直流电机-PWM控制

合集下载

直流电机PWM控制

直流电机PWM控制
4)直流电机运营800转停止 5)直流电机上下限速光电报警
直流电机PWM控制
参照原理图如下所示: 1)查询式键盘原理图
2)6位串行静态显示原理图
直流电机PWM控制
3)直流电机控制原理图
PWM基本原理及其实现措施
• PWM基本原理 • PWM是经过控制固定电压旳直流电源开关频率,
从而变化负载两端旳电压,进而到达控制要求旳 一种电压调整措施。PwM能够应用在许多方面, 如电机调速、温度控制、压力控制等。 • 在PWM驱动控制旳调整系统中,按一种固定旳频 率来接通和断开电源,并根据需要变化一种周期 内“接通”和“断开”时间旳长短。经过变化直 流电机电枢上电压旳“占空比”来变化平均电压 旳大小,从而控制电动机旳转速。所以,PWM又 被称为“开关驱动装置”。

* 经过本例程了解PWM 旳基本原理和使用
*

*
*

* 请将直流电机线接在+5V P12相应旳端子上(步进马达接口出)
*

*
*

* 请学员仔细消化本例程
*

*********************************************************************************/

------------1000/(0.02ms*250)=200Hz

*************************************/

void T1zd(void) interrupt 3 //3 为定时器1旳中断号 1 定时器0旳中断号 0 外
部中断1 2 外部中断2 4 串口中断

main()

pwm不能控制直流电机转速的原因

pwm不能控制直流电机转速的原因

一、 PWM控制原理在控制直流电机的转速时,常常会使用PWM(脉冲宽度调制)技术。

PWM技术通过改变信号的占空比来控制电机的输出功率,从而控制电机的转速。

当占空比增加时,电机的输出功率也随之增加,从而提高了电机的转速。

二、 PWM控制直流电机转速的局限性1. 电机响应时间尽管PWM技术可以改变电机的输出功率,但直流电机本身的电气特性也会影响电机的转速响应时间。

电机的惯性和机械特性都会造成转速变化的延迟,使得PWM控制直流电机的转速响应时间受到限制。

2. 电机额定转速直流电机的额定转速通常由其设计结构和电气特性所确定,而PWM技术无法改变电机的设计结构和电气特性。

当直流电机达到其额定转速时,即使继续增加PWM信号的占空比,电机的转速也无法再次提升。

3. 功率输出PWM技术虽然可以改变电机的输出功率,但在达到电机的最大输出功率后,继续增加PWM信号的占空比也无法使电机输出更大的功率。

这是因为电机本身存在一定的功率限制,超过该限制将导致电机过载,甚至损坏。

4. 电机负载直流电机在实际应用中往往需要承受不同程度的负载,而PWM技术无法有效地适应不同负载条件下的电机转速控制。

在负载较大时,即使提高PWM信号的占空比,电机的转速也可能无法达到预期的要求。

5. 控制精度由于直流电机本身的特性以及外部环境的影响,PWM控制直流电机的转速往往难以做到精确控制。

特别是在需要较高转速精度的应用场合,如精密机械、仪器仪表等领域,PWM控制直流电机的转速局限性更加明显。

三、克服PWM控制直流电机转速的局限性的方法尽管PWM控制直流电机转速存在一定的局限性,但可以通过以下方法克服或减轻这些局限性:1. 采用闭环控制:通过添加编码器等反馈装置,实现对电机转速或位置的闭环控制,使得PWM控制更加精确和稳定。

2. 优化电机电路:改善直流电机的驱动电路,提高电机的响应速度和性能,使得PWM控制能够更好地调节电机的转速。

3. 降低电机负载:在设计应用时,尽量减小电机的负载,使得PWM控制能够更有效地控制电机的转速。

控制有刷直流电机的方法

控制有刷直流电机的方法

控制有刷直流电机的方法
控制有刷直流电机的方法有以下几种:
1. 电压控制方法:通过调节电源电压的大小来控制电机的转速。

增大电源电压可以使电机转速增加,减小电压则使电机转速减小。

2. PWM 控制方法:使用脉宽调制(PWM)技术控制电机的
转速。

通过调节PWM信号的占空比(即高电平时间与周期时
间的比值),可以改变电机的平均电压,从而控制电机的转速。

占空比越大,电机转速越高,反之亦然。

3. 反馈控制方法:使用反馈传感器(如编码器)检测电机的转速或位置,并根据反馈信号进行闭环控制。

通过比较反馈信号与设定值,控制器可以调整电机的电压或PWM占空比,使电
机保持在设定的转速或位置。

4. H桥驱动方法:使用H桥电路控制电机的正反转。

通过控
制H桥的开关状态,可以改变电机的电流流动方向,实现电
机的正反转和制动。

需要注意的是,控制有刷直流电机需考虑到电机的最大电流、功率和电机的特性曲线,选择合适的驱动方式和控制策略,以确保电机的安全运行和性能要求的实现。

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理

直流电动机的PWM调压调速原理
直流电动机的PWM调压调速是指通过调节脉宽调制(PWM)信号的占空比,控制直流电动机的电压和转速。

其原理是利用数字信号的高低电平与时间的对应关系,通过高电平和低电平的时间比例来控制脉冲信号的平均值,从而实现对电动机的调压和调速。

具体来说,PWM调压调速主要包括以下几个步骤:
1.信号发生器:使用微控制器或其他信号发生器产生一个固定频率的方波信号,通常频率为几千赫兹到几十千赫兹。

这个信号称为PWM基准信号。

2.调制器:通过控制占空比,将PWM基准信号转换为调制后的PWM信号。

占空比是指高电平持续的时间与一个周期的比值。

例如,占空比为50%的PWM信号表示高电平和低电平持续时间相等。

调制器可以是硬件电路或者软件控制的。

3.电压调节:将调制后的PWM信号经过滤波器平滑输出,形成电压调节信号。

滤波器通常使用低通滤波器,将PWM信号的高频成分滤除,得到平均电压。

4.转速控制:通过调节占空比,改变PWM信号的高电平时间,从而改变直流电动机的平均电压。

占空比越大,输出电压就越高;占空比越小,输出电压就越低。

5.转速反馈:为了实现闭环控制,通常需要通过传感器获取直流电动机的转速,并将转速信息反馈给调速控制器。

调速控制器会根据反馈信号与设定的转速进行比较,调节占空比控制电动机的转速。

总结起来,PWM调压调速原理就是通过调节PWM信号的占空比控制直流电动机的电压和转速。

通过改变占空比,可以改变PWM信号的高电平时间,从而改变电动机的平均电压和转速。

同时,结合转速反馈,可以实现封闭环控制,使电动机的转速能够与设定值保持一致。

pwm直流电机控制原理

pwm直流电机控制原理

pwm直流电机控制原理
PWM(脉宽调制)是一种控制技术,可以用于控制直流电机的转速和方向。

它通过改变信号的脉冲宽度来控制电机驱动电压的大小。

在PWM控制中,周期性地产生一个固定频率的方波信号,即PWM信号。

这个信号的高电平时间(脉冲宽度)可以根据需要进行调整。

脉冲宽度越长,电机接收到的驱动电压就越高,转速也会相应增加。

脉冲宽度越短,则驱动电压越低,转速也会减小。

PWM信号的周期必须远远小于电机的机械响应时间,以确保控制的稳定性。

频率一般设定在几千赫兹到几十千赫兹之间,以避免电机产生噪音。

脉冲宽度的调整则通过改变占空比(高电平时间与周期的比值)来实现。

在具体的实现中,通常使用微控制器或专用的PWM控制器来产生PWM信号。

通过改变占空比的值,控制电机的转速。

例如,当占空比为50%时,电机接收到的驱动电压为平均值的一半,电机转速为额定转速的一半;当占空比为100%时,电机接收到的驱动电压为最大值,电机转速为最大转速。

为了实现方向控制,可以使用H桥电路。

H桥电路可以控制电流的方向,从而改变电机的转向。

通过控制H桥的开关状态,可以将电机正反转。

综上所述,PWM控制技术通过改变信号的脉冲宽度来控制直
流电机的转速和方向。

通过微调占空比的值,可以精确控制电机的转速,并利用H桥电路控制电机的转向。

直流电机pwm调速原理

直流电机pwm调速原理

直流电机pwm调速原理直流电机PWM调速原理是通过改变电源给电机的电压和电流,从而控制电机转速的一种方法。

PWM,即脉冲宽度调制,是一种用来调节电平电路中电平的技术,利用脉冲信号的占空比(高电平与周期时间之比)来控制电平的平均值。

在直流电机PWM调速中,首先需要了解电机的电刷子与换向器的工作原理。

电刷子负责切换电极的极性,而换向器则根据电刷子的位置将电流传送到正确的电极上。

当电流在电机的绕组中流动时,会形成磁场,这个磁场会与永磁体产生相互作用,从而产生电机的转动力。

为了控制电机的转速,可以通过改变供电电压的幅值和频率来实现。

在PWM调速中,电源输出的电压信号被分解为一系列的脉冲信号。

脉冲信号的占空比根据所需的电机转速来确定,占空比越大,电机转速越快。

在每个脉冲周期中,脉冲信号的高电平部分代表电源给电机供电的时间,而低电平部分则代表停止供电的时间。

通过改变脉冲信号的占空比,可以控制电机的平均电压和平均电流。

当占空比增大时,电机平均得到更多的能量供应,转速也会相应增加。

反之,当占空比减小时,电机平均得到更少的能量供应,转速会减慢。

这样,通过不断调整脉冲信号的占空比,就可以实现对直流电机的精准调速。

需要注意的是,在PWM调速中,电机的换向也需要考虑进去。

换向器需要根据电机的转向来控制电刷子的位置,使电流能够按正确的路径流动。

这样能够保证电机的正常运转,并提供足够的转矩和稳定性。

综上所述,直流电机PWM调速是通过改变电源给电机的电压和电流的脉冲信号的占空比来实现的。

通过调节脉冲信号的占空比,可以控制电机的平均电压和电流,从而实现对电机转速的精确控制。

同时,需考虑电机的换向,以保证电机能够正常运转。

无刷直流电机pwm调速原理

无刷直流电机pwm调速原理

无刷直流电机pwm调速原理:从实现到优化无刷直流电机(BLDC)已经成为现代工业中最受欢迎的驱动电机类型之一,其中最常见的控制方式之一是使用脉冲宽度调制(PWM)来实现电机转速控制。

本文将介绍BLDC PWM调速的原理,探讨其应用和优化方法。

1.BLDC PWM调速原理
BLDC电机通过能够确定电机行驶方向和旋转计数器的位置,由调速器交替地开启电机的三个相位,以控制BLDC转动速度。

使用PWM调速的方法是在电机引脚间交替应用高电平和地电平的脉冲,以实现BLDC的转速调整。

具体来说,PWM控制器会在转子旋转时通过电感检测组合三相MOSFET晶体管进行电流控制,来达到恒速的转速调整目的。

2.BLDC PWM调速应用
BLDC PWM调速广泛应用于电动工具、电动车、无人机、机器人等设备中。

在实际应用中,我们需要根据实际需求进行相应的电机转速匹配,以保证电机最大负载工作状态下的能效。

此外,为了避免电机由于承受过大负载而损坏,我们还需要通过PWM调速来限制电机最大负荷。

3.BLDC PWM调速优化
BLDC PWM调速优化方法包括提高PWM更新频率、增加开短路时间、使用低电流逆变器等。

提高PWM更新频率可以增加电机速度和位置反馈的精度,提高控制精度和稳定性;增加开短路时间可以防止电机发生过载时被动烧毁。

但是这也会增加功率损耗,因此需要根据实际需求进行权衡。

使用低电流逆变器会降低电机的当前需求,从而增加开短路时间,提高系统效率。

总之,在BLDC PWM调速中,我们需要根据实际的需求选择适当的电机转速,以增加设备的性能和效率;同时,我们也需要注意调节PWM 控制器的参数,从而达到最大的能效和系统稳定性。

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统

基于PWM的直流无刷电机控制系统一、本文概述随着科技的快速发展和电机控制技术的不断进步,直流无刷电机(BLDC,Brushless Direct Current Motor)在各个领域的应用越来越广泛。

它们具有高效、低噪音、长寿命等优点,尤其在航空、汽车、家用电器、电动工具以及机器人等领域得到了广泛应用。

而基于脉冲宽度调制(PWM,Pulse Width Modulation)的直流无刷电机控制系统,以其灵活的控制方式、精确的速度调节和优秀的动态响应特性,成为现代电机控制领域的重要研究方向。

本文将对基于PWM的直流无刷电机控制系统进行深入研究。

我们将简要介绍PWM技术的基本原理及其在电机控制中的应用。

接着,我们将重点探讨基于PWM的直流无刷电机控制系统的构成、工作原理以及主要控制策略。

文章还将分析该控制系统的性能特点,包括调速范围、动态响应、稳定性等。

我们将展望基于PWM的直流无刷电机控制系统的未来发展趋势和应用前景。

通过本文的研究,我们期望能够为读者提供一个全面、深入的了解基于PWM的直流无刷电机控制系统的机会,同时为相关领域的工程师和研究者提供有益的参考和启示。

二、直流无刷电机的基本原理直流无刷电机(Brushless Direct Current Motor,简称BLDCM)是一种通过电子换向器替代传统机械换向器的直流电机。

其基本原理主要基于电磁感应和电子换向技术。

电磁感应:直流无刷电机内部通常包含定子(stator)和转子(rotor)两部分。

定子通常由多个电磁铁组成,而转子则带有永磁体。

当定子上的电磁铁通电时,会产生磁场,与转子上的永磁体相互作用,从而驱动转子旋转。

这就是电磁感应的基本原理。

电子换向:与传统的直流电机使用机械换向器不同,直流无刷电机使用电子换向器。

电子换向器通常由微处理器和功率电子开关(如MOSFET或IGBT)组成。

微处理器根据电机的运行状态和位置传感器(如霍尔传感器)的反馈信号,控制功率电子开关的通断,从而实现电磁铁的电流方向的改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机电传动控制》
PWM控制技术


PWM(Pulse Width Modulation) PWM 控制 —— 脉冲宽度调制技术,通过对一系列 脉冲的宽度进行调制,来等效地获得所需要波形 (含形状和幅值)
本章内容 PWM控制技术在逆变电路中应用最广,应用的逆变电路 绝大部分是 PWM型,PWM控制技术正是有赖于在逆变 电路中的应用,才确定了它在电力电子技术中的重要地 位 本章主要以逆变电路为控制对象来介绍PWM控制技术 也介绍PWM整流电路
PWM驱动装置在中小功率场合,有着晶闸管驱动装置无法比拟的 优点,例如:调速范围宽、快速性好、电流波形系数好、功率因 数好等。
电风扇调速控制
三极管控制风扇开关 优点: 设计简单 控制方便 价格低廉 缺点: 动力设计给定
PWM信号
频率固定 脉宽调节 目的: 能量可以保存 有效工作时间可调
直流脉宽调速系统出现的历史背景
20世纪70年代前,以晶闸管为基础组成的相控整流装置是运动控 制系统直流传动中主要使用的变流装置,但由于晶闸管属于半控 型器件,使其构成的V-M系统的性能受到一定的限制; 20世纪70年代后:随着电力电子技术的发展,出现了全控型器件 --门极可关断晶闸管(GTO)、电力场效应晶体管(Power- MOSFET)、绝缘栅极双极晶体管(IGBT); 直流电机控制领域向高精度方向发展;
3. 输出电压计算
电动机得到的平均电压为:
几种典型PWM变换器的基本结构及工作原理
1. 不可逆PWM变换器
工作状态与波形
(2)有制动的不可逆PWM变换器
工作状态与波形
2)制动状态
3)轻载电动状态
二象限不可逆PWM变换器在不同工作状态下的导通器件和电流回路与方向
2. 可逆PWM变换器
Байду номын сангаас
工作状态与波形
相关方程:
性能评价
(2)单极式可逆PWM变换器
直流斩波器的基本结构与工作原理
1.直流斩波器的基本结构
直流斩波器--电动机系统原理图和电压波形
2. 斩波器的基本工作原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT导通时,直流电源 电压Us 加到电动机上;当VT关断时,直流电 源与电机脱开,电动机电枢电流经VD 续流, 两端电压接近于零。如此反复,电枢端电压波 形如图 ,好像是电源电压Us在ton 时间内被接 上,又在T – ton 时间内被斩断,故称“斩 波”。
图: PWM 控制信号
PWM控制方法介绍
三极管控制风扇开关
优点: 设计简单 控制方便 价格低廉 缺点: 可靠性低 信号误差大
PWM输入信号特点
PWM直流伺服系统
直流脉宽调速系统出现的历史背
直流斩波器的基本结构与工作原理 几种典型PWM变换器的基本结构及工作原理 直流PWM调速系统的开环机械特性 PWM系统控制电路 PWM变换器的数学模型
相关文档
最新文档