初二(上)数学第一学期期末试卷4
2022-2023学年重庆八中八年级上学期期末数学试卷及参考答案

2022-2023学年重庆八中初二数学第一学期期末试卷一、选择题。
(共10小题,每小题4分,满分40分) 1.下列北京冬奥会运动标识图案是轴对称图形的是( )A .B .C .D .2.函数3y x =+中,自变量x 的取值范围是( ) A .3x >−B .3x −C .3x ≠−D .3x −3.下列运算正确的是( ) A .246a a a ⋅=B .325(2)2a a =C .632x x x −÷=−D .222x x x −=4.下列等式中,从左到右的变形是因式分解的是( ) A .321836a bc a b ac =⋅ B .211(2)22ab a a b a −=−C .241(4)1x x x x −+=−+D .22(1)21x x x +=++5.已知点P 在第四象限,且到x 轴的距离是2,到y 轴的距离是7,则点P 的坐标为( )A .(7,2)−B .(2,7)−C .(7,2)D .(2,7)6.甲、乙、丙、丁四人进行射击测试,他们在相同条件下各射击10次,成绩(单位:环)统计如下表:甲 乙丙 丁 平均数x (单位:环)9.7 m 9.3 9.6 方差2s0.25n0.280.27根据表中数据,可以判断乙是四人中成绩最好且发挥最稳定的,则m 、n 的值可以是( ) A .9.9m =,0.3n = B .9.9m =,0.2n = C .9m =,0.3n =D .9m =,0.2n =7.将直线26y x =−+向左移1个单位,所得到的直线解析式为( ) A .27y x =−+B .25y x =−+C .28y x =−+D .24y x =−+8.如图,在ABC ∆中,13AB CB ==,BD AC ⊥于点D 且12BD =,AE BC ⊥于点E ,连接DE ,则DE 的长为()A .52B .72C .5D .69.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有60张正方形纸板和140张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,设做x 个竖式无盖纸盒,y 个横式无盖纸盒,则可列方程组( )A .46023140x y x y +=⎧⎨+=⎩B .26043140x y x y +=⎧⎨+=⎩C .36024140x y x y +=⎧⎨+=⎩D .36042140x y x y +=⎧⎨+=⎩10.如图,直线3y x =+分别与x 轴、y 轴交于点A ,C ,直线y mx m =−分别与x 轴、y 轴交于点B 、D ,则下列说法正确的有( )A .直线AC 与x 轴夹角为45︒B .直线BD 经过点(1,0)C .当0m <时,直线BD 经过两个点1257(,),(,)22P y Q y ,则12y y <D .直线AC 与直线BD 相交于点(,2)M a ,则不等式3x mx m +−的解集为1x −二、填空题。
2024北京海淀区初二(上)期末数学试卷及答案

2024北京海淀初二(上)期末数 学2024.01学校_____________ 班级______________ 姓名______________第1-8题均有四个选项,符合题意的选项只有一个.1.榫卯拼接木艺是中国建筑的智慧结晶,仅靠木头之间的相互作用力就可以让建筑或家具牢固、美观.下列榫卯拼接截面示意图中,是轴对称图形的是A .B .C .D .2.杭州亚运会主火炬以零碳甲醇作为燃料,在亚运史上首次实现废碳再生、循环内零碳排放.甲醇的密度很小,1 cm 3甲醇的质量约为0.000 79 kg ,将0.000 79用科学记数法表示应为 A .47910−⨯ B .47.910−⨯C .57910−⨯D .30.7910−⨯3.下列运算正确的是A. 235a a a ⋅=B. 235()a a =C. 33(2)2a a −=−D. 933a a a ÷=4.如图,点E ,C ,F ,B 在一条直线上,AB ∥ED ,∠A =∠D ,添加下列条件不能..判定△ABC ≌△DEF 的是 A. AC ∥DF B. AB =DE C. EC =BF D. AC =DF5.若正多边形的一个外角是72°,则该正多边形的边数为 A. 4 B. 5 C. 6 D. 76.如图是折叠凳及其侧面示意图. 若AC =BC=18 cm ,则折叠凳的宽AB 可能为 A .70 cm B .55 cm C .40 cm D .25 cm7.下列各式从左到右变形正确的是A. y y x x−=−− B. 1133x x +=+ C. 22142xxx +=−− D. 221xy x y = 8.如图,在△ABC 中,∠BAC =90°,P 是△ABC 内一点,点D ,E ,F 分别是点P 关于直线AC ,AB ,BC 的对称点,给出下面三个结论:① AE =AD ; ② ∠DPE =90°;③ ∠ADC +∠BFC +∠BEA =270°. 上述结论中,所有正确结论的序号是 A.①② B.①③ C.②③ D. ①②③ 二、填空题(本题共16分,每小题2分) 9.若代数式31x −有意义,则实数x 的取值范围是___________. 10.分解因式:32____________________a ab −=.11.在平面直角坐标系xOy 中,已知点A (-1,-1)关于x 轴的对称点'A 的坐标为____________.12.计算:322(69)3a a a −÷=_____________.13.已知等腰三角形的一个内角为40°,则它的顶角度数为_____________°. 14.如图,在△ABC 中,DE 是BC 边的垂直平分线. 若AB =8,AC =13,则△ABD 的周长为____________.15.把一张长方形纸片沿对角线折叠,使折叠后的图形如图所示.若 ∠BAC =35°,则∠CBD =_____________°.16.请阅读关于“乐数”的知识卡片,并回答问题: 乐 数我们将同时满足下列条件的分数称为“乐数”. a . 分子和分母均为正整数; b . 分子小于分母;c . 分子、分母均为两位数,且分子的个位数字与分母的十位数字相同;d .去掉分子的个位数字与分母的十位数字后,得到的分数与原来的分数相等. 例如:1664去掉相同的数字6之后,得到的分数14恰好与原来的分数相等,则1664是一个“乐数”.(1)判断:1339___________(填“是”或“不是”)“乐数”; (2)写出一个分子的个位数字与分母的十位数字同为9的“乐数”_____________.三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分)17.计算:12+21(3)(2024)2π−⎛⎫−+ ⎪⎝−−−⎭.18.(1)已知2220x x +−=,求代数式2(2)(3)−++x x x 的值.(2)计算: 21121121x x x x x ⎛⎫+÷ ⎪−+−+⎝⎭. 19.小明用自制工具测量花瓶内底的宽.他将两根木条AC ,BD 的中点连在一起(即AO =CO ,BO =DO ),如图所示放入花瓶内底. 此时,只需测量点 与点 之间的距离,即为该花瓶内底的宽,请证明你的结论.20.如图,在△ABC 中,∠C =90°,∠A =30°.在线段AC 上求作一点D ,使得CD =12AD .小明发现作∠ABC 的平分线交AC 于点D ,点D 即为所求. (1)使用直尺和圆规,依小明的思路作出点D (保留作图痕迹); (2)完成下面的证明.证明:∵∠A =30°,∠C =90°, ∴∠ABC =_________°.∵BD 平分∠ABC ,∴∠ABD =∠CBD =12∠ABC =30°. ∴∠ABD =∠A .∴AD=_________.在Rt △BCD 中,∠CBD =30°,∴CD =12BD (____________________________________________)(填推理依据).∴CD =12AD .21. 如图所示的4×4网格是正方形网格,顶点是网格线交点的三角形称为格点三角形. 如图 1,△ABC 为格点三角形. (1)∠ABC =__________°;(2)在图2和图3中分别画出一个以点1C ,2C 为顶点,与△ABC 全等,且位置互不相同的格点三角形.22.列方程解应用题无人配送以其高效、安全、低成本等优势,正在成为物流运输行业的新趋势.某物流园区使用1辆无人配送车平均每天配送的包裹数量是1名快递员平均每天配送包裹数量的5倍.要配送6 000件包裹,使用1辆无人配送车所需时间比4名快递员同时配送所需时间少2天,求1名快递员平均每天可配送包裹多少件? 23.如图,四边形ABCD 中,AB =AC ,∠D =90°,BE ⊥AC 于点F ,交CD 于点E ,连接EA ,EA 平分∠DEF .(1)求证:AF=AD;(2)若BF=7, DE=3,求CE的长.24.小明设计了一个净水装置,将杂质含量为n的水用m单位量的净水材料过滤一次后,水中的杂质含量为1nm+. 利用此净水装置,小明进行了进一步的探究:现有杂质含量为1的水.(1)用2单位量的净水材料将水过滤一次后,水中杂质含量为_______;(2)小明共准备了6a单位量的净水材料,设计了如下的三种方案:方案A是将6a单位量的净水材料一次性使用,对水进行过滤;方案B和方案C均为将6a单位量的净水材料分成两份,对水先后进行两次过滤. 三种方案的具体操作及相关数据如下表所示:①②通过计算回答:在这三种方案中,哪种方案的最终过滤效果最好?(3)当净水材料总量为6a单位量不变时,为了使两次过滤后水中的杂质含量最少,小明应将第一次净水材料用量定为________________(用含a的式子表示).25.如图,在△ABC中,∠ACB=90°,AB=BC,作直线AP,使得45°<∠P AC<90°.过点B作BD⊥AP于D,在DA的延长线上取点E,使DE=BD. 连接BE,CE.(1)依题意补全图形;(2)若∠ABD=α,求∠CBE(用含α的式子表示);(3)用等式表示线段AE,CE,DE之间的数量关系,并证明.26.在平面直角坐标系xOy中,直线l过原点且经过第三、第一象限,l与x轴所夹锐角为n°. 对于点P和x 轴上的两点M,N,给出如下定义:记点P关于直线l的对称点为Q,若点Q的纵坐标为正数,且△MNQ 为等边三角形,则称点P为M,N的n°点.(1)如图1,若点M(2,0),N(4,0),点P为M,N的45°点,连接OP,OQ.①∠POQ=________________°;②求点P的纵坐标;(2)已知点M(m,0),N(m+t,0).①当t=2时,点P为M,N的60°点,且点P的横坐标为-2,则m=____________________;②当m=-2时,点P为M,N的30°点,且点P的横坐标为2,则t=___________________.参考答案一、选择题 (共24分,每小题3分)二、填空题(共16分,每小题2分) 9. 1x ≠; 10. ()()a a b a b +−; 11. (1,1)−; 12. 23a −; 13. 40或100; 14. 21; 15. 20; 16.(1)不是;(2)1995(答案不唯一). 三、解答题(本题共60分,第17题5分,第18题10分,第19-23题每题5分,第24题6分,第25、26题每题7分) 17.(本题满分5分)解:原式=9122−++ ………………………………………………………………4分=12 . …………………………………………………………………………5分18.(1)(本题满分5分)解:原式=22269x x x x −+++ ………………………………………………………2分 =2249x x ++. ………………………………………………………………3分∵2220x x +−=,∴222x x +=. ………………………………………………………………4分 ∴2244x x +=.∴原式=4913+=. 5分(2)(本题满分5分)解:原式=211(1)(1)(1)(1)(1)2x x x x x x xx ⎡⎤+−−+⋅⎢⎥−+−+⎣⎦ ……………………………………3分 =22(1)(1)(1)2x x x x x−⋅−+ …………………………………………………4分 =11x x −+. ………………………………………………………………5分19.(本题满分5分)解:C , D ; …………………………………………………………………………1分 理由如下:连接CD .在△COD 和△AOB 中,AD,,,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩∴△COD ≌△AOB (SAS ). …………………………………………………4分 ∴CD AB =.∴点C 与点D 的距离为该花瓶内底的宽. …………………………………5分20.(本题满分5分)解:(1)…………………………………………………2分∴点D 即为所求.(2)60; ……………………………………………………………………………3分BD ; …………………………………………………………………………4分在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.…………………………………………………………………5分21.(本题满分5分)解:(1)90; …………………………………………………………………………2分 (2)答案不唯一.…………………………………………5分22.(本题满分5分)解:设1名快递员平均每天配送包裹x 件. ……………………………………………1分依题意,得60006000254x x+=. ………………………………………………………3分 解得 150x =. …………………………………………………………4分 经检验,150x =是原分式方程的解且符合题意.答:1名快递员平均每天可配送包裹150件.…………………………………………5分23.(本题满分5分)(1)证明:∵∠D =90°, ∴AD ⊥ED .∵BE ⊥AC 于点F , EA 平分∠DEF , ∴AF =AD . …………………2分(2)解:∵BE ⊥AC 于点F ,B∴∠AFB =90°.在Rt △AFB 和Rt △ADC 中,,,AB AC AF AD =⎧⎨=⎩∴△AFB ≌△ADC (HL ). ………………………………………………3分 ∴BF =CD .∵BF =7,∴CD =7. ………………………………………………………………4分 ∵DE =3,∴CE =CD −DE =7−3=4. …………………………………………………5分24.(本题满分6分)(1)13; …………………………………………………………………………………1分(2)①114a +,()()11412a a ++; ……………………………………………………3分 ② 解:116a −+()()1151a a ++=()()()2516151a a a a +++. ∵0a >,∴250a >,()()()16151a a a +++0>.∴()()()2516151a a a a +++0>. ∴116a +>()()1151a a ++. 同理,可得()()1151a a ++>()()11412a a ++. ∴()()11412a a ++<()()1151a a ++<116a+. ∴方案C 的最终过滤效果最好. ………………………………………………5分 (3)3a. …………………………………………………………………………………6分 25.(本题满分7分) (1)依题意补全图形…………………………………………………………1分(2)解:∵BD ⊥AP 于D ,∴∠BDE =90°. ∵BD =DE ,∴∠DBE =∠DEB =45°. ∵∠ABD =α,∴∠ABE =∠DBE −∠ABD =45°−α. ∵∠ABC =90°,∴∠CBE =∠ABC −∠ABE =45°+α.…………………………………………………3分 (3)AE+CE=2DE . ……………………………………………………………………4分 证明:如图,在AD 延长线上取点F ,使DF=AD ,连接BF . ∵BD ⊥AP ,AD=DF , ∴BA=BF . ∴∠FBD =∠ABD =α. ∵∠DBE =45°, ∴∠EBF =∠DBE+∠DBF =45°+α. ∴∠EBF =∠CBE . ∵AB=BC , ∴BF=BC . ∵BE=BE ,∴△BEF ≌△BEC (SAS ). ∴FE =CE.∵AE =DE −AD , CE =FE =DE+DF , AD =DF ,∴AE+CE =2DE. ………………………………………………………………………7分 26.(本题满分7分)(1)①∠POQ =30°; ………………………………………………………………………1分 ②解:过点P 作P A ⊥y 轴于A ,过点Q 作QB ⊥x 轴于B , ∴∠P AO =∠QBO =90°.∵点P 为线段MN 的45°点,∴PO =QO ,∠AOC =∠BOC =45°,∠POC =∠QOC . ∴∠AOP =∠BOQ . 在△OP A 和△OQB 中,PAO QBO AOP BOQ OP OQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△OP A ≌△OQB (AAS ). ∴AO =BO .E DCBAPBAC .E FDB A P∵△MNQ是等边三角形,点M(2,0),点N(4,0),∴OM=MN=2.∵QB⊥MN,∴112BM MN==.∴AO=BO=3.∴P点纵坐标为3. ………………………………………………………………………4分(2)①m=6;………………………………………………………………………5分②t=3或t=-6.………………………………………………………………………7分。
2023北京朝阳区初二上期末考数学试卷及答案

北京市朝阳区2022~2023学年度第一学期期末检测八年级数学试卷(选用)2022. 12 学校(考试时间90分钟满分100分)班级姓名考号考1.本试卷共6页。
在试卷和答题卡上准确填写学校名称、班级、姓名和考号。
生2.试题答案一律填涂或书写在答题卡上,在试卷上作答尤效。
须3.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
知4.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(共24分,每小题3分)第1-8题均有四个选项,符合题意的选项只有一个.1.下列长度的三条线段,能组成三角形的是(A)3,4,5(8)2,5,8 (C )S ,5,10(D)l ,6,72.利用细菌做生物杀虫剂,可以减轻对环境的污染,苏云金杆菌就是其中一种,其长度大约为0.000004 6m ,将0.000004 6用科学记数法表示应为(A )46x l0-7(B )4.6x l 0-7(C )0.46xl 0-6 3.下列四个轴对称图形中,只有一条对称轴的图形是(D )4.6x l0-6 等腰三角形(A )4.下列计算正确的是等边三角形(B ) 长方形(C) 正五边形(D ) (A)a 2 ·a=2a3 (B)(a 2)3=a 6 (C )(ab)2=ab 2 (D )a 8+a 2=a4 5.如图,在!::,.ABC 中,AD 是高,AE是中线,若AD=3, S LABC = 6,则BE的长为(A )1(B )—32(C )2(D )46.正六边形的每个内角的度数为B A c(A)60° (B)108° (C) 120° (D )150° 八年级数学试卷第1页(共6页)7.如图,AB=AC,下列条件心LB=LC;@LAEB=L ADC;@AE=AD;@BE=CD中,若只添加一个条件就可以证明6.ABE 兰6.ACD,则所有正确条件的序号是A 心@B心@)C 心@@D (2)@@ B A c8.如图,0是射线CB 上一点,L AOB=60°,OC=6cm,动点P从点C 出发沿射线CB以2cm/s的速度运动,动点Q从点0出发沿射线OA以lcm/s 的速度运动,点P ,Q同时出发,设运动时间为t s ,当L.P OQ 是等腰三角形时,t的值为A) 2B2或6C 4或6D 2或4或6二、填空题(共24分,每小题3分)1 9.若分式有意义,则实数x的取值范围是x-310.我国平均每平方千米的陆地上,一年从太阳得到的能量相当于燃烧l.3X 10汀煤所产生A Q C P OB 的能最,北京陆地面积约是1.6Xl04km 2,则在北京陆地上,一年内从太阳得到的能址相当千燃烧t煤所产生的能址11.计算:矿b • ab-1 =12.如图是山射线AB,BC,CD,D E,EF,FA组成的平面图形,则LI+L 2+ L 3+ L 4+ L 5+ L 6 。
八年级上册期末考试数学试卷含答案(共5套,深圳市)

广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。
2023—2024学年最新人教新版八年级上学期数学期末考试试卷(含答卷)

2023—2024学年最新人教新版八年级上学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图形是轴对称图形的是()A.B.C.D.2、北京2022年冬奥会上的“雪花”图案向世界展现了一起向未来的美好愿景.单个“雪花”的质量约为0.00000024千克.将0.00000024用科学记数法表示正确的是()A.﹣2.4×108B.2.4×10﹣7C.﹣2.4×107D.2.4×10﹣83、下列长度的三根小木棒能构成三角形的是()A.7cm,4cm,2cm B.5cm,5cm,6cmC.3cm,4cm,8cm D.2cm,3cm,5cm4、如果把分式中的x,y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.不变D.扩大6倍5、三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是()A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形6、若(x+a)(x﹣6)的积中不含有x的一次项,则a的值为()A.0B.6C.﹣6D.﹣6或07、如图,AC和BD相交于O点,若OA=OD,不能证明△AOB≌△DOC的是()A.AB=DC B.OB=OC C.∠A=∠D D.∠B=∠C8、如图,在等边△ABC中,AB=4cm,BD平分∠ABC,点E在BC的延长线上,且∠E=30°,则CE的长是()A.1cm B.2cm C.3cm D.4cm9、已知,则分式的值为()A.8B.C.D.410、如图,已知在等边△ABC中,AD⊥BC,AB=8,若点P在线段AD上运动,当AP+BP有最小值时,最小值为()A.B.C.10D.12第7题图第8题图第10题图二、填空题(每小题3分,满分18分)11、因式分解:2a2﹣8=.12、一个正多边形的每个内角为135°,则这个正多边形的边数为.13、在平面直角坐标系中,点A(a﹣2,2a+3)到y轴的距离为4,则a的值为.14、已知a m=2,a n=3(m,n为正整数),则a3m+n=.15、若关于x的分式方程+2的解为正数,则m的取值范围是.16、如图所示,AC平分∠BAD,∠B+∠D=180°,CE⊥AD于点E,AD=10cm,AB=7cm,那么DE的长度为cm.最新人教新版八年级上学期数学期末考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、先化简,再求值:,其中x=2.19、已知实数m,n满足m+n=6,mn=﹣3.(1)求(m﹣2)(n﹣2)的值;(2)求m2+n2的值.20、如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案)A1B1C1(3)求△ABC的面积.21、已知在△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,求证:△CDE是等腰三角形;(2)如图2,若DE平分∠ADC交AC于E,∠ABC=30°,在BC边上取点F使BF=DF,若BC=12,求DF的长.22、甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过 5.2万元,甲工程队至少修路多少天?23、如图,在等腰Rt△ABC中,∠C=90°,BC=AC=8,点F是AB边上的中点,点D、E分别在线段AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化的过程中.(1)求证:△DFE是等腰三角形;(2)求证:∠DFE=90°;(3)在点D、E运动的过程中,四边形CDFE的面积是否为定值,如果是,请求出这个定值,如果不是,请说明理由.24、我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+e2﹣ab﹣bc﹣ac+2t的最小值.25、如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD,CE平分∠OCD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,CE平分∠OCD,若点C的坐标为(4,3),连接AC 交BD于点E,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.。
人教版八年级上数学期末考试试卷(6套)

人教版第一学期期末考试八年级数学试卷题号 一二三 四 五 六 七 八 总分 累分人得分一、精心选一选(请将下列各题唯一正确的选项代号填在题后的括号内.本大题共10小题,每小题3分,共30分.)1、下列运算中,计算结果正确的是 ( )A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2、在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第四象限B. 第三象限C.第二象限D. 第一象限 3、化简:a+b-2(a-b)的结果是 ( ) A.3b-a B.-a-b C.a+3b D.-a+b 4、如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、 E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm 5、下列多项式中,不能进行因式分解的是 ( ) A. –a 2+b 2 B. –a 2-b 2 C. a 3-3a 2+2a D. a 2-2ab+b 2-16、小明家下个月的开支预算如图所示,如果用于衣服上的支是200元,则估计用于食物上的支出是 ( ) A. 200元 B. 250元 C. 300元 D. 350 7、下列函数中,自变量的取值范围选取错误..的是 ( )A .y=2x 2中,x 取全体实数B .y=11x +中,x 取x ≠-1的实数 C .y=2x -中,x 取x ≥2的实数 D .y=3x +中,x 取x ≥-3的实数8、下面有4个汽车标致图案,其中是轴对称图形的是 ( )①② ③ ④A 、②③④B 、①②③C 、①②④D 、①②④9、等腰三角形的一个内角是50°,则这个三角形的底角的大小是 ( )A .65°或50°B .80°或40°C .65°或80°D .50°或80°得分阅卷人食物30%教育22%衣服20%其他28%图2AB C FED的过程中,如果水减少的体积是y ,水位下降的高度是x ,那么能够表示y 与x 之间函数关系的图象可能是 ( )A B C D二、耐心填一填(本大题共6小题,每小题4分,共24分.)11、32c ab -的系数是 ,次数是 。
初二数学上学期期末试卷(附答案)

A. SSSB. SASC. ASAD. AAS初二数学上学期期末试卷(附答案)一、选择题(本题共36分,每小题3分)在下列各题的四个备选答案中,只有一个符合题意.请将正确选项前的字母填在表格中相应的位置.• ♦ 1 .下列标志是轴对称图形的是◎嫩泮WABCD2. PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把数字0.000 002 5用科学记数法表示为5 .如图,A ABC"DCB,若 AC=7, BE=5,则 DE 的长为A. 2B. 3C. 4D, 56 .在平面直角坐标系中,己知点A (2, 〃])和点8 (〃,—3)关于X 轴对称,则,〃 +〃的值是 A. -1B. 1C. 5D. -57 .工人师傅常用角尺平分一个任意角.做法如下:如图,NAO8是一个任意 角,在边。
4, 08上分别取OM=ON,移动角尺,使角尺两边相同的刻度 • ♦分别与点M, N 重合,过角尺顶点C 作射线OC.由此作法便可得△ MOC^h NOC,其依据是A. 2.5xlO 6B. 0.25x10^3 .使分式二一有意义的x 的取值范围是 x-3A. XH 3B. x>34 .下列计算中,正确的是C. 25XW 6D. 2.5X10-6C. x<3D.x = 312 .如图,等腰三角形ABC 的底边BC 长为4,面积是16,腰AC 的 垂直平分线EF 分别交AC, AB 边于E, F 点.若点D 为BC 边 的中点,点M 为线段EF 上一动点,则△ CQM 周长的最小值为 A. 6 B. 8D. 12二、填空题(本题共24分,每小题3分) 13 .当工= ____________ 时,分式」-值为0.x-1 14 . 分解因式:x 2y-4y =.15 .计算:一/Y =.3力16 .如果等腰三角形的两边长分别为3和7,那么它的周长为17 .如图,DEA.AB, ZA=25°, ZD=45°,则NAC8 的度数为18 .等式9 +方尸=]+从成立的条件为8 .下列各式中,计算正确的是 A. x(2x - 1) = 2.v* - 1B.-; --- = -----丁-9 x-3C. (。
2023北京西城初二(上)期末数学及答案

北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第1页(共7页)北京市西城区2022—2023学年度第一学期期末试卷八年级数学 2023.1第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.以下是用电脑字体库中的一种篆体写出的“诚信友善”四字,若把它们抽象为几何图形,从整体观察(个别细微之处的细节可以忽略不计),其中大致是轴对称图形的是(A )(B )(C )(D )2.地处北京怀柔科学城的“北京光源”(HEPS )是我国第一台高能同步辐射光源,在施工时严格执行“防微振动控制”的要求,控制精度级别达到纳米(nm )级. 1nm 0.000 000 001m .将0.000 000 001用科学记数法表示应为(A )8110 (B )9110 (C )101010(D )80.1103.下列运算正确的是(A )22a a a(B )325()a a(C )555()ab a b(D )33(3)9a a4.下列长度的三条线段能组成三角形的是(A )5,5,5 (B )5,5,10 (C )5,6,12 (D )3,4,7注意事项1.本试卷共7页,共两部分,四道大题,26道小题。
其中第一大题至第三大题为必做题,满分100分。
第四大题为选做题,满分10分,计入总分,但卷面总分不超过100分。
考试时间100分钟。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将考试材料一并交回。
北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第2页(共7页)5.在右图中,∠1=∠2,AB ∥CD ,AB=AC=AE=CD .有下列结论:①把△ABC 沿直线AC 翻折180°,可得到△AEC ;②把△ADC 沿线段AC 的垂直平分线翻折180°,可得到△AEC ; ③把△ADC 沿射线DC 方向平移与DC 相等的长度,可得到△ABC . 其中所有正确结论的序号是 (A )①②(B )①③(C )②③(D )①②③6.下列各式从左到右的变形正确的是(A )623a a a b b(B )33a cc a(C )23193a a a(D )2293693a a a a a7.图1所示的是一把木工台锯时使用的六角尺,它能提供常用的几种测量角度.在图2的六角尺示意图中,x 的值为(A )135(B )120 (C )112.5(D )1128.如图,在Rt △ABC 中,∠ACB=90°,∠B 的度数为α.点P 在边BC 上(点P 不与点B ,点C 重合),作PD ⊥AB 于点D ,连接P A ,取P A 上一点E ,使得在连接ED ,CE 并延长CE 交AB 于点F 之后,有EC =ED =EA=EP . 若记∠APC 的度数为x ,则下列关于∠DEF 的表达式 正确的是(A )23DEF x (B )2DEF (C )2DEF x(D )1803DEF第二部分 非选择题二、填空题(共16分,每题2分)9. 计算:(1)23 = ;(2)0(6) = . 10.若分式15x 有意义,则字母x 满足的条件是 . 11.分解因式:3312m m = .12.在平面直角坐标系xOy 中,(4,3)A 关于x 轴对称的点的坐标为 .图1 图2北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第3页(共7页)13.如图,在四边形ABDC 中,60ABD ,90D ,BC 平分ABD ,AB=3,BC= 4.(1)画出△ABC 的高CE ; (2)△ABC 的面积等于 .14.小王读到关于京唐城际铁路的新闻报道后,搜集该线路的相关信息制作了下表,表中两个区间段(线路的一部分)运行时相应所用的时间1t 比2t 约少0.09 h ,那么可列出 关于v 的方程为 .15.三个长方形纸片如图1所示无缝隙地拼接在一起,它们的边长分别标记在图1中.现将拼接后的纸片用图2所示方式重新分割成三个长方形A ,B ,C .根据图2与图1的关系写出一个等式: (用含a ,b ,c ,d ,e ,f 的式子表示).16.如图,在△ABC 中,AC=BC ,∠ACB=50°,AD ⊥BC于点D ,MC ⊥BC 于点C ,MC =BC .点E ,点F 分别在线段AD ,AC 上,CF=AE ,连接MF ,BF ,CE . (1)图中与MF 相等的线段是 ; (2)当BF CE 取最小值时∠AFB= °.三、解答题(共68分,第17题9分,第18题7分,第19-21题,每题8分,第22题9分,第23题10分,第24题9分)17.计算:(1)24(2)x x y ; (2)(31)(2)x x ; (3)232(1612)4a bc a a .18.已知12a,求代数式22+1+1(+a a a a a 的值. 图1 图2北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第4页(共7页)19.解方程:2 + 1 =1x x x . 20.如图,A ,D 两点在BC 所在直线同侧,AB ⊥AC ,BD ⊥CD ,垂足分别为A ,D .AC ,BD 的交点为E ,AB =DC . 求证:BE=CE .21.如图,在平面直角坐标系xOy 中,△ABC ,(2,6)A ,(5,1)B ,(3,1)C .点B 与点C关于直线l 对称,直线l 与BC ,AC 的交点分别为点D ,E .(1)求点A 到BC 的距离;(2)连接BE ,补全图形并求△ABE 的面积; (3)若位于x 轴上方的点P 在直线l 上,∠BPC =90°,直接写出点P 的坐标. 22.(1)设计作平行线的尺规作图方案:已知:直线AB 及直线AB 外一点P . 求作:经过点P 的直线CD ,使得CD ∥AB . 分析:如图1所示,之前我们学过“推”三角尺画平行线,这种画法的实物操作图可以启发我们预设目标示意图,分析尺规作图思路.①请参考以上内容完成尺规作图,保留作图痕迹,不必写作法;②在①中用到的判定CD ∥AB 的依据是 . (2)已知:如图,在△ABD 中,∠BAD=90°,AB=AD.求作:凸四边形ABCD ,使得BC=AB ,且△ACD为等腰三角形.请完成尺规作图并写出所求作的四边形,保留作图 痕迹,不必写作法.作图思路分析: 利用平行线的判定可将作平行线转化为作一个角等于已知角.为简化作图,我们让截线EF 经过点P ,即过点P 任意作一条直线EF 交直线AB 于点G ,目标:作∠EGB 的同位角∠EPD .现已有该角的顶点P ,角的一边PE ,再作出角的另一边PD ,即可得到∠EPD 从而得到平行线.目标示意图: 实物操作图: 图1 图2北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第5页(共7页)23.在△ABC 中,AB=AC (AB <BC ),在BC 上截取BD=AB ,连接AD .在△ABC 的外部作∠ABE=∠DAC ,且BE 交DA 的延长线于点E . (1)作图与探究:①小明画出图1并猜想AE=AC .同学小亮说“要让你这个结论成立,需要增加条件:∠ABC= °.” 请写出小亮所说的条件;②小明重新画出图2并猜想△ABE ≌△DAC .他证明的简要过程如下:请你判断小明的证明是否正确并说明理由;(2)证明与拓展:①借助小明画出的图2证明BE=DE ;②延长AD 到F ,使DF=AE ,连结BF ,CF .补全图形,猜想∠BFE 与∠AFC 的数量关系并加以证明.小明的证明:在△ABE 与△DAC 中,,,,ABE DAC AB AC BAE ADC可得△ABE ≌△DAC .(ASA)图1 图2 备用图北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第6页(共7页)24.在单位长度为1的正方形网格中,如果一个凸多边形的顶点都是网格线交点,我们称其为格点凸多边形,并记该格点多边形的面积为S ,多边形内部的格点数为N ,多边形边上的格点数为L .(1)对于图中的五个凸多边形,补全以下表格:(2)借助以上表格猜想格点凸多边形的面积公式: S 与2LN的数量关系可用等式表示为 ;(3)已知格点长方形ABCD ,设其边长AB=m ,BC=n ,其中m ,n 为正整数.请以格点长方形ABCD 为例,尝试证明(2)中的格点凸多边形的面积公式.北京市西城区2022—2023学年度第一学期期末试卷 八年级数学 第7页(共7页)四、选做题(共10分,每题5分) 25.阅读两位同学的探究交流活动过程:a .小明在做分式运算时发现如下一个等式,并对它进行了证明.+2+1113223x x x x x x ;① b .小明尝试写出了符合这个特征的其他几个等式:+3+2114334x x x x x x ;② +4+3115445x x x x x x ;③ +5+4116556x x x x x x ;④ ……c .小明邀请同学小亮根据上述规律写出第⑤个等式和第n 个等式(用含n 的式子表示,n 为正整数);d .小亮对第n 个等式进行了证明. 解答下列问题:(1)第⑤个等式是 ; (2)第n 个等式是 ; (3)请你证明第n 个等式成立.26.在平面直角坐标系xOy 中,对于点P ,点M 给出如下定义:如果点P 与原点O 的距离为a ,点M 与点P 的距离是a 的k 倍(k 为整数),那么称点M 为点P 的“k 倍关联点” .(1)当1(1.50)P ,时, ① 如果点1P 的2倍关联点M 在x 轴上,那么点M 的坐标为 ;② 如果点()M x y ,是点1P 的k 倍关联点,且满足 1.5x ,35y ≤≤,那么 整数k 的最大值为 ;(2)已知在Rt △ABC 中,∠ABC=90°,∠ACB=30°,(,0)A b ,(1,0)B b .若2(1,0)P ,且在△ABC 的边上存在点2P 的2倍关联点Q ,求b 的取值范围.北京市西城区2022—2023学年度第一学期期末试卷 八年级数学答案及评分参考 第1页(共5页)北京市西城区2022—2023学年度第一学期期末试卷八年级数学答案及评分参考 2023.1一、选择题(共16分,每题2分) 题号 1 2 3 4 5 6 7 8 答案DBCAADCB二、填空题(共16分,每题2分) 9. (1)19;(2)1 10.5x ≠ 11.3(2)(2)m m m +- 12.(4,3)-13.(1)画图见图1;(2)3 14.47.8870.0967v v += 15.()()()()a d e a b e f a b c f ad be cf -++-+++=++16.(1)三、解答题(共68分,第17题9分,第18题7分,第19-21题,每题8分,第22题9分,第23题10分,第24题9分)17.解:(1)234(2)=8x x y x y ⋅--;…………………………………………………………3分(2)22(31)(2)=362352x x x x x x x -++--=+-; ……………………………6分 (3)232(1612)4=43a bc a a bc a -÷-.…………………………………………… 9分18.解: 22+1+1(+)a a a a a÷ 22+21+1a a a a a +=⨯…………………………………………………………………2分 22(+1)+1a a a a =⨯(+1)a a =.………………………………………………………………………… 5分北京市西城区2022—2023学年度第一学期期末试卷 八年级数学答案及评分参考 第2页(共5页)当12a =-时, 原式11(+1)22=-⨯- ………………………………………………………………6分111=224-⨯=-.……………………………………………………………7分 19.2 + 1 =1xx x -.解:方程两边乘 (1)x x -,得 22(1)+(1)=x x x x --.…………………………………… 4分解得 2x =.…………………………………………………………………………… 6分 检验:当2x =时,(1)0x x -≠.所以,原分式方程的解为 2x =. …………………………………………………… 8分 20.证明:如图3.∵ AB ⊥AC ,BD ⊥CD ,垂足分别为A ,D ,∴ ∠A =90°,∠D =90°.∴ ∠A=∠D . ……………………………………2分 在△ABE 和△DCE 中,,,,A D AEB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩……………………………5分 ∴ △ABE ≌△DCE .…………………………… 6分 ∴ BE=CE .……………………………………… 8分21.解:(1)作AF ⊥BC 于点F ,则∠AFC=90由 (2,6)A -,(5,1)B -,(3,1)C , 可得 5A C AF yy =-=. ∴ 点A 到BC 的距离为5.……………………… 2分(2)补全图形见图4.……………… 3分由(2,6)A -,(5,1)B -,(3,1)C , 可得8BC =,5C A CF x x =-=. ∴ AF CF =.…………………4分∴ ∠C=∠CAF . ∴ 在Rt △ACF 中,180452AFCC ︒-∠∠==︒.…………………………………………… 5分由题意可知,直线l 是线段BC 的垂直平分线,DE ⊥BC 于点D ,BD=CD .北京市西城区2022—2023学年度第一学期期末试卷 八年级数学答案及评分参考 第3页(共5页)∴ (1,1)D -,BE=CE . ∴ 180290BEC C ∠=︒-∠=︒. ∴ △BCE 为等腰直角三角形,=452BECDEC ∠∠=︒. ∴ DEC C ∠=∠. ∴ 42BCDE DC ===. ∴ 11422ABE ABC BEC S S S BC AF BC DE =-=⨯⨯-⨯⨯= .…………… 7分 (3)(1,5)-.……………………………………………………………………… 8分22.解:(1)①作图见图5.……………………………………………………………… 3分②同位角相等,两直线平行.……………………………………………… 5分 (2)作图见图6.23.解:(1)①36.……………………………………………………………………………1分②小明的证明不正确.他证明时所使用的△DAC 中的三个条件“∠DAC ,AC , ∠ADC ”不是“两角和它们的夹边”的关系,不能使用“ASA ”来证明.…………………………………………………………………………3分(2)①证明:如图7.∵ AB=AC , ∴ ∠3=∠C .∵ 13DBE ∠=∠+∠,42C ∠=∠+∠,∠1=∠2, ∴ ∠DBE =∠4.∴ BE =DE .………………………………………………………… 5分北京市西城区2022—2023学年度第一学期期末试卷 八年级数学答案及评分参考 第4页(共5页)②补全图形见图8.…………………………………………………………… 6分 ∠BFE =∠AFC .………………………………………………………………7分 证明:作BG ⊥EF 于点G ,如图9.∵ AE = DF ,∴ AE AD DF AD +=+,即DE=AF . ∵ BE=DE ,∴ BE= AF .在△ABE 与△CAF 中,,12,,BE AF BA AC =⎧⎪∠=∠⎨⎪=⎩∴ △ABE ≌△CAF . ∴ ∠E =∠5.①∵ BA=BD ,BG ⊥EF 于点G , ∴ DG=AG . ∵ DF = AE ,∴ DG DF AG AE +=+,即FG=EG . 又∵ BG ⊥EF 于点G , ∴ BE=BF . ∴ ∠6=∠E .②由①②得∠6=∠5,即∠BFE =∠AFC .……………………………10分24…………………………4分北京市西城区2022—2023学年度第一学期期末试卷 八年级数学答案及评分参考 第5页(共5页)(2)12LS N =+-.…………………………………………………………………6分 (3)证明:格点长方形ABCD 内部的格点数(1)(1)N m n =--,………………7分边上的格点数2(1)2(1)2()L m n m n =++-=+. ………………… 8分 2()1(1)(1)122L m n N m n ++-=--+- []()1()1mn m n m n mn =-++++-=.∵ 格点长方形ABCD 的面积S mn =, ∴ 格点长方形ABCD 的面积12LS N =+-.…………………… 9分 四、选做题(共10分,每题5分) 25.解:(1)65117667x x x x x x ++-=-++++.…………………………………………………1分 (2)1112112x n x n x n x n x n x n +++-=-++++++++.…………………………………3分 (3)证明: 1(2)1(1)12121x n x n x n x n x n x n x n x n +++++-++--=-++++++++ 1111(1)(12112x n x n x n x n =---=-++++++++. 所以 1112112x n x n x n x n x n x n +++-=-++++++++.……………………5分 26.解:(1)①( 4.5,0)-,(1.5,0).……………………………………………………… 2分② 3.………………………………………………………………………… 3分 (2)∵ (,0)A b ,(1,0)B b +,∴ AB=1.∵ 点Q 为点2P 的2倍关联点,2(1,0)P -, ∴ 2222QP OP ==.∴ b 的取值范围是4-≤b ≤3-或1-≤b ≤1.…………………………… 5分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期初二数学期末试卷4
一.选择题(每小题3分,共30分)
1.下列各式由左边到右边的变形中,是分解因式的为( )。
A 、a (x + y) =a x + a y
B 、x 2-4x+4=x(x -4)+4
C 、10x 2-5x=5x(2x -1)
D 、x 2-16+3x=(x -4)(x+4)+3x
2.下列运算中,正确的是( )。
A 、x 3·x 3=x 6
B 、3x 2÷2x=x
C 、(x 2)3=x 5
D 、(x+y 2)2=x 2+y 4
3.下列图形中,不是轴对称图形的是( )。
4
.已知△ABC 的周长是24
,且AB=AC ,又AD ⊥BC ,D 为垂足,若△ABD 的周长是20,则AD 的长为( )。
A 、6
B 、8
C 、10
D 、12
5.如图,是某校初二学生到校方式的条形统计图,根据图形可得出步行人数占总人数的(
)。
A 、20%
B 、30%
C 、50%
D 、60%
6. 一次函数y =-3x +5的图象经过( ) A 、第一、三、四象限 B 、第二、三、四象限
C 、第一、二、三象限
D 、第一、二、四象限 7.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( )。
A 、14
B 、16
C 、10
D 、14或16 8.已知m 6x =,3n x =,则2m n x -的值为( )。
A 、9
B 、
43 C 、12 D 、34
9.已知正比例函数y kx = (k ≠0)的函数值y 随x 的增大而减小,则一次函数 y=x +k 的图象大致是( ).
x
y
O A
x
y O
B
x
y
O
C
x y O
D
10.直线与1y x =-两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC
A B C D (第5题图)
为等腰三角形,则满足条件的点C 最多有( )。
A 、4个
B 、5个
C 、7个
D 、8个
二.填空题 (每小题3分,共30分) 11.三角形的三条边长分别为3cm 、5cm 、x cm ,则此三角形的周长y(cm) 与x(cm)的函数关系式是 。
12.一个汽车牌在水中的倒影为 ,则该车牌照号码____________。
13.在“线段、锐角、三角形、等边三角形”这四个图形中,其中是轴对称图形的有 个,其中对称轴最多的是 。
14. 已知点A (l ,-2) ,若A 、B 两点关于x 轴对称,则B 点的坐标为________。
15.分解因式3322x 2y x y xy -+= 。
16.若函数y =4x +3-k 的图象经过原点,那么k = 。
17.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 。
18. 多项式142+a 加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项
式可以是___________。
(填上一个你认为正确的即可)
19.已知x +y =1,则2211
22
x xy y ++= 。
20.如图EB 交AC 于M ,交FC 于D ,AB 交FC 于N ,∠E =∠F =90°,∠B =∠C ,AE =AF 。
给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ;④CD=DN 。
其中正确的结论有 (填序号) 三、简答题:(共6题,共60分) 21.化简(每题5分,共10分)
(1))22(4)25(2
2
a a a +-+; (2))1)(1(52
-+x x x
22. 分解因式(每题5分,共10分)
(1) 416a - (2) 2229x xy y -+-
M
N A
B
C
D
E F
1 2。