玻璃应力测定
玻璃应力仪原理

玻璃应力仪原理
玻璃应力仪是一种用于测量玻璃内部应力的仪器。
其原理基于光学折
射和双折射现象。
首先,将被测玻璃样品放置在玻璃应力仪的工作台上。
然后,通过一
个光源发出的光线经过一系列透镜和偏振片后,射向样品表面。
当光
线穿过玻璃时,它会发生折射和双折射现象。
这些现象会导致光线的
振动方向发生变化,并且在样品内部形成一个复杂的干涉图案。
接下来,通过移动一个检测器来扫描干涉图案,并记录下每个点处的
干涉条纹数。
这些数据可以被用来计算出每个点处的相位差异,从而
得到样品内部应力分布情况。
具体地说,当光线穿过受压应力区域时,其传播速度会变慢,并且振
动方向也会发生改变。
相反地,当光线穿过拉伸应力区域时,则传播
速度加快,并且振动方向也会有所变化。
因此,在不同位置处记录下
的干涉条纹数就可以反映出样品内部应力的大小和方向。
总之,玻璃应力仪通过光学干涉原理,利用光线在玻璃中的传播速度
和振动方向变化来测量玻璃内部应力。
该仪器具有高精度、高分辨率、非接触式等优点,被广泛应用于玻璃制造、加工和质量控制等领域。
玻璃瓶内应力标准

玻璃瓶内应力的测试和评估通常遵循特定的国家或国际标准。
在中国,相关的国家标净是《药用玻璃容器内应力检验方法》,该标准规定了药用玻璃容器内应力的测定方法。
此标准涵盖了内应力的检测原理、试验设备、样品准备、试验步骤、结果计算以及评价标准等内容。
此外,国际上也有类似的标准,《玻璃容器-内应力的测定-偏光应力法》,该标准描述了使用偏光应力法测定玻璃容器内应力的方法。
这些标准旨在确保玻璃瓶的质量和安全性,特别是在药用和食品包装领域。
通过对内应力的测试,可以评估玻璃瓶是否具有足够的机械强度和耐热冲击性,以防止在使用过程中破裂,保证产品的安全性。
在设计和制造玻璃瓶时,必须遵守这些标准,并通过适当的检测手段来验证产品的内应力水平是否符合要求。
玻璃应力测试原理及作用

玻璃应力测试原理及作用玻璃是一种常见的材料,广泛应用于建筑、家具、电子设备等领域。
为了确保玻璃的质量和安全性,我们需要进行应力测试。
本文将介绍玻璃应力测试的原理及其作用。
玻璃应力测试是通过对玻璃进行力学测试,以确定玻璃内部的应力分布情况。
这对于评估玻璃的强度和稳定性至关重要。
下面我们将详细介绍应力测试的原理和作用。
原理:玻璃应力测试主要基于玻璃的弹性性质。
当外力施加在玻璃上时,玻璃会发生弹性变形。
通过测量玻璃上的应变,可以计算出玻璃的应力。
应力测试通常使用压力传感器或光学方法来测量玻璃上的应变。
作用:1. 质量控制:玻璃应力测试可以帮助检测玻璃制品中的内部应力分布情况。
这对于确保产品的质量非常重要。
如果玻璃内部存在过高的应力,可能会导致玻璃破裂或损坏。
通过应力测试,可以及早发现问题并采取相应措施。
2. 安全评估:应力测试可以评估玻璃的强度和稳定性,从而确保玻璃在使用过程中不会发生意外事故。
例如,在建筑领域,应力测试可以帮助评估玻璃幕墙的抗风压能力,确保建筑物在强风环境下的安全性。
3. 材料改进:通过应力测试,可以评估不同材料及制造工艺对玻璃应力分布的影响。
这有助于改进材料的制造工艺,优化产品的质量和性能。
4. 研究和开发:应力测试为研究人员提供了了解玻璃行为和性能的重要手段。
通过测试不同条件下玻璃的应力分布,可以深入了解玻璃的力学特性,并为新型玻璃材料的研发提供参考。
总结:玻璃应力测试通过测量玻璃上的应变,来确定玻璃内部的应力分布情况。
这对于评估玻璃的质量和安全性至关重要。
应力测试可以帮助进行质量控制,评估玻璃的强度和稳定性,改进材料制造工艺,并为研究和开发提供基础数据。
通过应力测试,我们可以更好地了解玻璃的性能和行为,确保玻璃在各个领域的应用安全可靠。
钢化玻璃表面应力和钢化层深度测试方法

钢化玻璃表面应力和钢化层深度计算方法1).调整测试仪,直到能够看到清晰的干涉条纹,并且视野内的上半部和下半部均有清晰条纹出现。
2).从显微镜镜头,分别读取干涉线A1、B1、C1和A2、B2、C2的位置,其中C1、C2位于明亮和黑暗区域的交界,如下图所示;在比例尺上的每个刻度代表0.1mm,在刻度盘上的每个刻度代表0.01mm,在视野内,A1、A2距离较远,B1、B2则在相邻位置,C1、C2则大概在同一位置,注意干涉带有可能叠加在C1、C2干涉线上3).Y1、Y2线为于A1、A2线的左边,它们距离A1、A2的距离分别等于A1和B1之间,A2、和B2之间距离的90%。
※表面应力值P(MPa)=K2×(Y1-Y2)其中K1:0.00078 (仪器灵敏度常数)C:材料光弹性常熟(nm/cm)/(MPa)K2:K1/C(MPa)/(mm)钢化层厚度计算:※表面应力层厚度(um)=0.26×N/√(no-ns)其中N:显微镜视野的下半部,A1和C1之间的干涉条纹数。
no:玻璃表面折射率ns:玻璃内部折射率no-ns=K1×(Y1-C1)一般浮法玻璃光弹性系数 C为:26.5计算举例:A1读数为:5.18㎜A2读数为:4.37㎜ B1读数为:4.26㎜ B2读数为:3.95㎜C1读数为:2.56㎜C2读数为:2.56㎜ N=8.5条Y1位置:(A1-B1)×0.9+A1=Y1→(5.18-4.26) ×0.9+5.18=6.01Y2位置:(A2-B2)×0.9+A2=Y2→(4.37-3.95) ×0.9+4.37=4.75C:试样光弹性常数=26.5(nm/cm)/(MPa)K2=0.00078÷26.5=294 (MPa) /(mm)※表面应力(MPa)=K2 × Y1Y2 (mm) =294 × (6.01-4.75)=294 × 1.26 =370.44(MPa)N O-N S=0.00078 × (Y1-C1)=0.00078 × (6.01-2.56) =0.00269(mm)※应力层厚度(μm)=0.265 × N÷√(N O-N S)=0.265 × 8.5 ÷√0.00269=0.265 × 8.5 ÷0.0519=43.4 (μm)。
玻璃应力值标准

玻璃应力值标准导言玻璃作为一种常见的建筑和工业材料,在各种应用场景中扮演着重要的角色。
然而,由于其特殊的物理性质,玻璃内部往往存在着应力值。
本文将介绍玻璃应力值的概念、产生原因以及相关的标准。
玻璃应力值概述玻璃应力值是指玻璃内部存在的应力值。
玻璃制品制备过程中,由于温度变化,玻璃会快速冷却,从而导致玻璃内部出现不均匀的应力分布。
这些应力值可能会对玻璃性能产生重大影响,例如降低强度、影响透明度等。
玻璃应力值产生原因玻璃应力值的产生原因主要有以下几个方面:1. 制备过程中的温度变化玻璃制备过程中涉及到高温加热和急速冷却,这种温度变化会导致玻璃内部出现应力分布不均匀的情况。
2. 结构不均匀性玻璃材料本身的结构不均匀性也是导致应力值产生的原因。
玻璃内部的不均匀结构会使应力分布不平衡。
3. 成型和制备工艺玻璃制备过程中的成型和制备工艺也会对玻璃内部的应力值产生影响。
不同的工艺可能会导致不同的应力分布情况。
相关标准为了确保玻璃制品的质量和安全性,国际上制定了一系列的玻璃应力值标准。
以下是一些常见的标准:1. ISO 1288ISO 1288是国际标准化组织发布的玻璃和玻璃制品的应力标准。
该标准主要描述了应力的测量方法和分级标准。
2. ASTM C336ASTM C336是美国材料和试验协会制定的玻璃弯曲应力的标准方法。
该标准针对不同类型的玻璃制品制定了测试方法和标准。
3. JIS R1601JIS R1601是日本工业标准制定的玻璃应力值标准。
该标准规定了钢化玻璃的最大表面应力限制,以确保安全性。
4. GB 15763GB 15763是中国国家标准化管理委员会发布的玻璃表面应力的测量方法标准。
该标准描述了不同玻璃类型的应力测量方法。
玻璃应力值的影响因素玻璃应力值的大小和分布可受到多种因素的影响。
以下是一些常见的影响因素:1. 玻璃类型不同类型的玻璃,如钢化玻璃、夹层玻璃等,其应力值分布和大小可能会有所不同。
钢化玻璃应力测试方法及标准

钢化玻璃应力测试方法及标准钢化玻璃应力测试方法及标准一、前言钢化玻璃作为一种特殊的建筑材料,具有高强度、抗冲击、耐热、耐寒等优点,因此被广泛应用于建筑领域。
然而,钢化玻璃在制造过程中会产生内部应力,这种应力可能会导致玻璃在使用过程中出现裂纹、破裂等安全隐患。
对钢化玻璃的应力进行测试并制定相应的标准显得尤为重要。
二、钢化玻璃应力测试方法1. 热浸法热浸法是一种常用的钢化玻璃应力测试方法,其原理是利用热膨胀系数不同的特性来测试玻璃板的内部应力。
具体操作步骤如下:(1)将待测试的钢化玻璃板放入预热好的热油中,使其均匀受热;(2)通过检测玻璃板的表面形貌变化来判断其内部应力状态。
2. 光学偏挠法光学偏挠法是利用光学原理来测试玻璃板的内部应力,其操作步骤如下:(1)利用偏挠仪器测量钢化玻璃板在不同位置的偏挠值;(2)通过计算偏挠值的差异来推断玻璃板的应力状态。
3. 喷砂法喷砂法是将喷砂颗粒喷射到钢化玻璃板表面,通过观察玻璃表面的破裂形态来判断其内部应力状态。
这种方法操作简便,成本较低,因此在实际生产中被广泛采用。
三、钢化玻璃应力测试标准钢化玻璃应力测试标准应当包括测试方法、测试设备、测试环境等内容,以确保测试结果的准确性和可靠性。
目前,国际上对钢化玻璃应力测试的标准主要有欧洲标准、美国标准和中国标准等。
1. 欧洲标准欧洲标准对钢化玻璃的应力测试方法和要求进行了明确规定,包括了热浸法、光学偏挠法、喷砂法等多种测试方法,以及测试结果的评定标准。
这些标准的制定经过了严格的科学验证和实践检验,具有较高的可靠性。
2. 美国标准美国标准对钢化玻璃的应力测试同样进行了规范,其中包括了测试方法、设备要求、测试环境要求等内容,并对测试结果的合格标准进行了明确规定。
3. 中国标准中国标准对钢化玻璃的应力测试也有相关规范,主要参照了国际上的标准,并根据国内的实际情况进行了修订和补充。
这些标准对于保障国内钢化玻璃产品的质量和安全具有重要意义。
玻璃内应力和退火温度测定

X射线衍射法利用X射线在玻璃表面反射和折射的物理现象,当X射线穿过玻璃时,会受到玻璃内部结构的影响, 产生衍射和干涉现象。通过测量衍射和干涉后的X射线角度,可以计算出玻璃的内应力分布。该方法具有较高的 精度和可靠性,适用于各种类型的玻璃材料。
双折射法
总结词
双折射法利用玻璃在不同方向上具有不同的折射率特性,通过测量光在玻璃中传播的速度和方向变化 ,推算出玻璃的内应力分布。
02
03
04
高温操作
实验过程中涉及高温操作,需 佩戴防护眼镜和实验服,避免
烫伤。
防止玻璃破裂
在加热和冷却过程中要缓慢进 行,避免玻璃样品突然受热或
冷却而破裂。
保持恒温炉清洁
实验结束后,应及时清理恒温 炉内的残留物,确保下次实验
的准确性。
样品选择
应选择无色、透明、均匀的玻 璃样品,以确保实验结果的准
确性。
高实验精度等。
实验条件控制
建议在实验过程中。
扩展应用领域
根据实验结果,探讨退火温度测定 在玻璃制品生产、加工等领域的应 用前景。
THANKS FOR WATCHING
感谢您的观看
将本次实验结果与相关文献或前 人实验结果进行对比,分析差异 及原因。
结果讨论
根据实验结果,讨论退火温度对 玻璃内应力的影响机制,以及可 能的应用前景。
结论总结
总结实验结果,明确退火温度与 玻璃内应力的关系,为实际应用 提供理论依据。
对实验的改进与建议
实验方法优化
针对本次实验的不足之处,提出 改进措施,如改进测温方法、提
3. 测量热膨胀系数
在显微镜下观察样品,记录不同 温度下的长度变化,计算热膨胀 系数。
4. 推算退火温度
玻璃内应力检验记录

玻璃内应力检验记录一、引言玻璃内应力检验是对玻璃制品进行质量评估的重要手段。
在制造过程中,玻璃内部可能会产生应力,这些应力可能会导致玻璃破裂或变形,从而影响产品的使用寿命和安全性。
因此,对玻璃内应力进行检验和控制至关重要。
二、实验目的本次实验的目的是通过对玻璃内应力的检验,评估玻璃制品的质量和可靠性。
通过分析检验结果,了解玻璃在生产过程中可能产生的应力情况,为制造过程的改进提供依据。
三、实验步骤1. 选取代表性的玻璃样品,并进行必要的准备工作,如清洗和磨削。
2. 使用内应力检测仪器对玻璃样品进行测试。
该仪器能够测量玻璃内部的应力分布情况,并生成相应的检验记录。
3. 根据实验结果,分析玻璃样品的应力分布情况,并进行相应的数据处理和统计。
4. 根据分析结果,评估玻璃样品的质量和可靠性,并提出相应的建议和改进措施。
四、实验结果经过实验测试和数据处理,得到了玻璃内应力的检验记录。
根据记录,可以看出玻璃样品在制造过程中存在一定的内应力,但整体分布较为均匀。
没有出现明显的局部高应力区域,说明该批次的玻璃制品质量较好。
五、分析与讨论根据检验记录和实验结果,我们可以得出以下结论:1. 玻璃制品在制造过程中普遍存在一定的内应力,这是由于制造工艺和材料性质等因素导致的。
2. 玻璃内应力的分布对产品的质量和可靠性具有重要影响。
过高的内应力可能导致玻璃破裂或变形,降低产品的使用寿命。
3. 通过对玻璃内应力的检验和分析,可以评估产品的质量和可靠性,并为制造过程的改进提供依据。
六、结论通过对玻璃内应力的检验和分析,我们得出了以下结论:1. 本次实验的玻璃样品内应力分布较为均匀,没有出现明显的局部高应力区域。
2. 该批次的玻璃制品质量较好,具有较高的可靠性和使用寿命。
七、改进措施根据实验结果,我们提出以下改进措施:1. 在制造过程中,加强对玻璃制品的质量控制,尽量减少内应力的产生。
2. 定期进行玻璃内应力的检验,及时发现和解决潜在的质量问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玻璃应力测定
双折射
玻璃是各向同性体,各方向的折射率相同。
如玻璃中存在应力,各向同性的性质受到破坏,引起折射率变化,两主应力方向的折射率不再相同,即导致双折射。
折射率与应力值的关糸由下式确定:
nx - ny = CB (σx –σy)
式中:nx 、ny 分别为x及y方向的折射率。
σx 、σy 分别为x及y方向的应力。
CB 为应力光学常数,它是物性常数,仅与玻璃品种有关。
光程差
当偏光透过厚度为t的有应力玻璃时,光矢会分裂为两个分别在x及y应力方向振动的分量。
如vx、vy分别为两光矢分量的速度,则透过玻璃所需的时间分别为t/vx和t/vy,两分量之间不再同步,而是存在光程差δ:
δ= C(t/vx - t/vy) = t (nx - ny)
式中C为真空中光速。
结合上述二式,即得如下公式:(σx –σy) = δ/ (tCB)
即应力与光程差存在一定关系,一般借助光干涉原理测出光程差,从而计算出应力值。
需要强调的是,得出的不是应力的绝对值,而是二主应力之差,有时虽然测出的应力为零,但实际上二主应力均存在,只不过二者相等而已。
典型例子是平板玻璃,从平面上看,存在各向相等的表面压应力及板芯张应力,表面压应力在数值上等于2倍板芯张应力,但采用平面透射光并不能测出应力,原因就是σx = σy 。
必须取样,使光透过玻璃端面才能测定。
因此,对不同制品,根据工艺情况,设计适当的应力测试方法是极为重要的。
干涉色
两光矢分量透过检偏器后,在同-平面内振动,且存在一定光程差,满足相干条件,会发生干涉。
干涉作用产生的光强I 由下式决定:
I = a2Sin22(β –α)Sin2 (pδ/λ)
式中各符号的意义见图1。
由此式可得出如下结论:
a) 当β= α时,即两主应力方向分别与起偏器及检偏器方向一致时,I = 0。
此黑条纹即是“等倾线”,线上所有点的应力具有相同的方向。
此原理常用来确定应力的方向。
b) 当β–α= 45o时,即主应力方向与偏振方向成450,在δ= 0、1λ、2λ、3λ……Nλ处,I = 0。
也就是光程差为波长的整数倍时,出现黑色条纹。
c) 当β–α= 45o时,下列波长的光能较好地透过:Sin2 (pδ/λ) = 1, 即λ= 2δ、2δ/3、2δ/5、2δ/7、……。
而以下波长的光被阻:Sin2 (pδ/λ) = 0, 即λ= δ、δ/2、δ/3、δ/4、……。
白光是波长从400—700nm范围内多种颜色光波的混合物,有效波长-般按565 nm计。
所以用白光作光源时,玻璃就出现多彩的干涉色,可用来估计应力值。
相同的干涉色连成的色带称“等色线”,线上的应力值相等。
常用的应力测量方法
定性、半定量测量方法
使用正交偏光观察玻璃中残余应力的方法为大家所熟知,此种方法广泛用于定性或半定量判定玻璃中的应力情况。
最简易的应力仪通常由一个白光光源及二片偏光片组成,偏光片的光轴互相垂直,玻璃样品置于两偏光片之间,主应力方向与偏振轴成450。
如果玻璃中存在垂直于光线传播方向的非均匀应力,则可观察到黑、灰、白的干涉带,应力更高时,可见黄、红、蓝等彩色干涉条纹。
无应力的玻璃只能观察到均匀的暗场。
对于退火玻璃制品,一般仅出现灰白干涉色,此时为提高分辨率,需增加一块灵敏色片。
灵敏色片其实是一种光程差为565nm的人工双折射片,相当于人为将总光程差增加或减少565nm,使视域中出现彩色干涉色,提高肉眼对干涉色的分辩能力。
另一种较为精确的颜色对比法是采用一套至少包括6片的标准光程片组,将被测玻璃样品在偏光下与标准片对比干涉色,从而判断应力大小。
标准光程片是一种均匀的双折射片,每片的光程差人为控制在21.8 –23.8 nm之间,直径至少30mm,同-组内各片的光程差基本一致。
通过增减标准光程片数目,使玻璃样品的干涉色与标准片组的干涉色相同,根据标准片的片数及各片光程数据,就能计算出玻璃中的应力值。
2.2 Senarmont定量应力测定法
此种方法采用的光学元件及其方向匹配关系请参照图2。
起偏器及检偏器的偏振方向均须与水平线成45o,它们之间必须相互垂直。
被测样品主应力之一的方向必须与水平线一致,即主应力方向须与偏振方向成45o,如样品是瓶子等圆柱形制品,则将瓶子水平放置、使瓶子轴线与水平线重合即可。
检偏器是可以旋转的,转动角度由刻度指示。
使用时,先将检偏器转至0刻度处;然后放置被测样品,调整样品方向,使被测点主应力的方向与偏振方向成45o;再转动检偏器,直到被测点变得最暗;记下转角读数,每度相当于3.14 nm 光程差。
根据旋转方向可判断出是压应力还是张应力。
如顺时针转动检偏器能使被测点变暗,则为张应力,反之为压应力。
需要指出,如四分之一波片转动90o安装,则检偏器旋转方向所代表的应力性质正好相反,读数绝对值不变。
如果对仪器有疑问,可取25 X 200mm的平板玻璃测其板芯应力,已知板芯应力是张应力,故能用来验证仪器的应力测试方向。
四分之一波片的精度对此方法的测定精度有较大影响,-般要求该波片的光程误差在+/- 2 nm之内。
Senarmont法适用于测定己知应力方向的玻璃制品,如平板玻璃、瓶子、玻璃管等。
对于应力方向复杂的制品,采用Tardy方法比较方便。
2.3 Tardy定量应力测试方法
与Senarmont法不同:Tardy法增加了-块四分之-波片,两块四分之一波片的光轴均与偏振方向成45o,两块波片均能从光路中移走;玻璃样品中的主应力方向与偏振方向重合。
其余部分与Senarmont法类似。
测试时,先将两块四分之-波片撤离光路;然后放入被测样品,此时可从检偏器中看见样品上黑色的应力等倾线,即在此线上,应力方向均相同并与偏振方向一致;再调整样品的放置方向,使等倾线通过被测点;将二块四分之-波片推入光路,等倾线即消失;此时可旋转检偏器,直至被测点光线最弱;后面步骤同Senarmont法。
由于Tardy法要求应力方向与偏振方向一致,故可利用等倾线性质实现方向的相对调整,不必准确确定应力的实际方向。
二块四分之一波片的光轴相互垂直,对光程的作用互为补偿,所以波片的精度要求可低-些,只需控制二块波片之间的相对误差。
故此方法的测量精度要好于Senarmont法。
2.4 Babinet补偿器法
Babinet补偿器是一种光程差可调的双折射元件,相当于在应力仪中加入一个应力值可调的人工应力片,其方向与被测玻璃样品中的应力方向相反,当两者数值相等时,应力相互抵消,在正交偏光下观察到消光黑条纹。
Babinet补偿器-般由两块石英楔构成,二者尺寸相同,光轴互相垂直。
一块楔是固定的,另-块可滑动,滑动的位置由测微螺杆转换成读数,光程差值与楔滑动的距离成线性关糸。
此种方法操作较为简单,首先确定被测点的主应力方向,旋转补偿器测微螺杆,直至被测点为黑条纹所覆盖,记下测微螺杆读数并乘以补偿器常数即得到玻璃的应力值。
应力的方向亦根据测微螺杆旋转方向加以确定。
此法操作简单,精度高。
不足之处是补偿器价格昂贵。
3. 几个需注意的问题
3.1 所有方法测出的均是相互垂直的两主应力的差值。
如果两主应力相等,即使应力值很大,测出的应力也是零,这种现象经常会产生误导,使人容易忽略实际存在的应力。
因此,-般选择主应力之-为零的部位作为测量点。
3.2 只有垂直于光路的应力才能被测出。
如果一维主应力平行于光透射方向,则也会得出不存在应力
的错误结论。
另-方面,此特性也常被用来解决上述3.1条所讨论的问题,如玻璃中存在二维应力,应使主应力之-平行于光路,从而准确测出另-主应力值。
3.3 测出的应力是光经过的玻璃内不同位置应力的代数和。
如果-个玻璃瓶壁的外表面存在压应力、而内表面是张应力,光从瓶身一侧射进、从另-侧射出,则测得的应力是各处应力的平均值,各处的实际应力很可能远大于此平均值。
3.4 光的入射方向须与玻璃表面垂直。
异型制品须浸入与玻璃折射率相同的液体中,以杜绝反射、折射等现象产生的光学作用,这些作用会干扰应力干涉色,影响应力测量精度。
4. 结束语
应力测定工作并不是一项高难度的工作,但它涉及的因素多,且容易混淆,稍不注意就会得出错误甚至相反的结果。
在实际测定之前,一定要先分析造成玻璃制品失效的应力因素,理清思路,选择合理的测定方法与步骤。
应力测定的目的是反馈给玻璃生产工段,为其采用更合适的热处理设备、制定更合理的热处理工艺提供依据。
因此应力测定既是检验工序的工作,更重要的应该是工艺过程控制的-环,应力测定与生产工艺应紧密结合在-起。
应力测定
首先校正应力仪,使检偏镜干涉色呈紫红色为零点。
然后将试样放入视场中,旋转试样,通过检偏镜在屏中心方向观察杯底,直到在视场中看到亮度最亮的干涉色图象为止。
根据观察到的干涉色,查出光程差。
如有侵权请联系告知删除,感谢你们的配合!。