长的两倍,焦距(1)求椭圆C 的标准方程;(2)设不过原点O 的直线l 与椭圆C 交于两点M 、N ,且直线OM 、MN 、ON 的斜率依次成等比数列,求ⅠOMN 面积的取值范围.【答案】(1)2214x y +=;(2) (0,1).【解析】(1)由已知得222222{2a bc a c a b =⨯==-⇒2{1a b ==ⅠC 方程:2214x y += (2)由题意可设直线l 的方程为:y kx m =+(0,0)k m ≠≠联立2214y kx m x y =+⎧⎪⎨+=⎪⎩消去y 并整理,得:222(14)84(1)0k x kmx m +++-= 则Ⅰ22226416(14)(1)k m k m =-+-2216(41)0k m =-+>,此时设11(,)M x y 、22(,)N x y Ⅰ212122284(1),1414km m x x x x k k-+=-=++ 于是2212121212()()()y y kx m kx m k x x km x x m =++=+++又直线OM 、MN 、ON 的斜率依次成等比数列,Ⅰ2221211121212()y y k x x km x x m k x x x x +++⋅==⇒22228014k m m k-+=+ 由0m ≠得:214k =⇒12k =±.又由Ⅰ0>得:202m << 显然21m ≠(否则:120x x =,则12,x x 中至少有一个为0,直线OM 、ON 中至少有一个斜率不存在,矛盾!)设原点O 到直线l 的距离为d ,则1212OMNSMN d x ==-12== 故由m 得取值范围可得ⅠOMN 面积的取值范围为(0,1)【压轴选编】1.(2020·全国高三专题练习)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+=(0a b >>)的离心率e =C 上的点到点()0,2Q 的距离的最大值为3. (Ⅰ)求椭圆C 的方程;(Ⅰ)在椭圆C 上,是否存在点(),M m n ,使得直线l :1mx ny +=与圆O :221x y +=相交于不同的两点A 、B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及对应的OAB ∆的面积;若不存在,请说明理由. 【答案】(1);(2)存在,M 的坐标为62,22⎛⎫ ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫- ⎪ ⎪⎝⎭、62,22⎛⎫-- ⎪ ⎪⎝⎭,最大值为.【解析】(Ⅰ)因为e =2223c a =,于是223a b .设椭圆C 上任一点,椭圆方程为,,=Ⅰ当,即时,(此时舍去;Ⅰ当即时,综上椭圆C 的方程为.(Ⅰ)圆心到直线l 的距离为221d m n=+,弦长,所以OAB ∆的面积为点,当时,由得综上所述,椭圆上存在四个点2⎫⎪⎪⎝⎭、⎛⎝⎭、⎝⎭、⎛ ⎝⎭,使得直线与圆相交于不同的两点A 、B ,且OAB ∆的面积最大,且最大值为12. 2.【福建省龙岩市2019届高三第一学期期末教学质量检查】已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线与椭圆C 交于M,N 两点,ΔF 2MN 的周长为8,直线y =x 被椭圆C 截得的线段长为4√427.(1)求椭圆C 的方程;(2)设A,B 是椭圆上两动点,线段AB 的中点为P ,OA,OB 的斜率分别为k 1,k 2(O 为坐标原点),且4k 1k 2=−3,求|OP |的取值范围.【解析】(1)根据题意4a =8,∴a =2. 把y =x 代入椭圆方程x 24+y 2b 2=1得,x 2=4b 24+b 2, 因为直线y =x 被椭圆C 截得的线段长为4√427, 所以2√4b 24+b 2+4b 24+b 2=4√427,解得b 2=3, 所以椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由k 1k 2=−34,得3x 1x 2+4y 1y 2=0,当AB 的斜率不存在时,x 1=x 2,y 1=−y 2,3x 12−4y 12=0,又3x 12+4y 12=12, ∴x 12=2,这时|OP |=√2.当AB 的斜率存在时,设直线AB:y =kx +m ,由得{3x 2+4y 2=12y =kx +m :(3+4k 2)x 2+8kmx +4m 2−12=0, 由Δ>0得m 2<4k 2+3Ⅰx 1+x 2=−8km 3+4k 2,x 1x 2=4m 2−123+4k 2,结合3x 1x 2+4y 1y 2=0得2m 2=4k 2+3≥3Ⅰ 由ⅠⅠ知m ≠0且m 2≥32,x 0=x 1+x 22=−2k m ,y 0=kx 0+m =32m ,∴|OP|2=x 02+y 02=4k 2m 2+94m 2=2m 2−3m 2+94m 2=2−34m 2≥32∴√2>|OP |≥√62综上|OP |的取值范围为[√62,√2]. 3.【2019湖北省重点中学联考】已知椭圆22221(0)x y a b a b +=>>的离心率2e =,且经过点1,2⎛ ⎝⎭. (1)求椭圆方程;(2)过点()0,2P 的直线与椭圆交于M N 、两个不同的点,求线段MN 的垂直平分线在x 轴截距的范围.【解析】(1)2212x y += (2)PM 的斜率不存在时, MN 的垂直平分线与x 轴重合,没有截距,故PM 的斜率存在. 设PM 的方程为2y kx =+,代入椭圆方程 得: ()2212860k x kx +++=PM 与椭圆有两个不同的交点()()22841260k k ∴∆=-+⨯>,即232k >,即2k >或2k <-设()()1122,,,,M x y N x y MN 的中点()0,0Q x y 则120002242,221212x x k x y kx k k +==-=+=++ MN ∴的垂直平分线的方程为222141212k y x k k k ⎛⎫-=-+ ⎪++⎝⎭∴在x 轴上的截距为222242121212k k kk k k -=-+++ 设()2212xf x x =-+,则()()()22222112x f x x-+'=, 232x ∴>时, ()0f x '>恒成立x ∴>()0;f x x <<<时()0f x <<MN ∴的垂直平分线在x 轴上的截距的范围是⎛⎫⎛⋃ ⎪ ⎪ ⎝⎭⎝⎭4.【湖南省湘潭市2019届高三上学期第一次模拟检测】已知点F(√3,0)是椭圆C:x 2a 2+y 2b 2=1(a >b >0)的一个焦点,点M (√3,12)在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 交于不同的A,B 两点,且k OA +k OB =−12(O 为坐标原点),求直线l 斜率的取值范围. 【解析】(1)由题可知,椭圆的另一个焦点为(−√3,0),所以点M 到两焦点的距离之和为√(2√3)2+(12)2+12=4.所以a =2.又因为c =√3,所以b =1,则椭圆C 的方程为x 24+y 2=1.(2)当直线l 的斜率不存在时,结合椭圆的对称性可知,k OA +k OB =0,不符合题意. 故设l 直线的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2), 联立{y =kx +m x 24+y 2=1,可得(4k 2+1)x 2+8kmx +4(m 2−1)=0.所以{x 1+x 2=−8km4k 2+1,x 1x 2=4(m 2−1)4k 2+1, 而k OA +k OB =y 1x 1+y 2x 2=(kx 1+m )x 2+(kx 2+m )x 1x 1x 2=2k +m (x 1+x 2)x 1x 2=2k +−8km 24(m 2−1)=−2km 2−1,由k OA +k OB =−12,可得m 2=4k +1.所以k ≥−14,又因为16(4k 2−m 2+1)>0,所以4k 2−4k >0.综上,k ∈[−14,0)∪(1,+∞).5.【北京市海淀区2019届高三上学期期末考试】已知点B(0,−2)和椭圆M:x 24+y 22=1. 直线l:y =kx +1与椭圆M 交于不同的两点P,Q . (Ⅰ) 求椭圆M 的离心率;(Ⅰ) 当k =12时,求ΔPBQ 的面积;(Ⅰ)设直线PB 与椭圆M 的另一个交点为C ,当C 为PB 中点时,求k 的值 . 【解析】(Ⅰ)因为a 2=4,b 2=2,所以a =2,b =√2,c =√2 所以离心率e =c a=√22(Ⅰ)设P(x 1,y 1),Q(x 2,y 2)若k =12,则直线l 的方程为y =12x +1由{x 24+y 22=1y =12x +1 ,得3x 2+4x −4=0 解得 x 1=−2,x 2=23设A(0,1),则 S ΔPBQ =12|AB|(|x 1|+|x 2|)=12×3×(23+2)=4(Ⅰ)法一: 设点C(x 3,y 3),因为P(x 1,y 1),B(0,−2),所以{x 3=x 12y 3=−2+y 12又点P(x 1,y 1),C(x 3,y 3)都在椭圆上,所以{x 124+y 122=1(x 12)24+(−2+y 12)22=1解得{x 1=√142y 1=−12 或{x 1=−√142y 1=−12 所以 k =−3√1414或k =3√1414法二:设C(x 3,y 3)显然直线PB 有斜率,设直线PB 的方程为y =k 1x −2 由{x 24+y 22=1y =k 1x −2, 得 (2k 12+1)x 2−8k 1x +4=0所以{Δ=16(2k 12−1)>0x 1+x 3=8k12k 12+1x 1x 3=42k 12+1又x 3=12x 1 解得{x 1=−√142k 1=−3√1414 或 {x 1=√142k 1=3√1414所以{x 1=−√142y 1=−12或 {x 1=√142y 1=−12所以k =3√1414或k =−3√14146. 【宁夏六盘山高级中学2019届高三上学期期末考试】已知椭圆C:x 2a 2+y 2b 2=1(a >0,b >0)的离心率为√32,长轴长为4,直线y =kx +m 与椭圆C 交于A,B 两点且∠AOB 为直角,O 为坐标原点. (Ⅰ)求椭圆C 的方程; (Ⅰ)求AB 长度的最大值. 【解析】(I )由2a =4,Ⅰa =2,e =√32,Ⅰc =√3,b =1所以椭圆方程为x 24+y 2=1(II )设A(x 1,y 1) B(x 2,y 2),把y =kx +m 代入x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2−4=0 x 1+x 2=−8km4k 2+1,x 1x 2=4m 2−44k 2+1,∠AOB =90°,OA⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=0, x 1x 2+(kx 1+m)(kx 2+m)=04k 2+4=5m 2,Δ=16(4k 2+1−m 2)>0 Ⅰ4k 2+1−m 2=4k 2+1−4k 2+45>0 Ⅰ16k 2+1>0,则|AB |=√1+k 2⋅√(x 1+x 2)2−4x 1x 2=4√1+k 2√4k 2+1−m 24k 2+1=4√1+k 2√4k 2+1−4k 2+454k 2+1=45√5⋅√16k 4+17k 2+116k 4+8k 2+1。

《高考真题》专题06 函数的奇偶性的应用-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)

《高考真题》专题06 函数的奇偶性的应用-2019年高考文数母题题源系列(全国Ⅱ专版)(解析版)

专题06 函数的奇偶性的应用【母题来源一】【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= A .e 1x -- B .e 1x -+ C .e 1x ---D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -,则当0x <时,0x ->,则()e x f x --=-1()f x =-,得()e 1x f x -=-+.故选D .【名师点睛】本题考查分段函数的奇偶性和解析式,渗透了数学抽象和数学运算素养.采取代换法,利用转化与化归的思想解题.【母题来源二】【2018年高考全国Ⅱ卷文数】已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50【答案】C【解析】因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1),(3)(1)(1),4f x f x f x f x f x T +=--∴+=-+=-∴=, 因此[](1)(2)(3)(50)12(1)()(2)(3)4(1)(2)f f f f f f f f f f ++++=+++++,因为(3)(1),(4)(2)f f f f =-=-,所以(1)(2)0())(34f f f f +++=, 因为(2)(0)0f f ==,从而(1)(2)(3)(50)(1)2f f f f f ++++==.故选C .【名师点睛】先根据奇函数的性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.【母题来源三】【2017年高考全国Ⅱ卷文数】已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =______________.【答案】12【解析】(2)(2)[2(8)4]12f f =--=-⨯-+=.【名师点睛】(1)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的值或解析式;(2)已知函数的奇偶性求参数,一般采用待定系数法求解,根据()()0f x f x ±-=得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值.【命题意图】1.结合具体函数,了解函数奇偶性的含义.2.以抽象函数的奇偶性、对称性、周期性为载体考查分析问题、解决问题的能力和抽象转化的数学思想. 【命题规律】高考对该部分内容考查一般以选择题或填空题形式出现,难度中等或中等上,热点是奇偶性、对称性、周期性之间的内在联系,这种联系成为命题者的钟爱,一般情况下可“知二断一”. 【答题模板】1.判断函数奇偶性的常用方法及思路 (1)定义法(2)图象法(3)性质法利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 注意:①性质法中的结论是在两个函数的公共定义域内才成立的.②性质法在选择题和填空题中可直接运用,但在解答题中应给出性质推导的过程. 2.与函数奇偶性有关的问题及解决方法 (1)已知函数的奇偶性,求函数的值将待求值利用奇偶性转化为已知区间上的函数值求解. (2)已知函数的奇偶性求解析式已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可. (3)已知带有参数的函数的表达式及奇偶性求参数在定义域关于原点对称的前提下,利用()f x 为奇函数⇔()()f x f x -=-,()f x 为偶函数⇔()f x -()f x =,列式求解,也可以利用特殊值法求解.对于在0x =处有定义的奇函数()f x ,可考虑列式(0)0f =求解.(4)已知函数的奇偶性画图象判断单调性或求解不等式.利用函数的奇偶性可画出函数在另一对称区间上的图象及判断另一区间上函数的单调性. 【方法总结】1.函数奇偶性的定义及图象特点(1)偶函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数,其图象关于y 轴对称;(2)奇函数:如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数,其图象关于原点对称.2.判断()f x -与()f x 的关系时,也可以使用如下结论:如果(()0)f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称). 3.函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)()f x ,()g x 在它们的公共定义域上有下面的结论:(3)若奇函数的定义域包括0,则(0)0f =.(4)若函数()f x 是偶函数,则()()(||)f x f x f x -==.(5)定义在(,)-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.(7)一些重要类型的奇偶函数 ①函数()xxf x a a-=+为偶函数,函数()x xf x a a-=-为奇函数.②函数221()1x x x x xxa a a f x a a a ----==++(0a >且1a ≠)为奇函数. ③函数1()log 1axf x x-=+(0a >且1a ≠)为奇函数.④函数()log (a f x x =(0a >且1a ≠)为奇函数. 4.若()()f a x f a x +=-,则函数()f x 的图象关于x a =对称. 5.若()()f a x f a x +=--,则函数()f x 的图象关于(,0)a 对称.6.若函数()f x 关于直线x a =和()x b b a =>对称,则函数()f x 的周期为2()b a -. 7.若函数()f x 关于直线x a =和点(,0)()b b a >对称,则函数()f x 的周期为4()b a -. 8.若函数()f x 关于点(,0)a 和点(,0)()b b a >对称,则函数()f x 的周期为2()b a -. 9.若函数()f x 是奇函数,且关于x a =(0)a >对称,则函数()f x 的周期为4a . 10.若函数()f x 是偶函数,且关于x a =(0)a >对称,则函数()f x 的周期为2a . 11.若函数()f x 是奇函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为2a . 12.若函数()f x 是偶函数,且关于(,0)a (0)a >对称,则函数()f x 的周期为4a . 13.若函数()()f x x R ∈满足()()f a x f x +=-,1()()f a x f x +=-,1()()f a x f x +=均可以推出函数()f x 的周期为2a .1.【重庆市第一中学2019届高三上学期期中考试】下列函数为奇函数的是 A . B . C .D .【答案】D【分析】根据奇函数的定义逐项检验即可.【解析】A 选项中 ,故不是奇函数,B 选项中 ,故不是奇函数,C 选项中,故不是奇函数,D 选项中,是奇函数,故选D .2.【黑龙江省齐齐哈尔市2019届高三第一次模拟】若函数2()22x a xx f x -=-是奇函数,则(1)f a -= A .1- B .23- C .23D .1【答案】B【分析】首先根据奇函数的定义,求得参数0a =,从而得到2(1)(1)3f a f -=-=-,求得结果. 【解析】由()()f x f x -=-可得22(2)22a x x x x--+=+,∴0a =,∴2(1)(1)3f a f -=-=-, 故选B .【名师点睛】该题考查函数的奇偶性及函数求值等基础知识,属于基础题目,考查考生的运算求解能力. 3.【甘肃省静宁县第一中学2019届高三上学期第一次模拟】已知()f x 是定义在R 上的奇函数,当 时3()x m f x =+(m 为常数),则3(log 5)f -的值为A .4B .4-C .6D .6-【答案】B【分析】根据奇函数的性质 求出 ,再根据奇函数的定义求出3(log 5)f -.【解析】当 时3()x m f x =+(m 为常数),则03(0)0m f =+=,则 , , 函数()f x 是定义在R 上的奇函数,∴335log 35((log 5)()log )314f f -=-=--=-.故选B .【名师点睛】本题考查函数的奇偶性,解题的突破口是利用奇函数性质:如果函数是奇函数,且0在其定义域内,一定有 .4.【甘青宁2019届高三3月联考】若函数3()1f x x =+,则1(lg 2)(lg )2f f +=A .2B .4C .2-D .4-【答案】A【分析】3()1f x x =+,可得()()2f x f x -+=,结合1lglg22=-,从而求得结果. 【解析】∵3()1f x x =+,∴()()2f x f x -+=,∵1lglg22=-,∴1(lg 2)(lg )22f f +=, 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有奇函数的性质,属于简单题目,注意整体思维的运用.5.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第二次模拟】已知函数2()e e 21xxxxf x -=-++,若(lg )3f m =,则1(lg )f m = A .4- B .3- C .2-D .1-【答案】C【分析】先由2()e e 21xxxx f x -=-++得到()()1f x f x -+=,进而可求出结果.【解析】因为2()e e 21x xxx f x -=-++,所以21()e e e e 2121x x xx x x xf x -----=-+=-+++, 因此()()1f x f x -+=; 又(lg )3f m =,所以(lg )1(lg 1(lg )132)f mf m f m =-=-=-=-. 故选C .【名师点睛】本题主要考查函数奇偶性的性质,熟记函数奇偶性即可,属于常考题型. 6.【山东省济宁市2019届高三二模】已知 是定义在 上的周期为4的奇函数,当 时, ,则 A . B .0 C .1D .2【答案】A【解析】由题意可得: . 故选A .【名师点睛】本题主要考查函数的奇偶性,函数的周期性等知识,意在考查学生的转化能力和计算求解能力.7.【云南省玉溪市第一中学2019届高三第二次调研】下列函数中,既是偶函数,又在区间(0,)+∞上单调递减的函数是 A .3x y =B .1ln||y x = C .||2x y =D .cos y x =【答案】B 【解析】易知1ln||y x =,||2x y =,cos y x =为偶函数, 在区间(0,)+∞上,1ln ||y x =单调递减,||2x y =单调递增,cos y x =有增有减. 故选B .【名师点睛】本题考查函数的奇偶性和单调性,属于基础题.8.【山东省烟台市2019届高三3月诊断性测试】若函数()f x 是定义在R 上的奇函数,1()14f =,当0x <时,2()log ()f x x m =-+,则实数m = A .1- B .0 C .1D .2【答案】C【解析】∵()f x 是定义在R 上的奇函数,1()14f =, 且0x <时,2()log ()f x x m =-+, ∴211()log 2144f m m -=+=-+=-, ∴1m =. 故选C .【名师点睛】本题主要考查函数奇偶性的应用,以及已知函数值求参数的方法,熟记函数奇偶性的定义即可,属于常考题型.9.【宁夏银川市2019年高三下学期质量检测】已知()f x 是定义在R 上奇函数,当0x ≥时,2()log (1)f x x =+,则3()f -=C .2D .1【答案】A【分析】利用函数()f x 是奇函数,得到(3)(3)f f -=-,再根据对数的运算性质,即可求解. 【解析】由题意,函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()log (1)f x x =+,则22(3)(3)log (31)log 42f f -=-=-+=-=-,故选A .【名师点睛】本题主要考查了函数的奇偶性的应用,以及对数的运算的性质的应用,其中解答中熟记函数的奇偶性,以及熟练应用对数的性质运算是解答的关键,着重考查了转化思想,以及运算与求解能力,属于基础题.10.【甘肃省甘谷县第一中学2019届高三上学期第一次检测】已知定义在 上的函数 ,若 是奇函数,是偶函数,当 时, ,则 A . B . C .0D .【答案】A【分析】根据题意和函数的奇偶性的性质通过化简、变形,求出函数的周期,利用函数的周期性和已知的解析式求出 的值.【解析】因为 是奇函数, 是偶函数,所以 ,则 ,即 , 所以 , 则奇函数 是以4为周期的周期函数, 又当 时, ,所以 , 故选A .【名师点睛】该题考查的是有关函数值的求解问题,在解题的过程中,涉及到的知识点有函数的周期性,函数的奇偶性的定义,正确转化题的条件是解题的关键.11.【黑龙江省哈尔滨市第三中学2019届高三上学期期中考试】已知函数()f x 是定义在R 上的奇函数,对任意的x ∈R 都有33())22(f x f x +=-,当3(,0)2x ∈-时,()f x =12log (1)x -,则(2017)f +(2019)f =C .1-D .2-【答案】A【分析】根据题意,对33())22(f x f x +=-变形可得()(3)f x f x =-,则函数()f x 是周期为3的周期函数,据此可得(2017)(1)f f =,(2019)(0)f f =,结合函数的解析式以及奇偶性求出(0)f 与(1)f 的值,相加即可得答案.【解析】根据题意,函数()f x 满足任意的x ∈R 都有33())22(f x f x +=-, 则()(3)f x f x =-,则函数()f x 是周期为3的周期函数,所以(2017)(16723)(1)f f f =+⨯=,(2019)(6733)(0)f f f =⨯=, 又由函数()f x 是定义在R 上的奇函数,则(0)0f =, 当3(,0)2x ∈-时,()f x =12log (1)x -,则12(1)log [1(1)]1f -=--=-,则(1)(1)1f f =--=,故(2017)(2019)(0)(1)1f f f f +=+=, 故选A .12.【甘肃省兰州市第一中学2019届高三9月月考】奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为 A .2B .1C .-1D .-2【答案】A【分析】根据函数的奇偶性的特征,首先得到 ,进而根据奇函数可得 ,根据 可得 ,即可得到结论.【解析】∵ 为偶函数, 是奇函数,∴设 , 则 ,即 ,∵ 是奇函数,∴ ,即 , , 则 , ,∴ , 故选A .【名师点睛】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴以及周期性是解决本题的关键,属于中档题.13.【陕西省彬州市2019届高三上学期第一次教学质量监测】已知函数()y f x =是奇函数,当0x >时,2()log (1)f x x =-,则(1)0f x -<的解集是A .(,1)(2,3)-∞-B .(1,0)(2,3)-C .(2,3)D .(,3)(0,1)-∞-【答案】A【分析】根题设条件,分别求得,当0x >和0x <时,()0f x <的解集,由此可求解不等式(1)0f x -<的解集,得到答案.【解析】由题意,当0x >时,令()0f x >,即2log (1)0x -<,解得12x <<, 又由函数()y f x =是奇函数,函数()f x 的图象关于原点对称, 则当0x <时,令()0f x >,可得2x <-,又由不等式(1)0f x -<,可得112x <-<或12x -<-,解得23x <<或1x <-, 即不等式(1)0f x -<的解集为(,1)(2,3)-∞-,故选A .【名师点睛】本题主要考查了函数的基本性质的综合应用,其中解答中熟记对数函数的图象与性质,以及数列应用函数的奇偶性的转化是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档试题.14.【陕西省榆林市2019届高三第四次普通高等学校招生模拟考试】已知()f x 是定义在R 上的偶函数,且(5)(3)f x f x +=-,如果当[0,4)x ∈时,2()log (2)f x x =+,则(766)f =A .3B .3-C .2D .2-【答案】C【分析】根据(5)(3)f x f x +=-,可得(8)()f x f x +=,即()f x 的周期为8,再根据[0,4)x ∈时,2()log (2)f x x =+及()f x 为R 上的偶函数即可求出(766)(2)2f f ==.【解析】由(5)(3)f x f x +=-,可得(8)()f x f x +=,所以()f x 是周期为8的周期函数,当[0,4)x ∈时,2()log (2)f x x =+,所以(96(7682)6)(2)2f f f ⨯-===, 又()f x 是定义在R 上的偶函数,所以2(2)(2)log 42f f -===. 故选C .15.【黑龙江省哈尔滨师范大学附属中学2019届高三上学期期中考试】已知定义域为R 的奇函数 ,当时, ,当 时, ,则 A .B .C .D .【答案】B【分析】由当 时, ,可得,根据奇偶性求出 即可. 【解析】定义域为R 的奇函数 ,当 时, ,则, 则 ..., 又当 时, , — , 故. 故选B .16.【重庆市2018-2019学年3月联考】定义在[7,7]-上的奇函数()f x ,当07x <≤时,()26x f x x =+-,则不等式()0f x >的解集为 A .(2,7]B .(2,0)(2,7]-C .(2,0)(2,)-+∞D .[7,2)(2,7]--【答案】B【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(2,7],再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-.【解析】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤<时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<, 所以不等式()0f x >的解集为(2,0)(2,7]-.故选B .【名师点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.17.【宁夏平罗中学2019届高三上学期期中考试】已知定义在 上的函数 是奇函数,且当 时,,则 ______________. 【答案】18-【分析】先求(4)f ,再利用函数的奇偶性求4()f -.【解析】由题得22(4)log 4418f =+=,所以(4)(4)18f f -=-=-.18.【重庆南开中学2019届高三第四次教学检测】已知偶函数()f x 的图象关于直线2x =对称,(3)f =则(1)f =______________.【分析】由对称性及奇偶性求得函数的周期求解即可【解析】由题()()(4)f x f x f x =-=-,则函数的周期4T =,则()1f =(1)(1)(3)f f f =-==19.【辽宁省抚顺市2019届高三第一次模拟】已知函数()f x 是奇函数,且当0x <时1()()2xf x =,则(3)f 的值是______________. 【答案】8-【分析】先求(3)f -,再根据奇函数性质得(3)f . 【解析】因为31(3)()82f --==,函数()f x 是奇函数,所以(3)(3)8f f =--=-.20.【辽宁省朝阳市重点高中2019届高三第四次模拟】已知()y f x =是定义域为R 的奇函数,且周期为2,若当[0,1]x ∈时,()(1)f x x x =-,则( 2.5)f -=______________. 【答案】0.25-【分析】根据函数的奇偶性和周期性,求出( 2.5)(0.5)f f -=-,求出函数值即可.【解析】已知()y f x =是定义域为R 的奇函数,且周期为2,∴( 2.5)( 2.52)(0.5)(0.5)f f f f -=-+=-=-,∵当[0,1]x ∈时,()(1)f x x x =-,∴(0.5)0.5(10.5)0.25f =⨯-=,∴( 2.5)0.25f -=-. 21.【陕西省咸阳市2019届高三模拟检测三】已知定义在R 上的奇函数()f x 的图像关于点(2,0)对称,且(3)3f =,则(1)f -=______________.【答案】3【分析】先由函数关于(2,0)对称,求出(1)f ,然后由奇函数可求出(1)f -. 【解析】函数()f x 的图像关于点(2,0)对称,所以(1)(3)3f f =-=-, 又函数()f x 为奇函数,所以(1)(1)3f f =-=-.22.【宁夏石嘴山市第三中学2019届高三四模】若函数2,0()3(),0x x f x g x x ⎧>⎪=⎨⎪<⎩是奇函数,则1()2f -=______________.【答案】3-【分析】利用解析式求出1()2f ,根据奇函数定义可求得结果.【解析】由题意知1212()23f === ()f x为奇函数,11()()22f f ∴-=-=.23.【黑龙江省哈尔滨市第三中学2019届高三第二次模拟】已知函数()f x 是奇函数,当0x >时,()lg f x x =,则1(())100f f 的值为______________. 【答案】2lg - 【分析】先求出1()100f 的值,设为a ,判断a 是否大于零,如果大于零,直接求出()f a 的值,如果不大于零,那么根据奇函数的性质()()f a f a =--,进行求解.【解析】10,100>∴1()100f =21lg()lg102100-==-, 20-<∵,函数()f x 是奇函数,(2)(2)lg 2f f ∴-=-=-,所以1(())100f f 的值为lg2-.24.【山东省滨州市2019届高三第二次模拟(5月)】若函数 为偶函数,则______________.【答案】2-【解析】函数 为偶函数,则 , 即 恒成立, .则.【名师点睛】本题主要考查偶函数的性质与应用,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.25.【甘肃省张掖市2019届高三上学期第一次联考】已知()f x ,()g x 分别是定义在R 上的奇函数和偶函数,且(0)0g =,当0x ≥时,2()()22xf xg x x x b -=+++(b 为常数),则(1)(1)f g -+-=______________. 【答案】4-【分析】根据函数的奇偶性,先求b 的值,再代入1x =,求得(1)(1)4f g -=,进而求解(1)(1)f g -+-的值.【解析】由()f x 为定义在R 上的奇函数可知(0)0f =,因为(0)0g =,所以0(0)(0)20f g b -=+=,解得1b =-,所以(1)(1)4f g -=,于是(1)(1)(1[(1)(1)](4)1)f g f g f g =-+=---+=--.【名师点睛】本题考查了函数的奇偶性的应用,涉及了函数求值的知识;注意解析式所对应的自变量区间.26.【陕西省安康市安康中学2019届高三第三次月考】若函数2()e 1xf x a =--是奇函数,则常数 等于______________. 【答案】【分析】由奇函数满足,代入函数求值即可.【解析】对一切且恒成立.恒成立,恒成立.,.27.【吉林省长春市实验中学2019届高三期末考试】已知函数是定义在上的周期为的奇函数,当时,,则______________.【答案】【分析】根据是周期为4的奇函数即可得到=f(﹣8)=f()=﹣f(),利用当0<x<2时,=4x,求出,再求出,即可求得答案.【解析】∵是定义在R上周期为4的奇函数,∴=f(﹣8)=f()=﹣f(),∵当x∈(0,2)时,,∴=﹣2,∵是定义在R上周期为4的奇函数,∴==,同时=﹣,∴=0,∴﹣2.【名师点睛】考查周期函数的定义,奇函数的定义,关键是将自变量的值转化到函数解析式所在区间上,属于中档题.28.【新疆昌吉市教育共同体2019届高三上学期第二次月考】下列函数:①;②,,;③;④.其中是偶函数的有______________.(填序号)【答案】①【分析】先判断函数的定义域是否关于原点对称可知②,,为非奇非偶函数;再利用偶函数的定义,分别检验①③④是否符合,从而得到结果.【解析】①,为偶函数;②定义域,关于原点不对称,为非奇非偶函数;③,为奇函数;④ ,为非奇非偶函数; 故答案为①.【名师点睛】该题考查的是有关偶函数的选择问题,涉及到的知识点有函数奇偶性的定义,注意判断函数奇偶性的步骤,首先确定函数的定义域是否关于原点对称,再者就是判断 与 的关系. 29.【吉林省长春市吉林省实验中学2019届高三上学期第三次月考】已知 , .若偶函数 满足 (其中 , 为常数),且最小值为1,则 ______________. 【答案】【分析】利用函数是偶函数,确定 ,利用基本不等式求最值,确定 的值,即可得到结论. 【解析】由题意, , , 为偶函数, , , , , , ,.30.【东北三省三校(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2019届高三第一次模拟】已知函数()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,当[0,1]x ∈时,3()1f x x =-,则29()2f =______________. 【答案】78-【分析】先由题意,()f x 是定义域为(,)-∞+∞的偶函数,且(1)f x -为奇函数,利用函数的奇偶性推出()f x 的周期4T =,可得291()()22f f =-,然后带入求得结果. 【解析】因为(1)f x -为奇函数,所以(1)(1),(2)()f x f x f x f x --=--∴--=-, 又()f x 是定义域为(,)-∞+∞的偶函数,所以()()f x f x -=,即(2)(),(2)()f x f x f x f x --=--∴-=-,所以()f x 的周期4T =,因为295551()(12)()(2)()22222f f f f f =+==--=-,2117()1()228f =-=, 所以297()28f =-.31.【辽宁省大连市2019届高三第二次模拟】已知函数 是定义域为 的偶函数,且 在 , 上单调递增,则不等式 的解集为______________.【答案】 , ,【分析】利用偶函数关于 轴对称, 在 , 上单调递增,将不等式 转化为 ,即可解得 的解集. 【解析】 函数 是定义域为 的偶函数,可转化为 , 又 在 , 上单调递增,,两边平方解得 , , , 故 的解集为 , , .32.【辽宁省大连市2019届高三下学期第一次双基测试】已知定义在R 上的函数()f x ,若函数(1)f x +为偶函数,函数(2)f x +为奇函数,则20191()i f i ==∑______________.【答案】0【分析】根据函数(1)f x +为偶函数,函数(2)f x +为奇函数可得()(2)f x f x -=+和()(4)f x f x --=+,可得(4)()f x f x +=,则函数()f x 是周期为4的周期函数,结合函数的对称性可得(1)(3)0f f +=且(2)(0)(4)0f f f ===,从而可得结果.【解析】根据题意,(1)f x +为偶函数,则函数()f x 的图象关于直线1x =对称, 则有()(2)f x f x -=+,若函数(2)f x +为奇函数,则函数()f x 的图象关于点(2,0)对称, 则有()(4)f x f x --=+,则有(4)(2)f x f x +=-+, 设2t x =+,则(2)()f t f t +=-, 变形可得(4)(2)()f t f t f t +=-+=, 则函数()f x 是周期为4的周期函数, 又由函数()f x 的图象关于点(2,0)对称, 则(1)(3)0f f +=且(2)0f =, 则有(2)(0)0f f =-=,可得(4)0f=,则20191(1)(2)(019) )(2if i f f f ==+++∑[12(3)4][(2013)(2014()()(2015)(2016]))()f f f f f f f f=+++++++++[(2017)(2018)(201()9)]12((0)3)f f f f f f++=++=,故答案为0.33.【内蒙古呼和浩特市2019届高三上学期期中调研】已知函数与都是定义在上的奇函数,当时,,则的值为______________.【答案】2【分析】根据题意,由是定义在R上的奇函数可得,结合函数为奇函数,分析可得,则函数是周期为2的周期函数,据此可得,结合函数的解析式可得的值,结合函数的奇偶性与周期性可得的值,相加即可得答案.【解析】根据题意是定义在R上的奇函数,则的图象关于点(﹣1,0)对称,则有,又由是R上的奇函数,则,且,则有,即,则函数是周期为2的周期函数,则,又由=log2=﹣2,则=2,,故=2+0=2.。

甘肃、青海、宁夏2019届高三3月联考数学(理)试卷(附解析)

甘肃、青海、宁夏2019届高三3月联考数学(理)试卷(附解析)

高三数学考试(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数代数形式的运算化简,再由几何意义确定象限即可【详解】故选:B【点睛】本题考查复数代数形式运算及几何意义,熟记复数的代数表示法及其几何意义,是基础题.2.设集合,,则集合可以为()A. B. C. D.【答案】C【解析】【分析】先求A,由交集对照选项即可求解【详解】由题,因为,对照选项可知C成立故选:C【点睛】本题考查了集合的交集的运算,准确计算是关键,是基础题.3.从某小学随机抽取100名学生,将他们的身高(单位:厘米)分布情况汇总如下:由此表估计这100名小学生身高的中位数为(结果保留4位有效数字)A. 119.3B. 119.7C. 123.3D. 126.7【答案】C【解析】【分析】由表格数据确定每组的频率,由中位数左右频率相同求解即可.【详解】由题身高在,的频率依次为0.05,0.35,0.3,前两组频率和为0.4,组距为10,设中位数为x,则,解x=123.3故选:C【点睛】本题考查中位数计算,熟记中位数意义,准确计算是关键,是基础题.4.将函数的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图像,则的最小正周期是()A. B. C. D.【答案】B【解析】【分析】先由伸缩变换确定g(x),再求周期公式计算即可【详解】由题,∴T==故选:B【点睛】本题考查三角函数伸缩变换,准确记忆变换原则是关键,是基础题.5.如图,某瓷器菜盘的外轮廓线是椭圆,根据图中数据可知该椭圆的离心率为()A. B. C. D.【答案】B【解析】【分析】分析图知2a,2b,则e可求【详解】由题2b=16.4,2a=20.5,则则离心率e=故选:B【点睛】本题考查椭圆的离心率,熟记a,b的几何意义是关键,是基础题6.若函数有最大值,则的取值范围为()A. B. C. D.【答案】B【解析】【分析】分析函数每段的单调性确定其最值,列a的不等式即可求解【详解】由题,,故单调递减,故,因为函数存在最大值,所以解故选:B【点睛】本题考查分段函数最值,函数单调性,确定每段函数单调性及最值是关键,是基础题.7.汉朝时,张衡得出圆周率的平方除以等于.如图,网格纸上的小正方形的边长为,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为()A. B.C. D.【答案】C【解析】【分析】将三视图还原,即可求组合体体积【详解】将三视图还原成如图几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积为,利用张衡的结论可得故选:C【点睛】本题考查三视图,正确还原,熟记圆柱圆锥的体积是关键,是基础题8.设满足约束条件则的最大值与最小值的比值为()A. -1B.C. -2D.【答案】C【解析】【分析】画出可行域,求得目标函数最大最小值则比值可求【详解】由题不等式所表示的平面区域如图阴影所示:化直线l;为y=-x+z,当直线l平移到过A点时,z最大,联立得A(2,5),此时z=7; 当直线l平移到过B点时,z最小,联立得B(, 此时z=-,故最大值与最小值的比值为-2 故选:C【点睛】本题考查线性规划,准确作图与计算是关键,是基础题.9.若存在等比数列,使得,则公比的最大值为()A. B. C. D.【答案】D【解析】【分析】将原式表示为的关系式,看做关于的二次型方程有解问题,利用判别式列不等式求解即可.【详解】由题设数列的公比为q(q≠0),则,整理得=0,当时,易知q=-1,符合题意;但q≠0,当≠0时,,解得故q的最大值为故选:D【点睛】本题考查等比数列,考查函数与方程的思想,准确转化为的二次方程是关键,是中档题.10.在正方体中,,则异面直线与所成角的余弦值为()A. B. C. D.【答案】D【解析】【分析】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,在A中利用余弦定理即可求解.【详解】取靠近的四等分点F,连接则∥BE,连接AF,∴∠A或其补角为所求,设正方体的边长为4,则∠A故选:D【点睛】本题考查异面直线所成的角,作平行线找角是基本思路,准确计算是关键,是基础题.11.设为等差数列的前项和,若,,则的最小值为()A. -343B. -324C. -320D. -243【答案】A【解析】【分析】将用表示,解方程组求得,再设函数求导求得的最小值即可【详解】∵解得∴设当0<x<7时,当x>7时,,故的最小值为最小值为f(7)=-343故选:A【点睛】本题考查等差数列通项及求和,考查函数的思想,准确记忆公式,熟练转化为导数求最值是关键,是中档题.12.已知分别是双曲线:的左、右顶点,为上一点,且在第一象限.记直线,的斜率分别为,,当取得最小值时,的重心坐标为()A. B. C. D.【答案】B【解析】【分析】设P(x,y)证明为定值,运用基本不等式求得取得最小值时P坐标即可求解【详解】设P(x,y),则=则当且仅当取等,此时P(3,4),则重心坐标为,即故选:B【点睛】本题考查双曲线的几何性质,综合问题,明确为定值是关键,注意计算的准确,是中档题.第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的展开式的第2项为__________.【答案】【解析】【分析】由二项式定理的通项公式求解即可【详解】由题展开式的第2项为故答案为【点睛】本题考查二项式定理,熟记公式,准确计算是关键,是基础题.14.在平行四边形中,,,,则点的坐标为__________.【答案】【解析】【分析】先求再求进而求D即可【详解】由题,故D(6,1)故答案为【点睛】本题考查向量的坐标运算,准确计算是关键,是基础题15.若函数,则__________.【答案】6【解析】【分析】确定,再由对数的运算性质代入求值即可【详解】由题-故答案为6【点睛】本题考查对数运算,函数的综合应用,考察抽象概括能力与计算能力,是中档题.16.过点引曲线:的两条切线,这两条切线与轴分别交于两点,若,则__________.【答案】【解析】【分析】由两切线的斜率互为相反数,设切点,求导列关于t的方程求出t值即可求解【详解】设切点坐标为即,解得t=0或t=两切线的斜率互为相反数,即2a+6,解得故答案为【点睛】本题考查导数的几何意义,转化两切线的斜率互为相反数是突破点,熟练掌握切线的求法,准确计算是关键,是中档题.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分17.在中,,.(1)求;(2)若,求的周长.【答案】(1);(2).【解析】【分析】(1)先求,由二倍角公式即可求(2)由题得,解得a,b值,再由余弦定理求c边即可求解.【详解】(1)∵,∴,∴.(2)设的内角的对边分别为.∵,∴,∵,∴,.由余弦定理可得,则,的周长为.【点睛】本题考查正余弦定理解三角形,熟记三角的基本关系式,准确运用余弦定理计算c边是关键,是基础题.18.某厂销售部以箱为单位销售某种零件,每箱的定价为200元,低于100箱按原价销售;不低于100箱通过双方议价,买方能以优惠成交的概率为0.6,以优惠成交的概率为0.4.(1)甲、乙两单位都要在该厂购买150箱这种零件,两单位各自达成的成交价相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;(2)某单位需要这种零件650箱,求购买总价的数学期望.【答案】(1)0.76;(2)120640元.【解析】【分析】(1)先求甲单位优惠比例低于乙单位优惠比例的概率,再由对立事件得概率即可求解;(2)先写出在折扣优惠中每箱零件的价格为的取值,再列分布列求解即可【详解】(1)因为甲单位优惠比例低于乙单位优惠比例的概率为,所以甲单位优惠比例不低于乙单位优惠比例的概率.(2)设在折扣优惠中每箱零件的价格为元,则或188.的分布列为则.从而购买总价的数学期望为元.【点睛】本题考查离散型随机变量的分布列,对立事件的概率,是基础题.19.已知是抛物线:上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.【答案】(1)详见解析;(2)4.【解析】【分析】(1)先求出p,再由焦半径公式求出,,即可证明;(2)与联立由韦达定理代入,求得,再写出的垂直平分线的方程即可求得截距【详解】(1)证明:∵在抛物线:上,∴,∴.∴,,,∵,∴,,依次成等比数列.(2)与联立,得,则,解得.由韦达定理,得,,则,即.从而,线段的中点坐标为,的垂直平分线的方程为,令,得,故所求截距为4.【点睛】本题考查抛物线的简单几何性质,直线与抛物线的位置关系,准确计算是关键,是中档题.20.如图,在多面体中,四边形为正方形,,,.(1)证明:平面平面.(2)若平面,二面角为,三棱锥的外接球的球心为,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】【分析】证明平面即可证明平面平面(2)由题确定二面角的平面角为,进而推出为线段的中点,以为坐标原点建立空间直角坐标系由空间向量的线面角公式求解即可【详解】(1)证明:因为四边形为正方形,所以,又,,所以平面.因为平面,所以平面平面.(2)解:由(1)知平面,又,则平面,从而,又,所以二面角的平面角为.以为坐标原点建立空间直角坐标系,如图所示,则,,.因为三棱锥的外接球的球心为,所以为线段的中点,则的坐标为,.设平面的法向量为,则,即令,得.易知平面的一个法向量为,则.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本题考查面面垂直的判定,空间向量计算线面角,第二问确定球心O的位置是关键,是中档题.21.已知函数的导函数满足对恒成立.(1)判断函数在上的单调性,并说明理由;(2)若,求的取值范围.【答案】(1)在上单调递增;(2).【解析】(1)对求导利用已知条件即可判断单调性;(2)将代入条件,转化为恒陈立,求,讨论的正负求解即可【详解】(1)由,,得.,则,故在上单调递增.(2)∵,∴,即.设函数,,∵,∴,为增函数,则.当,即时,,则在上单调递增,从而.当,即时,则,,若,;若,.从而,这与对恒成立矛盾,故不合题意.综上,的取值范围为.【点睛】本题考查导数与函数的单调性问题,不等式恒成立问题,明确第二问分类讨论的标准是关键,是中档题.(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,圆的极坐标方程为.(1)若与相交于两点,,求;(2)圆的圆心在极轴上且圆经过极点,若被圆截得的弦长为1,求圆的半径.【答案】(1)6;(2)13.【分析】(1)将代入,利用t的几何意义及韦达定理即可求解;(2)化直线和圆为普通方程,利用圆的弦长公式求得半径【详解】(1)由,得,将代入,得,则,故.(2)直线的普通方程为,设圆的方程为.圆心到直线的距离为,因为,所以,解得(舍去),则圆的半径为13.【点睛】本题考查直线参数方程,圆的弦长公式,熟练运用直线与圆的位置关系,准确计算是关键,是中档题.23.设函数.(1)求不等式的解集;(2)证明:.【答案】(1);(2)详见解析.【解析】【分析】(1)零点分段法去绝对值解不等式即可;(2)零点分段分情况证明再由绝对值不等式证明即可【详解】(1)∵,∴,即,当时,显然不合;当时,,解得;综上,不等式的解集为.(2)证明:当时,;当时,,则;当时,,则.∵,∴.∵,∴.故.【点睛】本题考查绝对值不等式的解法,证明不等式,熟练运算是关键,是中档题。

甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案解析-精选

甘肃、青海、宁夏2019届高三上学期期末联考数学(理)试卷及答案解析-精选

高三数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】由题可知,分别求得集合,,再根据集合的交集的运算,即可求解,得到答案。

【详解】由题可知,集合,,则,故选C。

【点睛】本题主要考查了集合的交集运算问题,其中解答中正确求解集合,再根据集合的交集的运算是解答的关键,着重考查了推理与计算能力,属于基础题。

2.已知,则A. -2B. 0C. 1D. 2【答案】B【解析】【分析】根据复数的运算和复数相等的条件,即可求解得值,进而得到答案。

【详解】由题可得,则,,故,故选B。

【点睛】本题主要考查了复数的运算和复数相等应用,其中解答中熟记复数的四则运算和复数相等的条件是解答本题的关键,着重考查了推理与计算能力,属于基础题。

3.函数的一个单调递增区间为A. B. C. D.【答案】A【解析】【分析】根据三角函数的恒等变换,化简,再根三角函数的性质,即可求解。

【详解】由题可知.由,,解得,,当时,可得,即函数的单调递增区间为,故选A。

【点睛】本题主要考查了三角函数的图象与性质的应用,其中解答中根据三角恒等变换的公式正确化简三角函数的解析式,熟记三角函数的图象与性质是解答的关键,着重考查了推理与计算能力,属于基础题。

4.自古以“米以食为天”,餐饮业作为我国第三产业中的一个支柱产业,一直在社会发展与人民生活中发挥着重要作用.某机构统计了2010~2016年餐饮收入的情况,得到下面的条形图,则下面结论中不正确...的是A. 2010~2016年全国餐饮收入逐年增加B. 2016年全国餐饮收入比2010年翻了一番以上C. 2010~2016年全国餐饮收入同比增量最多的是2015年D. 2010~2016年全国餐饮收入同比增量超过3000亿元的年份有3个【答案】D【解析】【分析】由题意,根据给定的条形图中的数据,逐项判定,即可得到答案。

2019届宁夏银川一中高三第五次月考数学(理)试题(解析版)

2019届宁夏银川一中高三第五次月考数学(理)试题(解析版)

2019届宁夏银川一中高三第五次月考数学(理)试题一、单选题1.已知集合{}|5213, M x x x R =-≤-≤∈, (){}|80, N x x x x Z =-≤∈,则M N ⋂=( )A .()0,2B .[]0,2C .{}0,2D .{}0,1,2【答案】D【解析】∵集合{|5213,}{|22,M x x x R x xx R =-≤-≤∈=-≤≤∈,集合(){|80,}{|08,}N x x x x Z x x x Z =-≤∈=≤≤∈ ∴{|0,1,2}M N x ⋂=故选D 2.在等比数列的值为A .3B .C . 3D .【答案】A 【解析】利用等比中项的性质可知,a 3a 11=a 72,a 5a 9=a 72,代入题设等式求得a 7,进而利用等比中项的性质求得的值.【详解】 根据等比数列的性质得到a 3a 5a 7a 9a 11=a 75=243∴a 7=3,而根据等比数列的性质得到 ∴=a 7=3故选:A .【点睛】本题主要考查了等比数列的性质.解题过程充分利用等比中项的性质中G 2=ab 的性质.等比中项的性质根据数列的项数有关.3.已知复数和复数,则为A.B.C.D.【答案】C【解析】利用复数的三角形式的乘法运算法则即可得出.【详解】z1z2=(cos23°+i sin23°)•(cos37°+i sin37°)=cos60°+i sin60°=.故答案为C.【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.4.下列命题错误的是A.三棱锥的四个面可以都是直角三角形;B.等差数列{an}的前n项和为Sn(n=1,2,3…),若当首项a1和公差d变化时,a5+a8+a11是一个定值,则S16为定值;C.中,sinA>sinB是的充要条件;D.若双曲线的渐近线互相垂直,则这条双曲线是等轴双曲线.【答案】B【解析】A,找到满足题意的特殊图形即可;B,根据等差数列的性质可得到命题正确;C,根据正弦定理得到大边对大角,进而得到结论;D,设出双曲线方程,求出渐近线方程,通过斜率之积为定值-1,得到a,b的关系.【详解】对于A,三棱锥的四个面可以都是直角三角形正确,如三条侧棱两两垂直,底面是直角三角形,A正确;B. 等差数列{a n}的前n项和为S n(n=1,2,3…),若当首项a1和公差d变化时,a5+a8+a11=3,则不一定是一个定值,故B错误;对于C△ABC中,由正弦定理可得,因此sin A>sin B⇔a>b⇔A>B,因此sin A>sin B是A>B 的充要条件,正确;D设双曲线的方程为:,渐近线方程分别为,斜率之积为定值-1,则,故双曲线是等轴双曲线.故答案为:B.【点睛】这个题目考查了命题真假的判断,通常要推翻一个命题,只需要举出反例即可,而要证明一个命题的正确性则需要证明普遍性;此题型涉及的知识点较多,比较广,应多注意积累这些基础的结论》5.在椭圆中,焦点.若、、成等比数列,则椭圆的离心率A .B .C .D .【答案】C【解析】根据题意列出式子:解得即可.【详解】椭圆,焦点,、、成等比数列,故得到两侧除以得到.故答案为:C.【点睛】这个题目考查的是椭圆的离心率的求法;求离心率的常用方法有:定义法,根据椭圆或者双曲线的定义列方程;数形结合的方法,利用图形的几何特点构造方程;利用点在曲线上,将点的坐标代入方程,列式子。

人教版数学高三期末测试精选(含答案)8

人教版数学高三期末测试精选(含答案)8

【答案】C
x 0,
9.设点
P(
x,
y)
在不等式组
2x
y
0,
表示的平面区域上,则 z
x y 3 0
(x 1)2 y2 的
最小值为( )
A.1
B. 5 5
C. 2
D. 2 5 5
【来源】辽宁省沈阳市东北育才学校 2019 届高三第五次模拟数学(文)试题
【答案】D
10.已知各项均为正数的等比数列an 单调递增,且 a1 a3 36,a1 a2 a3 26 ,
人教版数学高三期末测试精选(含答案)
学校:___________姓名:___________班级:___________考号:___________
评卷人 得分
一、单选题
1.在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .若 ABC 的面积为
b2 c2 a2 ,则角 A =(
A. ab ac
B. c b a 0
C. cb2 ab2
D. ac a c 0
【来源】2019 年上海市格致中学高三上学期第一次检测数学试题
【答案】C
6.已知 a,b ∈ R,则 a > |b|是 a|a| > b|b|的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
则 Ð B =___________. 【来源】重庆市綦江实验中学校 2017-2018 学年高一下学期半期考试数学(理)试题.
【答案】150
23.已知等差数列an 的公差为 2,若 a1,a3 ,a4 成等比数列,则 a2 ________.
【来源】安徽省阜阳三中 2018-2019 学年高二上学期第一次调研考试数学(文)试题

2019届宁夏银川一中高三第五次月考数学(理科)试卷答案

2019届宁夏银川一中高三第五次月考数学(理科)试卷答案

z yxFEDCBA P银川一中2018届高三第五次月考数学(理科)参考答案一、选择题:(每小题5分,共60分) 题号1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCDCBABAD二、填空题:(每小题5分,共20分) 13. 33y x =±14. 10 15. 4- 16. 3π 三、解答题:17. 解:(1)由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a ………………3分 解得⎩⎨⎧=-=321d a 所以a n =3n -5.…………………6分(Ⅱ)∵15384122--⋅===n n a n nb ∴数列{b n }是首项为41,公比为8的等比数列,---------9分所以;281881)81(41-=--=n n n S ………………………12分18. 解:(Ⅰ) )3sin()3sin()sin )(sin sin (sin B B B A B A -⋅+=-+ππ,∴)sin 21cos 23()sin 21cos 23(sin sin 22B B B B B A -⋅+=-, 即B B B A 2222sin 41cos 43sin sin -=-,∴43sin 2=A . 又ABC ∆是锐角三角形,∴23sin =A ,从而3π=A . …5分 (Ⅱ)由4,3a A π==及余弦定理知,22162cos3b c bc π=+-,即222162cos ()33b c bc b c bc π=+-=+-,22()3163()162b c b c bc ++=+≤+…10分2()64,8b c b c ∴+≤+≤.又,b c a +>8,a b c ∴<+≤28,a a b c a ∴<++≤+∴三角形ABC 周长的取值范围是812.a b c ∴<++≤……..12分.19. 解:(Ⅰ)方法一: 建立如图所示空间直角坐标系.设,,AP AB b BE a ===,则,(0,0,0),(0,,0),(,,0),(0,0,),A B b E a b P b 于是,(,,),(0,,).22b bPE a b b AF -=,则0=⋅AF PE ,所以AF PE ⊥.……6分方法二:,,BC AB BC PA ⊥⊥BC ∴⊥面PAB ,面PBA ⊥面PBC , 又,PA AB AF PB =⊥AF ∴⊥面PBC ,PE ⊂面PBC AF PE ∴⊥(Ⅱ)设2AB =则4,BC =,(4,0,0),(0,2,0),(,2,0),(0,0,2),D B E a P (0,2,0),(,2,2),AB PE a ==-若,则由21717ABPE AB PE=得3,(3,2,0)a E =, 设平面PDE 的法向量为),,(z y x n =, (4,0,2),(3,2,0),PD ED =-=-由 ⎝⎛=⋅=⋅00PE n PD n ,得:420,2022x xx z x y x y z x=⎧⎪-=⎧⎪=⎨⎨-=⎩⎪=⎪⎩,于是(2,1,4),21.n n ==,而,(0,1,1), 2.AF PBC AF AF ⊥==设二面角D-PE-B 为θ,则为钝角所以,542cos .42212nAF n AFθ=-=-=-20.解:(1)由题意,212||22,(,0),F F c A a ==∴ 212AF AF = 2F ∴为1AF 的中点2,322==∴b a 即:椭圆方程为.12322=+y x …………………(5分)(2)方法一:当直线DE 与x 轴垂直时,342||2==a b DE ,此时322||==a MN ,四边形DMEN的面积||||42DE MN S ⋅==.同理当MN 与x 轴垂直时,也有四边形DMEN 的面积||||42DE MN S ⋅==. 当直线DE ,MN 均与x 轴不垂直时,设DE :)1(+=x k y ,代入消去y 得:.0)63(6)32(2222=-+++k x k x k 设⎪⎪⎩⎪⎪⎨⎧+-=+-=+,3263,326),,(),,(222122212211k k x x k k x x y x E y x D 则所以,231344)(||222122121++⋅=-+=-k k x x x x x x , 所以,2221232)1(34||1||k k x x k DE ++=-+=,同理222211)1]3(1)||.1323()2k k MN k k -++==+-+所以四边形的面积222232)11(3432)1(34212||||k k k k MN DE S ++⋅++⋅=⋅=13)1(6)21(242222++++=k k k k令u u u S k k u 61344613)2(24,122+-=++=+=得因为,2122≥+=k k u 当2596,2,1==±=S u k 时,且S 是以u 为自变量的增函数,所以42596<≤S .综上可知,96425S ≤≤.故四边形DMEN 面积的最大值为4,最小值为2596.…(12分)21.解:x>0时,ln()1ln ()()ex x f x f x xx+=--==………3分(1)当x>0时,有221(1ln )1ln ()x x x x f x xx⋅-+⋅'==-,()0ln 001f x x x '>⇔<⇔<<;()0ln 01f x x x '<⇔>⇔>所以()f x 在(0,1)上单调递增,在(1,)∞上单调递减,函数()f x 在1x=处取得唯一的极值.由题意0a >,且113a a <<+,解得所求实数a 的取值范围为213a << …6分(2)当1x ≥时,1ln (1)(1ln )()11k x k x x f x k x x x x+++≥⇔≥⇔≤++令(1)(1ln )()(1)x x g x x x++=≥,由题意,()k g x ≤在[)1,+∞上恒成立 ……8分 []22(1)(1ln )(1)(1ln )ln ()x x x x x x x x g x x x ''++⋅-++⋅-'==令()ln (1)h x x x x =-≥,则1()10h x x'=-≥,当且仅当1x =时取等号.所以()ln h x x x =-在[)1,+∞上单调递增,()(1)10h x h ≥=>因此,2()()0h x g x x '=> ()g x 在[)1,+∞上单调递增,min ()(1)2g x g ==.……10分所以2k ≤.所求实数k 的取值范围为(],2-∞ ………12分 22. 解.(I ) 的普通方程为1),1(3C x y -=的普通方程为.122=+y x联立方程组⎪⎩⎪⎨⎧=+-=,1),1(322y x x y 解得 与1C 的交点为)0,1(A ,)23,21(-B , 则1||=AB .(II )2C 的参数方程为θθθ(.sin 23,cos 21⎪⎪⎩⎪⎪⎨⎧==y x 为参数).故点P 的坐标是)sin 23,cos 21(θθ,从而点P 到直线 的距离是 ]2)4sin(2[432|3sin 23cos 23|+-=--=πθθθd ,由此当1)4sin(-=-πθ时,d 取得最小值,且最小值为)12(46-.23.解:由|21|11211,0 1.x x x -<-<-<<<得解得所以{|01}.M x x =<<(I ) 由M b a ∈,,得10,10<<<<b a ,所以(1)()(1)(1)0.ab a b a b +-+=--> 故1.ab a b +>+(II )由}2,,2max 22⎩⎨⎧+=b ab b a ah ,得,2a h ≥ab b a h 22+≥,b h 2≥,所以8)(42222223≥+=⋅+⋅≥ab b a bab b a ah ,故2 h .。

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

【通用版】2020高考数学(三轮复习)冲刺专题《数列大题部分》(含答案)

专题 数列大题部分【训练目标】1、 理解并会运用数列的函数特性;2、 掌握等差数列,等比数列的通项公式,求和公式及性质;3、 掌握根据递推公式求通项公式的方法;4、 掌握常用的求和方法;5、 掌握数列中简单的放缩法证明不等式。

【温馨小提示】高考中一般有一道小题,一道大题,小题侧重于考等差数列与等比数列的性质,熟练的灵活的使用数列的性质会大大减少计算量;大题则侧重于考查根据递推公式求通项公式,求和的方法。

总之,此类题目难度中等,属于必拿分题。

【名校试题荟萃】1、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设数列{}n a 的前n 项和,且123,1,a a a +成等差数列. (1)求数列{}n a 的通项公式;(2)记数列1{}na 的前n 项和n T ,求使得成立的n 的最小值.【答案】(1)2nn a = (2)10(2)由(1)可得112nn a ⎛⎫= ⎪⎝⎭,所以,由,即21000n>,因为,所以10n ≥,于是使得成立的n 的最小值为10.2、(宁夏长庆高级中学2019届高三上学期第四次月考数学(理)试卷)设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图象上(*n N ∈)。

(1)若12a =-,点87(,4)a b 在函数()f x 的图象上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图象在点22(,)a b 处的切线在x 轴上的截距为12ln 2-,求数列{}n na b 的前n 项和n T .【答案】(1) (2)(2)由函数()f x 的图象在点22(,)a b 处的切线方程为所以切线在x 轴上的截距为21ln 2a -,从而,故22a =从而n a n =,2n n b =,2n nn a nb =所以故。

3、(辽宁省辽河油田第二高级中学2019届高三上学期期中考试数学(文)试题)设n S 为数列{}n a 的前项和,已知10a ≠,,n *∈N .(1)求1a ,2a ;(2)求数列{}n a 的通项公式; (3)求数列{}n na 的前n 项和. 【答案】(1)1,2 (2)12-=n n a (3)(3)由(2)知12-=n n n na ,记其前n 项和为n T ,于是① ②①-②得从而.4、(湖南省浏阳一中、株洲二中等湘东六校2019届高三12月联考数学(理)试题)已知数列}{n a 的前n 项和n S 满足,且11=a 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档