第六章 线粒体

合集下载

第六章 线粒体

第六章 线粒体

第六章线粒体名词解释1、电子传递链electron-transport chain膜上一系列由电子载体组成的电子传递途径。

这些电子载体接受高能电子,并在传递过程中逐步降低电子的能量,最终将释放的能量用于合成ATP或以其他能量形式储存。

2、化学渗透学说chemiosmosis氧化磷酸化的耦联机制。

电子经电子传递链传递后,形成跨线粒体内膜的质子动力势,用以驱动ATP合成酶合成ATP。

3、结合变构模型binding change model利用质子动力势驱动ATP合成酶构象发生改变,将ADP和无机磷合成ATP的模型。

4、孔蛋白porin存在于线粒体和叶绿体外膜上的整合膜蛋白,形成非选择性的通道。

5、内共生学说endosysmbiont theory关于叶绿体和线粒体起源的假说,认为叶绿体和线粒体起源于被原始真核细胞吞噬的共生原核生物。

6、线粒体mitochondrion将储存在有机物中的能量通过氧化磷酸化过程形成ATP的细胞器。

线粒体是一种能量转换细胞器,还参与细胞凋亡等重要生理过程。

7、氧化磷酸化oxidative phosphorylation底物在氧化过程中产生高能电子,通过线粒体内膜电子传递链,将高能电子的能量释放出来转换成质子动力势进而合成ATP的过程。

8、ATP合酶ATP synthase位于线粒体内膜或叶绿体的类囊体膜上,通过氧化磷酸化或光合磷酸化催化ADP和无机磷合成ATP的酶,由F1头部和嵌入膜内的F0基部组成,也常见于细菌膜上。

9、线粒体膜间隙intermembrane space线粒体内膜和外膜之间的间隙,约6~8nm,其中充满无定形的液体,含有可溶性的酶、底物和辅助因子。

膜间隙的标志酶是腺苷酸激酶。

10、嵴cristae线粒体内膜向基质折褶形成的结构称作嵴(cristae), 嵴的形成使内膜的表面积大大增加。

11、电子载体electron carriers在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。

细胞生物学之笔记--第6章

细胞生物学之笔记--第6章

第六章线粒体mitochondion与细胞的能量转换第一节线粒体的基本特征一、线粒体的形态、数量&结构(一)线粒体的形态、数量与细胞的类型和生理状态有关线状、粒状、杆状etc 直径0.5~1.0μm。

(二)线粒体是由双层单位膜套叠而成的封闭性膜囊结构1.外膜是线粒体外层单位膜outer membrane5~7nm厚,50%脂类、50%蛋白(重量)外膜蛋白多为转运蛋白,形成跨膜水相通道(直径2~3μm),允许分子量10kD以下分子通过,包括小分子多肽(氨基酸平均分子量128D)2.内膜的内表面附着许多颗粒inner membrane4.5nm厚,20%脂类、80%蛋白✧内腔/基质腔(matrix space)由内膜包裹的空间✧外腔/膜间腔(intermembrane space)内、外膜之间的空间✧嵴(cristae)内膜大量向内腔突起性折叠形成✧嵴间腔(intercristae space)嵴与嵴之间的内腔部分✧嵴内空间(intracristae space)由于嵴向内腔突起,造成的外腔向内伸入的部分内膜通透性很小,分子量大于150D,就不能通过内膜有高度的选择通透性,膜上转运蛋白控制内外腔的物质交换内膜内表面附着许多颗粒,数目:104~105个/线粒体,称基粒elementary particle =A TP合酶复合体(A TP synthase complex)3.内外膜相互接近所形成的转位接触点是物质转运到线粒体的临时性结构转位接触点translocation contact site 电镜观察揭示内外膜有些接触点转位接触点分布有蛋白质等物质进出线粒体的通道蛋白和特异性受体,称内膜转位子translocon of the inner membrane, Tim; 和外膜转位子translocon of the outer membrane, Tom4.基质是氧化代谢的场所✧基质matrix 内腔中充满的电子密度较低的可溶性蛋白质和脂肪等成分✧基质中含各种酶:三羧酸循环、脂肪酸氧化、氨基酸分解、蛋白质合成✧基质中含有双链环状DNA、70S核糖体有1~多个DNA拷贝,有独立遗传物质复制、转录、翻译5.基质的化学本质是ATP合酶基粒,又称A TP合酶复合体,头部直径9nm,柄部长5nm,宽4nm二、线粒体的化学组成三、线粒体的遗传体系(一)线粒体DNA构成了线粒体基因组mtDNA(mitochondrial DNA) 裸露、不与组蛋白结合,基质内一个线粒体平均5~10个DNA分子,编码线粒体的t RNA、rRNA及一些线粒体蛋白质但大多数酶和蛋白质仍由细胞核DNA编码,在细胞质中合成,转送到线粒体中线粒体基因组共16 569 bp,双链环状DNA,一条重链,一条轻链。

第06章-线粒体遗传病

第06章-线粒体遗传病

Complex Ⅰ Ⅱ Ⅲ Ⅳ
Subunits 41 4 11 13
Nuclear 34 4 10 10
mtDNA 7 0 1 3
ATPase
14
12
2
合计
87
70
13
(二)线粒体基因组所用的遗传密码
和通用密码不完全等同
Codon UGG UGA AGG AGA AUG AUA
Universal code Trp Stop Arg Arg Met Ile
含16569个碱基对。 外环为重链(H)富含G
12种多肽链 12S rRNA 16S rRNA 14种tRNA
内环为轻链(L)富含C
1种多肽链 8种tRNA
mtDNA共有37个 基2因种 编码
rRNA(12S和16S )基因
22种 编码 tRNA 基因
13种 编码 蛋白质 基因
Human mtDNA, a circular molecule that has been completely sequenced, is among the smallest known mtDNAs, containing 16,569 base pairs. It encodes the two rRNAs found in mitochondrial ribosomes and the 22 tRNAs used to translate mitochondrial mRNAs.
(一)线粒体蛋白输入缺陷 (二)底物运输缺陷 (三)底物利用缺陷 (四)铁运输缺陷 (五)电子传递链缺陷
mtDNA Trp Trp Stop Stop Met Met
(三)mtDNA为母系遗传
母亲将她的mtDNA 传递给儿子和女儿, 但只有女儿能将其 mtDNA传递给下一代。

第六章线粒体和叶绿体(共80张PPT)

第六章线粒体和叶绿体(共80张PPT)

复合物IV:细胞色素c氧化酶
• 组成:为二聚体,每个单体含至少13条肽链,分为三个亚单位。
• 作用:将从细胞色素c接受的电子传给氧形成水,每转移一对电子,在基
质侧消耗2个质子,同时转移2个质子至膜间隙。(2 H+泵出, 2 H+ 参与 形成水)
• cyt c→CuA→heme a→a3- CuB→O2
Transport of electrons from NADH
Transport of electrons from FADH2
在电子传递过程中,有几点需要说明
• 四种类型电子载体:黄素蛋白、细胞色素(含血红素辅基)、铁硫蛋白、辅酶 Q。前三种与蛋白质结合,辅酶Q为脂溶性醌。
• 电子传递起始于NADH脱氢酶催化NADH氧化,形成高能电子(能量转化) , 终止于O2形成水。
• 4还原态cyt c + 8 H+M + O2→4氧化态cyt c + 4H+C + 2H2O
两条主要的呼吸链
• ①由复合物I、III、IV组成,催化NADH的脱氢氧化。
• ②由复合物II、III、IV组成,催化琥珀酸的脱氢氧化。
• 对应于每个复合物Ⅰ,大约需要3个复合物Ⅲ,7个复合物Ⅳ,任 何两个复合物之间没有稳定的连接结构,而是由辅酶Q和细胞色 素c这样的可扩散性分子连接。
(二) 线粒体的超微结构(两膜两室)
基质
膜间隙
外膜

内膜
A three-dimensional diagram of a mitochondrion cut longitudinally
•线粒体的超微结构
◆外膜(outer membrane):含孔蛋白(porin),通透性较高。外膜的 标志酶是单胺氧化酶。 ◆内膜(inner membrane):富含心磷脂,高度不通透性,向内折叠

第六章 线粒体和叶绿体

第六章  线粒体和叶绿体

1) 内膜结构

单层膜,比外膜厚; 通透性较外膜小; 向内折叠成嵴,表面积极大增加,代谢效率 极大提高;

嵴的形状与数量和细胞种类与生理状况有关
2) 线粒体分类(根据嵴的形态结构)
(a)板层形 (b)管形 (a),(b)为基本形 (c)羽冠形 (d)网膜形 (e)绒毛形 (f)平行形 (g)同心圆形
返回
第二节 叶绿体与光合作用
●一.叶绿体(Chloroplast)的形态结构

二.叶绿体的结构与化学组成
●三.叶绿体的功能—光合作用
(photosynthesis)
一、叶绿体(Chloroplast)的形态结构
●叶绿体与线粒体形态结构比较
叶绿体内膜并不向内折叠成嵴;内膜不含电
子传递链;除了膜间隙、基质外,还有类囊体; 捕光系统、电子传递链和ATP合成酶都位于类囊体 膜上。 ●叶绿体超微结构

1964年由Paul Boyer最先提出来的。此学
说认为电子沿电子传递链传递使线粒体 内膜蛋白质组分发生了构象变化,形成 一种高能形式。这种高能形式通过ATP 的合成而恢复其原来的构象。未能找到 有力的证据。
(3)化学渗透学说 1961 由英国生物化学家Peter Mitchell最先提出来
的。此学说认为电子传递释放出的自由能和ATP合成

个H 泵出内膜。
c 内膜对H+不能自由通过,泵出
膜外侧的H+不能自由返回膜内侧,
因而造成H+浓度的跨膜浓度梯度。
此梯度包含的能量可驱使ADP和Pi 生成ATP。
d.氢通过ATP合成酶上 的特殊的途径,返回基 质。H+浓度梯度所释放
的自由能,偶联ADP和

第六章 线粒体

第六章 线粒体

◆ 辅酶Q(CoQ)、黄素单核苷酸(FMN)、 黄素腺嘌呤二核苷酸(FAD)、烟酰胺腺 嘌呤二核苷酸(NAD)等。它们作为辅酶 (或辅基)参与电子传递的氧化还原过程。
◆ 基质中含有催化三羧酸循环、脂肪酸β-氧 化、氨基酸氧化、蛋白质合成等有关的上 百种酶和其他成分, 如环状DNA、RNA、 核糖体及较大的致密颗粒,这些颗粒是含 磷酸钙的沉积物,其作用是储存钙离子, 也可结合镁离子。基质中还有许多可溶性 代谢中间物。
化学渗透假说有两个特点:
A. 强调线粒体膜结构的完整性
如果膜不完整,H+ 便能自由通过膜,则无法在内 膜两侧形成质子动力势,那么氧化磷酸化就会解 偶联。一些解偶联剂的作用就在于改变膜对H+ 的 通透性,从而使电子传递所释放的能量不能转换 合成ATP。
B. 定向化学反应
ATP水解时,H+从线粒体内膜基质侧抽提到膜间 隙,产生电化学质子梯度。ATP合成的反应也是 定向的,在电化学质子梯度推动下,H+ 由膜间隙 通过内膜上的ATP合成酶进入基质,其能量促使 ADP和Pi合成ATP。
◆ 复合物Ⅳ:细胞色素C氧化酶
组成: 二聚体,每一单体含13个亚基,含cyt a, a3 ,Cu, Fe。既是电子传递体又是质子移位 体。 作用: 催化电子从cyt c分子O2 形成水,2 H+泵 出, 2 H+ 参与形成水。
在电子传递过程中,有几点需要说明
◆ 四种类型电子载体:黄素蛋白、细胞色素(含血红 素辅基)、 Fe-S 中心和辅酶 Q。前三种与蛋白质 结合,辅酶Q为脂溶性醌。 ◆ 电子传递起始于NADH脱氢酶催化NADH氧化,形 成高能电子(能量转化),终止于O2形成水。 ◆ 电子传递方向按氧化还原电势递增的方向传递 (NAD+/NAD最低,H2O/O2最高)。

6-线粒体和叶绿体PPT课件

6-线粒体和叶绿体PPT课件

-
44
-
45
2)类囊体膜的化学组成
主要成分:蛋白质和脂质(比例约60:40)。 • 1.脂质
主要是磷脂和糖脂及色素、醌化合物等 不饱和的亚麻酸约87%,流动性大 • 2.蛋白质 (1)外在蛋白:CF1 、与光反应有关的酶 (2)内在蛋白:20余种多肽
-
46
3.叶绿体基质(stroma)
• 1)核酮糖-1,5-二磷酸羧化酶RuBPase • 2)环状DNA • 3)RNA:rRNA、tRNA、mRNA • 4)核糖体(蛋白质合成体系) • 5)脂滴(Lipiddroplet)或称嗜锇滴 • 6)植物铁蛋白、淀粉粒等
形成“转子”; 2)嵌入膜中的F0(基
部),组成“定子”;
-
25
F1:3:3:1:1:1
具3个ATP合成的催 化位点
F0: 1a:2b:12c
环形结构,具质 子通道
-
26
❖ F1因子具有ATP酶活性
-
27
b)ATP合成酶性质:是一种具有双向作用的装置
-
28
c)ATP合成酶的作用机制
Step 1: Proton gradient is built up as a result of NADH (produced from oxidation reactions) feeding electrons into electron transport system.
• 3由)1Fa、0偶1联b、因1子0-1:2c是亚内基膜组上成的,疏多水个蛋c亚白基复形合成体多,(形1成2)跨聚膜体质,子成通一道。 环 合状于结c亚构基,环和状转结子构结的合外。侧a,、并b亚通基过及δ亚F1的基δ和亚头基部形相成结“合定。子”,结

医学遗传学 第六章 线粒体遗传病 知识点

医学遗传学 第六章 线粒体遗传病 知识点

医学遗传学第六章线粒体遗传病线粒体基因组的结构特征:不与组蛋白结合,呈裸露闭环双链状。

分为重链H链和轻链L 链。

重链富含鸟嘌呤G。

轻链富含胞嘧啶C。

编码区:线粒体基因排列紧密,部分会重叠。

没有启动子和内含子。

有的基因没有完整的三连体终止密码。

基因间隔区短,只有87bp。

两条链都有编码功能。

非编码区(D环区/控制区):与线粒体复制及转录有关。

包括H链复制的起始点。

H、L链转录的启动子。

四个高度保守序列(可通过此结构判定物种)。

两个高变区。

编码区的保守序列包含37个基因:2个rRNA基因,22个tRNA基因以及是13个氧化磷酸化有关的蛋白质编码基因。

线粒体基因组的遗传特征:半自主性遗传密码和通用密码不同母系遗传:母亲将mtDNA传递给她的所有子女,但只有她的女儿们能将其mtDNA传递给下一代。

mtDNA的突变率极高:原因是--mtDNA的特殊结构(缺乏酪蛋白和其他DNA组结合蛋白的保护。

无DNA损伤的修复系统,没有内含子。

独特的复制方式和复制错配。

mtDNA处于高度氧化的环境。

(ROS和自由基导致氧化损伤或诱导突变。

)同质性与异质性:同质性:一个组织或细胞中所有的线粒体具有相同的基因组,全部为野生型或全部为突变型mtDNA。

异质性:一个细胞或组织具有突变型,也有野生型mtDNA,基金组不同。

异质性的发生率:中枢神经系统>肌肉组织>血液。

成人大于儿童。

阀值效应:突变的mtDNA达到一定的比例,超过阀值时能引起某些器官或组织功能异常,导致能量产生急剧下降。

对ATP依赖程度:中枢神经系统>骨骼肌>心脏>胰腺>肾脏>肝脏。

遗传瓶颈与复制分离:遗传瓶颈:卵母细胞中的线粒体数目从10万个锐减到少于100个的过程。

复制分离:细胞分裂时进行随机分配,导致mtDNA异质性变化的过程。

线粒体基因组突变类型:点突变:2/3的点突变发生在与线粒体内蛋白质翻译有关的tRNA和rRNA基因上,这些突变会导致tRNA和rRNA的结构异常,从而影响mtDNA编码的多肽链的翻译过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种N端具有一段富含有精氨酸、赖氨酸、丝氨酸、苏氨酸的 氨基酸序列,介导在细胞质中合成的前体蛋白输入到线粒体基 质的信号(序列)。 ⑵分子伴侣(molecular chaperones):保持前体蛋白 在线粒体外的非折叠状态 NAC(新生多肽相关复合物):与少数前体蛋白相互作用, 增加蛋白转运的准确性。 Hsp70(热休克蛋白70):和绝大多数的前体蛋白质结合, 使前体蛋白打开折叠,防止已松驰的前体蛋白聚集。
(分布:多靠近需 耗能多的位置,如 rER附近,精子尾部 等。)
如有促进脂肪酸进入线粒体代谢的酶。
⑵组成:20%是脂类,80%是蛋白质 内膜上约有60多种蛋白质 三种主要功能蛋白质: ①电子传递链酶系:呼吸链电子传递系统氧化反应 的蛋白质: ②ATP合成酶系:基质中合成ATP(氧化磷酸化) ③特异转运蛋白:小分子物质转出基质 ⑶特点: 通透性小,分子量大于150的物质不能通过。 选择通透性高,膜上的转运蛋白质控制内、外腔的 物质交换,以保证活性物质的代谢。
ATP合酶复合体 生物氧化 细胞氧化 细胞呼吸 嵴 基粒 糖酵解 内膜 嵴间腔 膜间腔 嵴内空间
matrix 基质 matrix space 基质腔 matrix-targeting sequence .MTS 基质导入序列 Outer membrane 外膜 Oxidative phosphorylation 氧化磷酸化 Translocation contact site 转位接触点 Translocon of the inner membrane, Tim 内膜转位子 Translocon of the outer membrane .Tom 外膜转位子 Tricarboxylic acid cycle ,TAC 三羧酸循环
:细胞液 :线粒体基质 :线粒体基质
:线粒体内膜
1.概述 从糖酵解到ATP的形成 分为三个步骤: 糖酵解(glycolysis) 三羧酸循环(TAC) (tricarboxylic acid cycle) 氧化磷酸化(oxidative phosphorylation)

F1头部由5种亚基 以(3α : 3 β: 1 δ: 1γ : 1ε)组成。F0 基部包埋在膜中, 由3个亚基以(1a: 2b: 10-14 c)组成
(Tim) (Tom)
Translocon of the inner membrane Translocon of the outer membrane
、丙酮酸脱氢酶系、各种基因表达 所需的酶系 :具有独立编码合 成蛋白质的能力
四、核编码蛋白质的线粒体转运
线粒体中有大约1000个基因产物,其中仅37个 基因产物由线粒体基因组编码,其他均由核编码。 ㈠ 核编码蛋白向线粒体基质中的转运 ⒈需要条件 ⑴基质导入序列(matrix-targeting sequence, MTS)
第六章 线粒体与细胞的能量转换
学习目的与要求
1. 2. 3. 掌握线粒体的基本结构、功能。 掌握蛋白跨线粒体膜转运的机制。 了解线粒体的生物学发生。
4. 简单了解线粒体与细胞死亡、与医学的 关系。
本章内容
第一节 线粒体的基本特性 1. 线粒体的结构 2. 线粒体的化学组成 3. 线粒体的基因组 4. 核编码蛋白质的线粒体转运 5.线粒体的生物学发生 。 第二节 细胞呼吸 第三节细胞的能量转换 第四节 线粒体与细胞死亡 第五节 线粒体与医学
作业: 名词解释: 1 基粒. 2 细胞呼吸3. 转位接触点4. ATP合酶复合体 问答: 1.线粒体的标志酶? 2.线粒体基质蛋白的转运条件及过程? 3.细胞内葡萄糖彻底氧化转变为能量的反应部位和 主要过程?
中英文关键词对照 ATP synthase complex biological oxidation cellular oxidation cellular respiration cristae elementary particle glycolysis inner membrane intercristae space intermembrane space intracistae space
相关文档
最新文档