2020湖南省益阳市中考数学试卷及答案解析
2020中考湖南益阳数学卷

益阳市2020年普通初中毕业学业考试试卷数学说明:1本卷共四大题,27小题,全卷满分120分,考试时间为150分钟。
2,本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
题序一二三四五六七八总分得分注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。
试题卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2-的相反数是A. 2B.2-C.12D.12-2.二元一次方程21-=x y有无数多个解,下列四组值中不是..该方程的解的是A.12xy=⎧⎪⎨=-⎪⎩B.11xy=⎧⎨=⎩C.1xy=⎧⎨=⎩D.11xy=-⎧⎨=-⎩3.小华将一张如图1所示矩形纸片沿对角线剪开,他利用所得的两个直角三角形通过图形变换构成了下列四个图形,这四个图形中不是..轴对称图形的是A B C D图14.下列计算正确的是A.()222x y x y +=+B .()2222x y x xy y -=-- C .()()22222x y x y x y +-=-D .()2222x y x xy y -+=-+5.“恒盛”超市购进一批大米,大米的标准包装为每袋30kg ,售货员任选6袋进行了称重检验,超过标准重量的记作“+”, 不足标准重量的记作“-”,他记录的结果是0.5+,0.5-,0,0.5-,0.5-,1+,那么这6袋大米重量..的平均数和极差分别是 A .0,1.5 B .29.5,1 C . 30,1.5 D .30.5,06.不等式312->+x 的解集在数轴上表示正确的是7.如图2,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是... A .矩形B .菱形C .正方形D .等腰梯形8.如图3,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由A 处径直走到B 处,她在灯光照射下的影长l 与行走的路程s 之间的变化关系用图象刻画出来,大致图象是二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.2010年11月,我国进行了第六次全国人口普查.大陆31个省、自治区、直辖市和现役军人的人口中,具有大学(指大专以上)文化程度的人口数约为120 000 000,将这个数用科学记数法可记为 .10.如图4,将∆ABC 沿直线AB 向右平移后到达∆BDE 的位置,若∠CAB =50°,∠ABC =100°,则∠CBE 的度数为 .olsolsA B olsolsC D BAO C 图5-20 -1 -2 0-2ABC DBACD图2图4AB图311.如图5,AB 是⊙O 的切线,半径OA =2,OB 交⊙O 于C , ∠B =30°,则劣弧AC 的长是 .(结果保留π) 12.分式方程231-=x x 的解为 . 13.在1-,1,2这三个数中任选2个数分别作为P 点的横坐标和纵坐标,过P 点画双曲线k y x=,该双曲线位于第一、三象限的概率是 .三、解答题(本大题共2小题,每小题6分,共12分)14()032-+-.15.如图6,在梯形ABCD 中,AB ∥CD ,AD =DC ,求证:AC 是∠DAB的平分线.四、解答题(本大题共3小题,每小题8分,共24分)16.观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1 ② 2 × 4 - 32 = 8 - 9 = -1 ③ 3 × 5 - 42 = 15 - 16 = -1 ④……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.17.某校宣传栏中公示了担任下学期七年级班主任的12位老师的情况(见下表),小凤准备到该校就读七年级,请根据表中信息帮小凤进行如下统计分析:(1)该校下学期七年级班主任老师年龄的众数是多少?(2)在图7(1)中,将反映老师学历情况的条形统计图补充完整;(3)在图7(2)中,标注扇形统计图中表示老师职称为初级和高级的百分比; (4)小凤到该校就读七年级,班主任老师是女老师的概率是多少?图6 D A BC 学历情况条形统计图18.如图8,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的 高为12米,水泥撑杆BD 高为6米,拉线CD 与水 平线AC 的夹角为67.4°.求拉线CDE 的总长L (A 、 B 、C 三点在同一直线上,电线杆、水泥杆的大小忽 略不计). (参考数据:sin67≈ E M BEDEqu a ti on.3 1213 ,c 五、解答题(本大题共2小题,每小题10分,共20分)19.某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过14吨(含14吨)时,每吨按政府补贴优惠价收费;每月超过14吨时,超过部分每吨按市场调节价收费.小英家1月份用水20吨,交水费29元;2月份用水18吨,交水费24元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少? (2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式; (3)小英家3月份用水24吨,她家应交水费多少元? 20.如图9,已知抛物线经过定点..A (1,0),它的顶点P 是y 轴正半轴上的一个动点,P 点关于x 轴的对称点为P′,过P′ 作x 轴的平行线 交抛物线于B 、D 两点(B 点在y 轴右侧),直线 BA 交y 轴于C 点.按从特殊到一般的规律探究线 段CA 与CB 的比值:(1)当P 点坐标为(0,1)时,写出抛物线 的解析式并求线段CA 与CB 的比值; (2)若P 点坐标为(0,m )时(m 为任意正 实数),线段CA 与CB 的比值是否与⑴ 所求的比值相同?请说明理由. 六、解答题(本题满分12分) 21.图10是小红设计的钻石形商标,△ABC 是边长为2的等边三角形,四边形ACDE 是等腰梯形,AC ∥ED ,∠EAC =60°,AE =1.(1)证明:△ABE ≌△CBD ; (2)图中存在多对相似三角形,请你找出一对进 行证明,并求出其相似比(不添加辅助线, 不找全等的相似三角形); (3)小红发现AM =MN =NC ,请证明此结论; (4)求线段BD 的长. EA DB C图8 E C D A M N图10B 图9x y B A P P 1 O C D . . . . . . 职称情况扇形统计图益阳市2020年普通初中毕业学业考试数学参考答案及评分标准一.选择题(本大题共8小题,每小题4分,共32分)二.填空题(本大题共5小题,每小题4分,共20分)9. 81.210⨯ 10. 30︒ 11.23π 12. 1x =- 13. 13三.解答题(本大题共2小题,每小题6分,共12分)14.解:原式=2-1+2=3. ………………………………………………6分15.解:∵AB CD //, ∴CAB DCA ∠=∠. ……………………………………2分AD DC =,∴DAC DCA ∠=∠ . ……………………………4分∴DAC CAB ∠=∠ , 即AC 是DAB ∠的角平分线. …………………6分四、解答题(本大题共3小题,每小题8分,共24分)16.解:⑴246524251⨯-=-=-; …………………………………………………2分⑵答案不唯一.如()()2211n n n +-+=-; …………………………5分⑶()()221n n n +-+ ()22221n n n n =+-++ ………………………7分 22221n n n n =+---1=-. ……………………………………8分17.解:⑴ 该校下学期七年级班主任老师年龄的众数是40; …………………2分 ⑵ 大专4人,中专2人(图略); ………………………………………4分 ⑶ %%高级:25,初级:33.3 ; …………………………………6分 ⑷班主任老师是女老师的概率是41123= . (8)分 18.解:⑴在Rt ∆DBC 中,sin BDDCB CD∠=, 666.512sin sin 67.413BD CD DCB ∴====∠(m ). ……………………………3分DF AE F ABDF ⊥作于,则四边形为矩形, …………………………4分8DF AB ∴==,6AF BD ==,6EF AE AF ∴=-=, ……………………5分10Rt EFD ED ∆在中,(m ). ……………7分10 6.516.5L ∴=+=(m ) ……………………………………8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:⑴ 设每吨水的政府补贴优惠价为x 元,市场调节价为y 元. ………1分()()1420142914181424x y x y +-=⎧⎪⎨+-=⎪⎩,; …………………………………………3分 12.5.x y =⎧⎨=⎩,解得: 答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元. ………4分⑵14x y x ≤≤=当0时,;()1414 2.5 2.521x x x >-⨯=-当时,y=14+, ……………………6分 所求函数关系式为:()()0142.52114.x x y x x ≤≤⎧⎪=⎨->⎪⎩,…………………………8分⑶2414x =>,24 2.521x y x ∴=-把=代入,得: 2.5242139y =⨯-=.答:小英家三月份应交水费39元. …………………………………………10分 20.解:⑴ 设抛物线的解析式为21(0)y ax a =+≠ , ……………………1分抛物线经过()1,0A ,01,1a a ∴=+=- ,21y x ∴=-+. ……………………………………2分(),0,1P P x P '、关于轴对称且,()01P '∴点的坐标为,-P B '∥x 轴,1B ∴-点的纵坐标为,由21x x -=-=+1 解得 )1B∴-,P B '∴=…………………………………………3分OA P B '//,CP B '∴∆∽COA ∆, …………………………………4分CA OA CB P B ∴='. …………………………………5分 ⑵ 设抛物线的解析式为2(0)y ax m a =+≠ ……………………6分 ()01A 抛物线经过,,0,a m a m ∴+=-=2y mx m ∴=-+. ………………………………………………7分P B '∥x 轴B m ∴-点的纵坐标为, 2y m mx m m =--+=-当时,()220m x ∴-=,0m >,220x ∴-=,x ∴=,)Bm ∴-,P B '∴= ………………………………………8分同⑴得CA OA CB P B ==' ………………………………9分CA m CB ∴为任意正实数时,. …………………………10分 六、解答题(本题满分12分)21.⑴证明:ABC ∆是等边三角形 ,AB BC ∴=,60BAC BCA ∠=∠=. ……………………1分 60ACDE EAC ∠四边形是等腰梯形,=, 60AE CD ACD CAE ∴=∠=∠=︒,,+120+BAC CAE BCA ACD ∴∠∠=︒=∠∠,BAE BCD ∠=∠即. ……………………2分在ABE BCD ∆∆和中.AB CB BAE BCD AE CD =⎧⎪∠=∠⎨⎪=⎩,,ABE CBD ∴∆≅∆. …………3分⑵答案不唯一.如ABN CDN ∆∆∽.证明:60BAN DCN ∠=︒=∠,ANB DNC ∠=∠,ANB CND ∴∆∆∽ . ………………………………………5分其相似比为:221AB DC ==. ……………………………………………6分 ⑶ 由(2)得2AN AB CN CD ==,1123CN AN AC ∴==. ………………8分同理13AM AC =.AM MN NC ∴==. ………………………………………9分 ⑷作DF BC BC F ⊥交的延长线于,120BCD ∠=︒,60DCF ∴∠=︒. ……………………………………1O 分Rt CDF ∆在中,30CDF ∴∠=︒,1122CF CD ∴==,DF ∴==. ………………………………11分Rt BDF ∆在中,152,22BF BC CF DF =+=+=,BD ∴== …………………………12分 友情提示:一、认真对待每一次考试。
湖南省益阳市2020年(春秋版)中考数学试卷(I)卷

湖南省益阳市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)有理数、在数轴上的对应点如图所示:则()A . a+b<0B . a+b>0C . a-b=0D . a-b>02. (2分)(2013·贺州) 下列运算正确的是()A . x•x2=x2B . (xy)2=xy2C . (x2)3=x6D . x2+x2=x43. (2分)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A . m≥1B . m≤1C . m>1D . m<14. (2分)(2016·内江) 某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的()A . 最高分B . 中位数C . 方差D . 平均数5. (2分) (2019七上·兴平月考) 用一个平面去截一个正方体,截面不可能是()A . 梯形B . 五边形C . 六边形D . 七边形6. (2分)(2017·河北) 如图是边长为10cm的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm)不正确的是()A .B .C .D .7. (2分) (2016七下·郾城期中) 一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动,即(0,0)→(0,1)→(1,1)→(1,0)…,且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A . (4,0)B . (5,0)C . (0,5)D . (5,5)8. (2分) (2017九上·吴兴期中) 已知函数的图象如图所示,则当函数的图象在x轴上方时,x的取值范围为()A .B .C .D .二、填空题 (共10题;共11分)9. (1分)据《太仓日报》报道:2015年太仓港区完成规模工业产值705.48亿元,将705.48亿元用科学记数法表示为________元.10. (2分)两数相除同号________,异号________.11. (1分)分解因式:=________.12. (1分)在▱ABCD中,AB<BC,已知∠B=30°,AB=,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为________ .13. (1分) (2019九上·柳南期末) 某小组5名同学的身高(单位:cm)分别为:147,156,151,159,152,则这组数据的中位数是________cm.14. (1分) (2016七下·宝丰期中) 等腰三角形的周长为16cm,底边长为x cm,腰长为y cm,则x与y之间的关系式为________.15. (1分)(2011·宁波) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为________.16. (1分) (2020八下·海安月考) 如图,将矩形纸片ABCD折叠,使点B与点D重合,若AB=3,BC=9,则折痕EF的长度为________.17. (1分)已知反比例函数的图像经过点P(2,-1),则它的解析式为1 .18. (1分)分式方程﹣=1的解是________ .三、解答题 (共10题;共102分)19. (5分)有理数a,b,c在数轴上的位置如图所示,试化简:+- .20. (15分) (2018八下·青岛期中) 计算题(1)解不等式2x+9≥3(x+2)(2)解不等式组并写出其整数解。
益阳市中考数学试题及答案

益阳市2020年普通初中毕业学业考试试卷数 学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上; 3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效; 4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分; 5.考试结束后,请将试题卷和答题卡一并交回.试 题 卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中,是无理数的为 AB .13C .0D .3-2.下列运算正确的是 A .236x x x ⋅=B .325()=x xC .2336()xy x y =D .632x x x ÷=3.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是姓名 准考证号图2图 1A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是2,平均数是3.84.一个几何体的三视图如图1所示,则这个几何体是 A .三棱锥 B .三棱柱 C .圆柱 D .长方体5.如图2,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误..的是 A .90ABC ∠=︒ B .AC BD =C .OA OB =D .OA AD =6.下列等式成立的是 A .123aba b+=+ B .212a b a b =++ C .2ab aab b a b=-- D .a aa b a b=--++ 7.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x ,根据题意可列方程为A .20(1+2x) =80B .2×20(1+x) =80图 4图3C .20(1+x 2) =80D .20(1+x)2 =808.若抛物线2()(1)y x m m =-++的顶点在第一象限,则m 的取值范围为A .1m >B .0m >C .1m ->D .10m -<<二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡...中对应题号后的横线上)928= .10.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 .11.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为 .12.如图3,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则»AB 的长为 .13.图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小图5图 6 棒.三、解答题(本大题共2小题,每小题8分,共16分)14.化简:2(1)(1)x x x +-+.15.如图5,直线AB ∥CD ,BC 平分∠ABD ,165∠=︒,求2∠的度数.四、解答题(本大题共3小题,每小题10分,共30分)16.如图6,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点 P 2恰好在直线l 上. (1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.17.2020年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2020年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:图8图7(1)2020年益阳市的地区生产总值为多少亿元? (2)请将条形统计图中第二产业部分补充完整; (3)求扇形统计图中第二产业对应的扇形的圆心角度数.18.如图8,在□ABCD 中,对角线AC 与BD 相交于点O ,∠CAB=∠ACB ,过点B 作BE ⊥AB 交AC 于点E . (1)求证:AC ⊥BD ;(2)若AB=14,7cos 8CAB ∠=,求线段OE 的长.五、解答题(本大题共2小题,每小题12分,共24分)19.大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3图9-2图9-1图9-3吨,则需补充原材料以保证正常生产.(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?20.已知点P 是线段AB 上与点A 不重合的一点,且AP<PB .AP 绕点A 逆时针旋转角α(090)α︒<≤︒得到AP 1,BP 绕点B 顺时针也旋转角α得到BP 2,连接PP 1、PP 2.(1)如图9-1,当90α=︒时,求12PPP ∠的度数;(2)如图9-2,当点P 2在AP 1的延长线上时,求证:21P PP △∽2P PA △; (3)如图9-3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .图10-1图10-2六、解答题(本题满分15分)21.已知抛物线E 1:2y x =经过点A(1,m),以原点为顶点的抛物线E 2经过点B(2,2),点A 、B 关于y 轴的对称点分别为点A B ''、. (1)求m 的值及抛物线E 2所表示的二次函数的表达式;(2)如图10-1,在第一象限内,抛物线E 1上是否存在点Q ,使得以点Q 、B 、B '为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图10-2,P 为第一象限内的抛物线E 1上与点A 不重合的一点,连接OP并延长与抛物线E 2相交于点P ',求PAA '∆与P BB ''∆的面积之比.益阳市2020年普通初中毕业学业考试 数学参考答案及评分标准一、选择题(本大题共8小题,每小题5分,共40分).二、填空题(本大题共5小题,每小题5分,共25分).9.4;10.1y x =(不唯一);11.23;12.3π;13.51n +.三、解答题(本大题共2小题,每小题8分,共16分).14.解:原式=2221x x x x ++-- ·················· 6分=1x +. ······················ 8分15.解:∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ········· 4分 ∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒, ················ 6分∴18050BDC ABD∠=︒-∠=︒,∴250BDC∠=∠=︒.··················8分四、解答题(本大题共3小题,每小题10分,共30分)16.解:(1)P2(3,3).····················3分(2)设直线l所表示的一次函数的表达式为(0)y kx b k=+≠,∵点P1(2,1),P2(3,3)在直线l上,∴2133k bk b+=⎧⎨+=⎩,,解得23kb=⎧⎨=-⎩,.∴直线l所表示的一次函数的表达式为23y x=-. ····7分(3)点P3在直线l上.由题意知点P3的坐标为(6,9),∴2639⨯-=,∴点P3在直线l上.····························10分17.解:(1)237.519%1250÷=(亿元);··············3分(2)第二产业的增加值为1250237.5462.5550--=(亿元),画图如下:·······7分(3)扇形统计图中第二产业部分的圆心角为550360158.41250⨯︒=︒.10分 18.解:(1)∵CAB ACB ∠=∠,∴AB CB =,∴□ABCD 是菱形.∴AC BD ⊥. ···················· 3分(2)在Rt △AOB 中,7cos 8AO OAB AB ∠==,14AB =, ∴7491484AO =⨯=, 在Rt △ABE 中,7cos 8AB EAB AE ∠==,14AB =, ∴8167AE AB ==, ·················· 9分 ∴49151644OE AE AO =-=-=.············ 10分 五、解答题(本大题共2小题,每小题12分,共24分)19.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,. ··············· 3分解得451.5a b =⎧⎨=⎩,.答:初期购得原材料45吨,每天所耗费的原材料为1.5吨. 6分(2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤, ········ 9分 解得:10x ≥.答: 最多再生产10天后必须补充原材料. ······ 12分20.解:(1)由旋转的性质得:AP = AP 1,BP = BP 2.∵90α=︒,∴12PAP PBP △和△均为等腰直角三角形, ∴1245APP BPP ∠=∠=︒,∴121218090PPP APP BPP ∠=︒-∠-∠=︒.·········· 3分 (2)由旋转的性质可知12APP BPP △和△均为顶角为α的等腰三角形,∴12902APP BPP α∠=∠=︒-,∴1212180()1802(90)2PPP APP BPP αα∠=︒-∠+∠=︒-︒-=. ··· 5分 在21P PP △和2P PA △中,122PPP PAP α∠=∠=, 又212PP P AP P ∠=∠,∴21P PP △∽2P PA △. ·················· 7分(3)如图,连接QB.∵l 1,l 2分别为PB ,P 2B 的中垂线, ∴12EB BP =,212FB BP =. 又BP=BP 2,∴EB FB =. 在Rt △QBE 和Rt △QBF 中,20题解图EB FB =,QB QB =,∴Rt △QBE ≌Rt △QBF , ∴2122QBE QBF PBP α∠=∠=∠=. ············· 9分由中垂线性质得:QP QB =, ∴2QPB QBE ∠=∠=α.由(2)知1902APP α∠=︒-,∴11180180(90)9022PPQ APP QPB ∠=︒-∠-∠=︒-︒--=︒αα,即 P 1P ⊥PQ . ···················· 12分六、解答题(本题满分15分)21.解:(1)∵抛物线E 1经过点A(1,m),∴m=12=1.∵抛物线E 2的顶点在原点,可设它对应的函数表达式为2y ax =(0a ≠),又点B(2,2)在抛物线E 2上,∴222a =⨯,解得:12a =,∴抛物线E 2所对应的二次函数表达式为212y x =. ···· 3分(2)假设在第一象限内 ,抛物线E 1上存在点Q ,使得△QB B '为直角三角形,由图象可知直角顶点只能为点B 或点Q .①当点B 为直角顶点时,过B 作BQ B B '⊥交抛物线E 1于Q , 则点Q 与B 的横坐标相等且为2,将x=2代入y=x 2得y=4 , ∴点Q 的坐标为(2,4). ·············· 5分②当点Q 为直角顶点时,则有222QB QB B B ''+=,过点Q 作QG BB '⊥于G ,设点Q 的坐标为(t ,t 2)( 0t >),则有()()()()222222222224t t t t ++-+-+-=,整理得:4230t t -=,∵0t >, ∴230t -=,解得13t =,23t =-舍去),∴点Q 的坐标为33),综合①②,存在符合条件的点Q 坐标为(2,4)与33). ·· 9分(3)过点P 作PC ⊥x 轴,垂足为点C ,PC 交直线A A '于点E ,过点P '作P 'D ⊥x轴,垂足为点D ,P 'D 交直线B B '于点F ,依题意可设P(c ,c 2)、P '(d ,212d ) (c >0,1c ≠),∵tan tan POC P OD '∠=∠,∴ 2212d c c d=,∴d=2c . ······· 12分 又A A '=2,B B '=4,∴222211211122111422242222PAA P BB AA PE c c S S c BB P F d '∆''∆'⋅⨯⨯--====⨯-''⋅⨯⨯-. ····· 15分21题解图1 21题解图2。
2020年湖南省益阳市中考数学试卷和答案解析

2020年湖南省益阳市中考数学试卷和答案解析一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)四个实数1,0,,﹣3中,最大的数是()A.1B.0C.D.﹣3解析:直接利用实数的比较大小的方法分析得出答案.参考答案:解:四个实数1,0,,﹣3中,﹣3<0<1<,故最大的数是:.故选:C.【点评】此题主要考查了实数运算,正确掌握实数比较大小的方法是解题关键.2.(4分)将不等式组的解集在数轴上表示,正确的是()A.B.C.D.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.参考答案:解:解不等式x+2≥0,得:x≥﹣2,又x<1,∴不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3.(4分)如图所示的几何体的俯视图是()A.B.C.D.解析:从上面看该几何体所得到的图形即为该几何体的俯视图.参考答案:解:从上面看该几何体,选项D的图形符合题意,故选:D.【点评】本题考查简单组合体的三视图,俯视图是从上面看所得到的图形,也可以理解为从上面对该几何体正投影所得到的图形.4.(4分)一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为()A.7B.4C.3.5D.3解析:先根据算术平均数的概念求出另外一个数据,从而得出这组数据,再利用中位数的概念求解可得.参考答案:解:根据题意知,另外一个数为4×4﹣(2+3+4)=7,所以这组数据为2,3,4,7,则这组数据的中位数为=3.5,故选:C.【点评】本题主要考查中位数和算术平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.5.(4分)同时满足二元一次方程x﹣y=9和4x+3y=1的x,y的值为()A.B.C.D.解析:根据二元一次方程组的解法求解即可.参考答案:解:由题意得:,由①得,x=9+y③,把③代入②得,4(9+y)+3y=1,解得,y=﹣5,代入③得,x=9﹣5=4,∴方程组的解为,故选:A.【点评】本题考查二元一次方程组的解法,加减消元法、代入消元法是解二元一次方程组的两种基本方法.6.(4分)下列因式分解正确的是()A.a(a﹣b)﹣b(a﹣b)=(a﹣b)(a+b)B.a2﹣9b2=(a﹣3b)2C.a2+4ab+4b2=(a+2b)2D.a2﹣ab+a=a(a﹣b)解析:直接利用公式法以及提取公因式法分别分解因式得出答案.参考答案:解:A、a(a﹣b)﹣b(a﹣b)=(a﹣b)2,故此选项错误;B、a2﹣9b2=(a﹣3b)(a+3b),故此选项错误;C、a2+4ab+4b2=(a+2b)2,正确;D、a2﹣ab+a=a(a﹣b+1),故此选项错误;故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.7.(4分)一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0解析:直接利用一次函数的性质结合函数图象上点的坐标特点得出答案.参考答案:解:如图所示:A、图象经过第一、三、四象限,则k >0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.【点评】此题主要考查了一次函数与一元一次不等式,正确数形结合分析是解题关键.8.(4分)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6解析:根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.参考答案:解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【点评】本题考查的了平行四边形的性质和三角形的三边关系.解题时注意:平行四边形对角线互相平分;三角形中任意两边之和大于第三边,任意两边之差小于第三边.9.(4分)如图,在△ABC中,AC的垂直平分线交AB于点D,DC 平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°解析:依据线段垂直平分线的性质,即可得到∠A=∠ACD,再根据角平分线的定义,即可得出∠ACB的度数,根据三角形内角和定理,即可得到∠B的度数.参考答案:解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.【点评】本题主要考查了线段垂直平分线的性质以及三角形内角和定理,线段垂直平分线上任意一点,到线段两端点的距离相等.10.(4分)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE于点F,则下列结论不成立的是()A.∠DAE=30°B.∠BAC=45°C.D.解析:由矩形的性质和等边三角形的性质可得AB=AE=BE,∠EAB=∠EBA=60°,AD=BC,∠DAB=∠CBA=90°,AB∥CD,AB=CD,可得∠DAE=∠CBE=30°,由锐角三角函数可求cos∠DAC==,由“SAS”可证∴△ADE≌△BCE,可得DE=CE=CD=AB,通过证明△ABF∽△CEF,可得,通过排除法可求解.参考答案:解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AB=AE=BE,∠EAB=∠EBA=60°,AD=BC,∠DAB=∠CBA =90°,AB∥CD,AB=CD,∴∠DAE=∠CBE=30°,故选项A不合题意,∴cos∠DAC==,故选项D不合题意,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴DE=CE=CD=AB,∵AB∥CD,∴△ABF∽△CEF,∴,故选项C不合题意,故选:B.【点评】本题考查了相似三角形的判定和性质,等边三角形的性质,矩形的性质,全等三角形的判定和性质,熟练运用这些性质进行推理是本题的关键.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定点于距离地球36000千米的地球同步轨道.将“36000”用科学记数法表示为 3.6×104.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值是易错点,由于36000有5位,所以可以确定n=5﹣1=4.参考答案:解:36000=3.6×104.故答案为:3.6×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.(4分)如图,AB∥CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为132°.解析:直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.参考答案:解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故答案为:132°.【点评】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.13.(4分)小明家有一个如图所示的闹钟,他观察发现圆心角∠AOB =90°,测得的长为36cm,则的长为12cm.解析:根据的长为36cm,可得半径OA,进而可得的长.参考答案:解:法一:∵的长为36cm,∴=36,∴OA=,则的长为:=×=12(cm);法二:∵与所对应的圆心角度数的比值为270°:90°=3:1,∴与的弧长之比为3:1,∴的弧长为36÷3=12(cm),故答案为:12.【点评】本题考查了弧长的计算,解决本题的关键是掌握弧长公式.14.(4分)反比例函数y=的图象经过点P(﹣2,3),则k=﹣5.解析:直接把点(﹣2,3)代入反比例函数y=求出k的值即可.参考答案:解:∵反比例函数y=的图象经过点(﹣2,3),∴3=,解得k=﹣5.故答案是:﹣5.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.(4分)小朋友甲的口袋中有6粒弹珠,其中2粒红色,4粒绿色,他随机拿出1颗送给小朋友乙,则送出的弹珠颜色为红色的概率是.解析:用红色弹珠的数量除以弹珠的总个数即可得.参考答案:解:∵口袋中有6粒弹珠,随机拿出1颗共有6种等可能结果,其中送出的弹珠颜色为红色的有2种结果,∴送出的弹珠颜色为红色的概率是=,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A 的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.16.(4分)一个多边形的内角和等于540°,则这个多边形的边数是5.解析:n边形的内角和公式为(n﹣2)•180°,由此列方程求n.参考答案:解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.【点评】本题考查了多边形外角与内角.此题比较简单,只要结合多边形的内角和公式来寻求等量关系,构建方程即可求解.17.(4分)若计算×m的结果为正整数,则无理数m的值可以是(答案不唯一)(写出一个符合条件的即可).解析:直接利用二次根式的性质得出符合题意的答案.参考答案:解:若计算×m的结果为正整数,则无理数m的值可以是:(答案不唯一).故答案为:(答案不唯一).【点评】此题主要考查了二次根式的乘除法,正确掌握二次根式的性质是解题关键.18.(4分)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是1800元.解析:根据题意和函数图象中的数据,利用分类讨论的方法,可以求得最大日销售利润,从而可以解答本题.参考答案:解:设日销售量y与销售天数t之间的函数关系式为y =kx,30k=60,得k=2,即日销售量y与销售天数t之间的函数关系式为y=2t,当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,20a=30,得a=1.5,即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,设日销售利润为W元,当0<t≤20时,W=1.5t×2t=3t2,故当t=20时,W取得最大值,此时W=1200,当20<t≤30时,W=30×2t=60t,故当t=30时,W取得最大值,此时W=1800,综上所述,最大日销售利润为1800元,故答案为:1800.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题(本题共8个小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(﹣3)2+2×(﹣1)﹣|﹣2|.解析:直接利用绝对值的性质和实数混合运算法则分别化简得出答案.参考答案:解:原式=9+2﹣2﹣2=7.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8分)先化简,再求值:(﹣)÷,其中a=﹣2.解析:先计算括号内分式的减法,再将除法转化为乘法,约分即可化简原式,最后把a的值代入计算可得.参考答案:解:原式=÷=•=,当a=﹣2时,原式===2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.(8分)如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O于C,D.求证:AC=BD.解析:由切线的性质得出OM⊥AB,又MA=MB,则△ABO是等腰三角形,得出OA=OB,即可得出结论.参考答案:证明:∵OM是⊙O的半径,过M点作⊙O的切线AB,∴OM⊥AB,∵MA=MB,∴△ABO是等腰三角形,∴OA=OB,∵OC=OD,∴OA﹣OC=OB﹣OD,即:AC=BD.【点评】本题考查了切线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的性质是解题的关键.22.(10分)为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:笔画数123456789101112131415字数4810161420243616141191071请解答下列问题:(1)被统计汉字笔画数的众数是多少?(2)该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:分组笔画数x(画)A字数(个)A组1≤x≤322B组4≤x≤6mC组7≤x≤976D组10≤x≤12nE组13≤x≤1518请确定上表中的m、n的值及扇形统计图中B组对应扇形圆心角的度数;(3)若这篇文章共有3500个汉字,估计笔画数在7~9画(C组)的字数有多少个?解析:(1)根据众数的定义求解可得;(2)根据第1个表格可得m、n的值及被抽查汉字的个数,再用360°乘以B组频数占总数的比例即可得;(3)用汉字的总个数乘以样本中C组频数占样本容量的比例可得.参考答案:解:(1)被统计汉字笔画数的众数是8画;(2)m=16+14+20=50,n=14+11+9=34,∵被抽查的汉字个数为4+8+10+16+14+20+24+36+16+14+11+9+10+7+1=200(个),∴扇形统计图中B组对应扇形圆心角的度数为360°×=90°;(3)估计笔画数在7~9画(C组)的字数有3500×=1330(个).【点评】本题主要考查扇形统计图、用样本估计总体、频数(率)分布表及众数,解题的关键是掌握利用样本估计总体思想的运用及众数的概念.23.(10分)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)解析:(1)根据斜坡CD的坡度i=1:1,可得tanα=DH:CH=1:1=1,进而可得α的度数;(2)由(1)可得,CH=DH=12,α=45°.所以∠PCH=71°,再根据锐角三角函数可得PD的值,与18进行比较即可得到此次改造是否符合电力部门的安全要求.参考答案:解:(1)∵斜坡CD的坡度i=1:1,∴tanα=DH:CH=1:1=1,∴α=45°.答:斜坡CD的坡角α为45°;(2)由(1)可知:CH=DH=12,α=45°.∴∠PCH=∠PCD+α=26°+45°=71°,在Rt△PCH中,∵tan∠PCH==≈2.90,∴PD≈22.8(米).22.8>18,答:此次改造符合电力部门的安全要求.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解决本题的关键是掌握坡度坡角定义.24.(10分)新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?解析:(1)设原来生产防护服的工人有x人,根据每人每小时完成的工作量不变列出关于x的方程,求解即可;(2)设还需要生产y天才能完成任务.根据前面10天完成的工作量+后面y天完成的工作量≥14500列出关于y的不等式,求解即可.参考答案:解:(1)设原来生产防护服的工人有x人,由题意得,=,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y≥14500,解得y≥8.答:至少还需要生产8天才能完成任务.【点评】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.25.(12分)如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2﹣x1)2+(y2﹣y1)2】(1)判断点P在运动过程中是否经过点C(0,5);(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;x…02468…y…52125…(3)点C关于x轴的对称点为C',点P在直线C'F的下方时,求线段PF长度的取值范围.解析:(1)当P与C(0,5)重合,证明PH=PF即可解决问题.(2)根据PF2=PH2,根据函数关系式即可解决问题.(3)求出直线FC′的解析式,求出直线FC′与抛物线的交点坐标即可判断.参考答案:解:(1)当P与C(0,5)重合,∴PH=5,PF==5,∴PH=PF,∴点P运动过程中经过点C.(2)由题意:y2=(x﹣4)2+(y﹣2)2,整理得,y=x2﹣2x+5,∴函数解析式为y=x2﹣2x+5,当x=0时,y=5,当x=2时,y=2,当x=4时,y=1,当x=6时,y=2,当x=8时,y=5,函数图象如图所示:故答案为5,2,1,2,5.(3)由题意C′(0,﹣5),F(4,2),∴直线FC′的解析式为y=x﹣5,设抛物线交直线FC′于G,K.由,解得或,∴G(,),K(,),观察图象可知满足条件的PF长度的取值范围为1≤PF<.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考压轴题.26.(12分)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B 点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC =5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.解析:(1)由旋转性质得BE=BF,再证明∠EBF=90°,∠EBF+∠D=180°便可;(2)①过点C作CF⊥BE于点F,证明△BCF≌△ABE得CF=BE,设BE=x,在Rt△BCF中,则勾股定理列出x的方程解答便可;②延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,求出FG便是△MNC的最小周长.参考答案:解:(1)∵四边形ABCD是正方形,∴∠ABC=∠BAC=∠C=∠D=90°,∵将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F 在DA的延长线上,∴BE=BF,∠CBE=∠ABF,∴∠EBF=∠ABC=90°,∴∠EBF+∠D=180°,∴四边形BEDF为“直等补”四边形;(2)①过C作CF⊥BF于点F,如图1,则∠CFE=90°,∵四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD >AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BF⊥AD,∴∠DEF=90°,∴四边形CDEF是矩形,∴EF=CD=1,∵∠ABE+∠A=∠CBE+∠ABE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC=5,∴△ABE≌△BCF(AAS),∴BE=CF,设BE=CF=x,则BF=x﹣1,∵CE2+BF2=BC2,∴x2+(x﹣1)2=52,解得,x=4,或x=﹣3(舍),∴BE=4;②如图2,延长CB到F,使得BF=BC,延长CD到G,使得CD =DG,连接FG,分别与AB、AD交于点M、N,过G作GH⊥BC,与BC的延长线交于点H.则BC=BF=5,CD=DG=1,∵∠ABC=∠ADC=90°,∴CM=FM,CN=GN,∴△MNC的周长=CM+MN+CN=FM+MN+GN=FG的值最小,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠HCG=180°,∴∠A=∠HCG,∵∠AEB=∠CHG=90°,∴∵AB=5,BE=4,∴AE=,∴,∴GH=,CH=,∴FH=FC+CH=,∴FG==8,∴△MNC周长的最小值为8.【点评】本题是四边形的一个综合题,主要考查新定义,勾股定理,全等三角形的性质与判定,正方形的性质,矩形的性质与判定,相似三角形的性质与判定,旋转的性质,轴对称的性质,第(2)①题关键在证明全等三角形,第(2)②题关键确定M、N的位置.。
益阳市2020年部编人教版中考数学试题有答案(word版)

益阳市2020年普通初中毕业学业考试试卷数学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分;5.考试结束后,请将试题卷和答题卡一并交回。
试题卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.12016-的相反数是A.2016B.2016-C.12016D.12016-2.下列运算正确的是A.22x y xy+=B.2222x y xy⋅=C.222x x x÷=D.451x x-=-3.不等式组3,213xx-<⎧⎨-≤⎩的解集在数轴上表示正确的是A B C D4.下列判断错误..的是A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形5.小军为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为A.67、68 B.67、67 C.68、68 D.68、676.将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是A.360°B.540°C.720°D.900°7.关于抛物线221y x x=-+,下列说法错误..的是A.开口向上B.与x轴有两个重合的交点C.对称轴是直线1x=D.当1x>时,y随x的增大而减小8.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆P A的高度与拉绳P B的长度相等.小明将PB拉到PB′的位置,测得∠PB C'α=(B C'为水平线),测角仪B D'的高度为1米,则旗杆P A 的高度为A.11sinα-B.11sinα+B'αPCD第17题图C .11cos α- D .11cos α+二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡...中对应题号后的横线上) 9.将正比例函数2y x =的图象向上平移3个单位,所得的直线不经过第 象限.10.某学习小组为了探究函数2||y x x =-的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m = . x… –2 –1.5 –1 –0.5 0 0.5 1 1.52 … y…20.75–0.25–0.25m2…11.我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数3y x=-的图象上有一些整点,请写出其中一个整点的坐标 .12.下图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为 .(结果保留π)13.如图,四边形ABCD 内接于⊙O ,AB 是直径,过C 点的切线与AB 的延长线交于P 点,若∠P =40°,则∠D 的度数为 .14.小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是 枚.(1) (2) (3) (4) (5)三、解答题(本大题共3小题,每小题8分,共24分)15.计算:03132(1)223⎛⎫⎛⎫-+---⨯- ⎪ ⎪⎝⎭⎝⎭.16.先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 17.如图,在ABCD 中,AE ⊥BD 于E ,CF ⊥BD 于F , 连接AF ,CE . 求证:AF =CE .四、解答题(本大题共3小题,每小题10分,共30分)18.在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题: (1)频数分布表中a = ,b = ,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?第12题图64 主视图 左视图 俯视图 第13题图(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?分 组频数 频率第一组(015x ≤<) 3 0.15 第二组(1530x ≤<) 6 a 第三组(3045x ≤<) 7 0.35 第四组(4560x ≤<) b 0.20 19.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人. (1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生? 20.在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你..按照..他们的解题思路完成解答过程..............五、解答题(本题满分12分)21.如图,顶点为(3,1)A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C , 交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标.六、解答题(本题满分14分)22.如图①,在△ABC 中,∠ACB =90°,∠B =30°,AC =1,D 为AB 的中点,EF 为△ACD 的中位线,四边形EFGH 为△ACD 的内接矩形(矩形的四个顶点均在△ACD 的边上). (1)计算矩形EFGH 的面积;(2)将矩形EFGH 沿AB 向右平移,F 落在BC 上时停止移动.在平移过程中,当矩形与△CBD 重叠部分的面积为3时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形1111E FG H ,将矩形1111E FG H 绕1G 点按顺时针方向旋转,当1H 落在CD 上时停止转动,旋转后的矩形记为矩形2212E F G H ,设旋转角为α,求cos α的值.根据勾股定理,利用AD 作为“桥梁”,建立方程模型求出x作AD ⊥BC 于D ,设BD = x ,用含x 的代数式表示CD利用勾股定理求出AD 的长,再计算三角形面积AC2020年普通初中毕业学业考试参考答案及评分标准数 学一、选择题(本大题共8小题,每小题5分,共40分).题号 1 2 3 4 5 6 7 8 答案CBADCDDA二、填空题(本大题共6小题,每小题5分,共30分).9.四;10.0.75;11.答案不唯一,如:(-3,1);12.24π;13.115°;14.13. 三、解答题(本大题共3小题,每小题8分,共24分).15.解:原式=1211()23-+-⨯-=1223-+=16.…………………………………8分 16.解:原式2221(1)11x x x x x --+-=⨯-2x =-. …………………………………6分 当12x =-时,原式=4. ………………………………………………8分17.证明:如图,∵四边形ABCD 是平行四边形,∴AD =BC ,∠ADB =∠CBD . …………………………………2分 又∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB ,AE ∥CF . …………4分 ∴AED ∆≌CFB ∆.………………………6分 ∴AE =CF .∴四边形AECF 是平行四边形.∴AF =CE . ………………………………………………………8分四、解答题(本大题共3小题,每小题10分,共30分)18.解:(1)a =0.3,b =4 ………………………………………………………2分图①图②(备用)图③…………………………………4分(2)180(0.350.20)99⨯+=(人) …………………………………7分 (3) 甲 乙1 乙2甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙31124p == ……………………………………………………………10分 19.解:(1)设该班男生有x 人,女生有y 人,依题意得:4223x y x y +=⎧⎨=-⎩, 解得2715x y =⎧⎨=⎩.∴该班男生有27人,女生有15人.…………………………………5分(2)设招录的男生为m 名,则招录的女生为(30)m -名,依题意得:5045(30)1460x x +-≥ ,解之得,22x ≥,答:工厂在该班至少要招录22名男生.…………………………10分20.解:如图,在△ABC 中,AB =15,BC =14,AC =13,设BD x =,∴14CD x =-. ……………………………………………2分由勾股定理得:2222215AD AB BD x =-=-,2222213(14)AD AC CD x =-=--,∴2215x -=2213(14)x --,解之得:9x =.……………………………… 7分 ∴12AD =. ………………………………………8分∴12ABC S BC AD ∆=g 11412842=⨯⨯=.…………10分五、解答题(本题满分12分)21.解:(1)∵抛物线顶点为(3,1)A ,设抛物线对应的二次函数的表达式为2(3)1y a x =-+,将原点坐标(0,0)代入表达式,得13a =-.∴抛物线对应的二次函数的表达式为:21233y x x =-+. …………3分(2)将0y = 代入21233y x x =-+中,得B 点坐标为:(23,0),设直线O A 对应的一次函数的表达式为y kx =, 将3,1)A 代入表达式y kx =中,得3k =, ∴直线OA 对应的一次函数的表达式为3y x .A C∵BD ∥AO ,设直线BD 对应的一次函数的表达式为33y x b =+, 将B (23,0)代入33y x b =+中,得2b =- , ∴直线BD 对应的一次函数的表达式为323y x =-.由232312333y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩得交点D 的坐标为(3,3)--, 将0x =代入323y x =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , 23OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .……………………8分(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆.∴PO C O DQ C Q '=',即253PO =,∴235PO =, ∴ 点P 的坐标为23(,0)5-.………………………………………………………12分 六、解答题(本题满分14分)22. 解:(1)如22题解图1,在ABC ∆中,∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==.又∵EF 是ACD ∆的中位线,∴12EF DF ==,在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°.在FGD ∆中,sin GF DF =⋅60°3=, ∴矩形EFGH 的面积1332S EF GF =⋅=⨯=. ……………………………3分 (2)如22题解图2,设矩形移动的距离为,x 则102x <≤, 当矩形与△CBD 重叠部分为三角形时, 则104x <≤, 1332S x x =⋅=, ∴214x =>.(舍去). 22题解图1CADB22题解图2当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤, 重叠部分的面积1124-⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD.…………8分(3)如22题解图3,作2H Q AB ⊥于Q .设DQ m =,则2H Q =,又114DG =,2112H G =. 在R t △H 2QG 1中,22211)()()42m ++= ,解之得m =(负的舍去).∴1211164cos 12QG H G α+===.……………………………………14分22题解图31H 1E 1F 1G CA 2H 2E 2F D BQ。
2020年湖南省益阳市中考数学试卷(含详细解析)

○…………外…………○…………装…………学校:_________姓名:___________○…………内…………○…………装…………保密★启用前2020年湖南省益阳市中考数学试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题1.四个实数1,03-中,最大的是( ) A .1B .0C D .3-2.将不等式组201x x +≥⎧⎨<⎩的解集在数轴上表示,正确的是( )A .B .C .D .3.图所示的几何体的俯视图是( )A .B .C .D .…………○……………○…………订※※请※※※※装※※订※※线※※内…………○……………○…………订则这组数据的中位数为( ) A .7B .4C .3.5D .35.同时满足二元一次方程9x y -=和431x y +=的x ,y 的值为( )A .45x y =⎧⎨=-⎩B .45x y =-⎧⎨=⎩C .23x y =-⎧⎨=⎩D .36x y =⎧⎨=-⎩6.下列因式分解正确的是( ) A .()()()()a a b b a b a b a b ---=-+ B .2229(3)a b a b -=- C .22244(2)a ab b a b ++=+ D .2()a ab a a a b -+=-7.一次函数y kx b =+的图象如图所示,则下列结论正确的是( )A .k 0<B .1b =-C .y 随x 的增大而减小D .当2x >时,0kx b +<8.如图,ABCD 的对角线AC ,BD 交于点O ,若6AC =,8BD =,则AB 的长可能是( )A .10B .8C .7D .69.如图,在ABC ∆中,AC 的垂直平分线交AB 于点D ,DC 平分ACB ∠,若50A ∠=,则B 的度数为( )……外…………○……………订…………○线…………○……学校:__:___________考号:___________……内…………○……………订…………○线…………○……A .25B .30C .35D .4010.如图,在矩形ABCD 中,E 是CD 上的一点,ABE ∆是等边三角形,AC 交BE 于点F ,则下列结论不成立的是( )A .30DAE ∠=B .45BAC ∠=C .12EF FB = D .AD AB =二、填空题11.我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定位于距离地球36000千米的地球同步轨道,将"36000"用科学计数法表示为__________.12.如图,//AB CD ,AB AE ⊥,42CAE ∠=,则ACD ∠的度数为__________.…………○…………装………订…………○…线…………○……※※请※※不※※要※※在※※内※※答※※题※※…………○…………装………订…………○…线…………○……13.小明家有一个如图所示的闹钟,他观察圆心角AOB90∠=,测得ACB的长为36cm,则ADB的长为__________cm.14.若反比例函数y=1kx-的图象经过点(﹣2,3),则k=_____.15.时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
2020湖南省益阳市中考数学试卷(附答案解析)

2020年湖南省益阳市中考数学试卷一、选择题选择题((本题共10个小题个小题,,每小题4分,共40分.每小题给出的四个选项中每小题给出的四个选项中,,只有一项是符合题目要求的只有一项是符合题目要求的))1.(4分)四个实数1,0,,﹣3中,最大的数是( )A .1B .0C .D .﹣32.(4分)将不等式组的解集在数轴上表示,正确的是( )A .B .C .D .3.(4分)如图所示的几何体的俯视图是( )A .B .C .D .4.(4分)一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为( )A .7B .4C .3.5D .35.(4分)同时满足二元一次方程x ﹣y =9和4x +3y =1的x ,y 的值为( )A .B .C .D .6.(4分)下列因式分解正确的是( )A.a(a﹣b)﹣b(a﹣b)=(a﹣b)(a+b)B.a2﹣9b2=(a﹣3b)2C.a2+4ab+4b2=(a+2b)2D.a2﹣ab+a=a(a﹣b)7.(4分)一次函数y=kx+b的图象如图所示,则下列结论正确的是( )A.k<0 B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<08.(4分)如图, ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是( )A.10 B.8 C.7 D.69.(4分)如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB,若∠A=50°,则∠B的度数为( )A.25°B.30°C.35°D.40°。
湖南省益阳市2020年中考数学试题

湖南省益阳市2020年中考数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 四个实数,,,中,最大的是()A.B.C.D.2. 将不等式组的解集在数轴上表示,正确的是()A.B.C.D.3. 图所示的几何体的俯视图是()A.B.C.D.4. 一组数据由个数组成,其中个数分别为,,,且这组数据的平均数为,则这组数据的中位数为()A.B.C.D.5. 同时满足二元一次方程和的,的值为()A.B.C.D.6. 下列因式分解正确的是()A.B.C.D.7. 一次函数的图象如图所示,则下列结论正确的是()A.B.C.随的增大而减小D.当时,8. 如图,的对角线,交于点,若,,则的长可能是()A.B.C.D.9. 如图,在中,的垂直平分线交于点,平分,若,则的度数为()A.B.C.D.10. 如图,在矩形中,是上的一点,是等边三角形,交于点,则下列结论不成立的是()A.B.C.D.二、填空题11. 我国北斗全球导航系统最后一颗组网卫星于年月日成功定位于距离地球千米的地球同步轨道,将用科学计数法表示为__________.12. 如图,,,,则的度数为__________.13. 小明家有一个如图所示的闹钟,他观察圆心角,测得的长为,则的长为__________.14. 若反比例函数y=的图象经过点(﹣2,3),则k=_____.15. 时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。
小朋友甲的口袋中有粒弹珠,其中粒红色,粒绿色,他随机拿出颗送给小朋友乙,则送出的弹珠颜色为红色的概率是__________.16. 已知一个多边形的内角和为540°,则这个多边形是______边形.17. 若计算的结果为正整数,则无理数的值可以是__________.(写出一个符合条件的即可)18. 某公司新产品上市天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是__________元.三、解答题19. 计算:20. 先化简,再求值:,其中21. 如图,是的半径,过点作的切线,且,,分别交于点,,求证:22. 为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇笔画数字数请解答下列问题:(1)被统计汉字笔画数的众数是多少?分组笔画数(画)字数(个)组组组组组请确定上表中、的值及扇形统计图中组对应扇形圆心角的度数.(3)若这篇文章共有个汉字,估计笔画数在画(组)的字数有多少个?23. 沿江大堤经过改造后的某处横断面为如图所示的梯形,高米,斜坡的坡度,此处大堤的正上方有高压电线穿过,表示高压线上的点与堤面的最近距离(、、在同一直线上),在点处测得.(1)求斜坡的坡角(2)电力部门要求此处高压线离堤面的安全距离不低于米,请问此次改造是否符合电力部门的安全要求?(参考数据:,,,)24. “你怎么样,中国便是怎么样:你若光明,中国便不黑暗”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖南省益阳市中考数学试卷一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)四个实数1,0,,﹣3中,最大的数是()A.1B.0C.D.﹣32.(4分)将不等式组的解集在数轴上表示,正确的是()A.B.C.D.3.(4分)如图所示的几何体的俯视图是()A.B.C.D.4.(4分)一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为()A.7B.4C.3.5D.35.(4分)同时满足二元一次方程x﹣y=9和4x+3y=1的x,y的值为()A.B.C.D.6.(4分)下列因式分解正确的是()A.a(a﹣b)﹣b(a﹣b)=(a﹣b)(a+b)B.a2﹣9b2=(a﹣3b)2C.a2+4ab+4b2=(a+2b)2D.a2﹣ab+a=a(a﹣b)7.(4分)一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<08.(4分)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.69.(4分)如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°10.(4分)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE 于点F,则下列结论不成立的是()A.∠DAE=30°B.∠BAC=45°C.D.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定点于距离地球36000千米的地球同步轨道.将“36000”用科学记数法表示为.12.(4分)如图,AB∥CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为.13.(4分)小明家有一个如图所示的闹钟,他观察发现圆心角∠AOB=90°,测得的长为36cm,则的长为cm.14.(4分)反比例函数y=的图象经过点P(﹣2,3),则k=.15.(4分)小朋友甲的口袋中有6粒弹珠,其中2粒红色,4粒绿色,他随机拿出1颗送给小朋友乙,则送出的弹珠颜色为红色的概率是.16.(4分)一个多边形的内角和等于540°,则这个多边形的边数是.17.(4分)若计算×m的结果为正整数,则无理数m的值可以是(写出一个符合条件的即可).18.(4分)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是元.三、解答题(本题共8个小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(﹣3)2+2×(﹣1)﹣|﹣2|.20.(8分)先化简,再求值:(﹣)÷,其中a=﹣2.21.(8分)如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O于C,D.求证:AC=BD.22.(10分)为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:笔画数123456789101112131415字数4810161420243616141191071请解答下列问题:(1)被统计汉字笔画数的众数是多少?(2)该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:分组笔画数x(画)A字数(个)A组1≤x≤322B组4≤x≤6mC组7≤x≤976D组10≤x≤12nE组13≤x≤1518请确定上表中的m、n的值及扇形统计图中B组对应扇形圆心角的度数;(3)若这篇文章共有3500个汉字,估计笔画数在7~9画(C组)的字数有多少个?23.(10分)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)24.(10分)新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?25.(12分)如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2﹣x1)2+(y2﹣y1)2】(1)判断点P在运动过程中是否经过点C(0,5);(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;x…02468…y……(3)点C关于x轴的对称点为C',点P在直线C'F的下方时,求线段PF长度的取值范围.26.(12分)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA 重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.2020年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题4分,共40分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)四个实数1,0,,﹣3中,最大的数是()A.1B.0C.D.﹣3【解答】解:四个实数1,0,,﹣3中,﹣3<0<1<,故最大的数是:.故选:C.2.(4分)将不等式组的解集在数轴上表示,正确的是()A.B.C.D.【解答】解:解不等式x+2≥0,得:x≥﹣2,又x<1,∴不等式组的解集为﹣2≤x<1,将不等式组的解集表示在数轴上如下:故选:A.3.(4分)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上面看该几何体,选项D的图形符合题意,故选:D.4.(4分)一组数据由4个数组成,其中3个数分别为2,3,4,且这组数据的平均数为4,则这组数据的中位数为()A.7B.4C.3.5D.3【解答】解:根据题意知,另外一个数为4×4﹣(2+3+4)=7,所以这组数据为2,3,4,7,则这组数据的中位数为=3.5,故选:C.5.(4分)同时满足二元一次方程x﹣y=9和4x+3y=1的x,y的值为()A.B.C.D.【解答】解:由题意得:,由①得,x=9+y③,把③代入②得,4(9+y)+3y=1,解得,y=﹣5,代入③得,x=9﹣5=4,∴方程组的解为,故选:A.6.(4分)下列因式分解正确的是()A.a(a﹣b)﹣b(a﹣b)=(a﹣b)(a+b)B.a2﹣9b2=(a﹣3b)2C.a2+4ab+4b2=(a+2b)2D.a2﹣ab+a=a(a﹣b)【解答】解:A、a(a﹣b)﹣b(a﹣b)=(a﹣b)2,故此选项错误;B、a2﹣9b2=(a﹣3b)(a+3b),故此选项错误;C、a2+4ab+4b2=(a+2b)2,正确;D、a2﹣ab+a=a(a﹣b+1),故此选项错误;故选:C.7.(4分)一次函数y=kx+b的图象如图所示,则下列结论正确的是()A.k<0B.b=﹣1C.y随x的增大而减小D.当x>2时,kx+b<0【解答】解:如图所示:A、图象经过第一、三、四象限,则k>0,故此选项错误;B、图象与y轴交于点(0,﹣1),故b=﹣1,正确;C、k>0,y随x的增大而增大,故此选项错误;D、当x>2时,kx+b>0,故此选项错误;故选:B.8.(4分)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.9.(4分)如图,在△ABC中,AC的垂直平分线交AB于点D,DC平分∠ACB,若∠A=50°,则∠B的度数为()A.25°B.30°C.35°D.40°【解答】解:∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣50°﹣100°=30°,故选:B.10.(4分)如图,在矩形ABCD中,E是DC上的一点,△ABE是等边三角形,AC交BE 于点F,则下列结论不成立的是()A.∠DAE=30°B.∠BAC=45°C.D.【解答】解:∵四边形ABCD是矩形,△ABE是等边三角形,∴AB=AE=BE,∠EAB=∠EBA=60°,AD=BC,∠DAB=∠CBA=90°,AB∥CD,AB=CD,∴∠DAE=∠CBE=30°,故选项A不合题意,∴cos∠DAC==,故选项D不合题意,在△ADE和△BCE中,,∴△ADE≌△BCE(SAS),∴DE=CE=CD=AB,∵AB∥CD,∴△ABF∽△CEF,∴,故选项C不合题意,故选:B.二、填空题(本题共8个小题,每小题4分,共32分,请将答案填在答题卡中对应题号的横线上)11.(4分)我国北斗全球导航系统最后一颗组网卫星于2020年6月30日成功定点于距离地球36000千米的地球同步轨道.将“36000”用科学记数法表示为 3.6×104.【解答】解:36000=3.6×104.故答案为:3.6×104.12.(4分)如图,AB∥CD,AB⊥AE,∠CAE=42°,则∠ACD的度数为132°.【解答】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故答案为:132°.13.(4分)小明家有一个如图所示的闹钟,他观察发现圆心角∠AOB=90°,测得的长为36cm,则的长为12cm.【解答】解:法一:∵的长为36cm,∴=36,∴OA=,则的长为:=×=12(cm);法二:∵与所对应的圆心角度数的比值为270°:90°=3:1,∴与的弧长之比为3:1,∴的弧长为36÷3=12(cm),答:的长为12cm.故答案为:12.14.(4分)反比例函数y=的图象经过点P(﹣2,3),则k=﹣5.【解答】解:∵反比例函数y=的图象经过点(﹣2,3),∴3=,解得k=﹣5.故答案是:﹣5.15.(4分)小朋友甲的口袋中有6粒弹珠,其中2粒红色,4粒绿色,他随机拿出1颗送给小朋友乙,则送出的弹珠颜色为红色的概率是.【解答】解:∵口袋中有6粒弹珠,随机拿出1颗共有6种等可能结果,其中送出的弹珠颜色为红色的有2种结果,∴送出的弹珠颜色为红色的概率是=,故答案为:.16.(4分)一个多边形的内角和等于540°,则这个多边形的边数是5.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:5.17.(4分)若计算×m的结果为正整数,则无理数m的值可以是(答案不唯一)(写出一个符合条件的即可).【解答】解:若计算×m的结果为正整数,则无理数m的值可以是:(答案不唯一).故答案为:(答案不唯一).18.(4分)某公司新产品上市30天全部售完,图1表示产品的市场日销售量与上市时间之间的关系,图2表示单件产品的销售利润与上市时间之间的关系,则最大日销售利润是1800元.【解答】解:设日销售量y与销售天数t之间的函数关系式为y=kx,30k=60,得k=2,即日销售量y与销售天数t之间的函数关系式为y=2t,当0<t≤20时,设单件的利润w与t之间的函数关系式为w=at,20a=30,得a=1.5,即当0<t≤20时,单件的利润w与t之间的函数关系式为w=1.5t,当20<t≤30时,单件的利润w与t之间的函数关系式为w=30,设日销售利润为W元,当0<t≤20时,W=1.5t×2t=3t2,故当t=20时,W取得最大值,此时W=1200,当20<t≤30时,W=30×2t=60t,故当t=30时,W取得最大值,此时W=1800,综上所述,最大日销售利润为1800元,故答案为:1800.三、解答题(本题共8个小题,共78分,解答应写出文字说明、证明过程或演算步骤)19.(8分)计算:(﹣3)2+2×(﹣1)﹣|﹣2|.【解答】解:原式=9+2﹣2﹣2=7.20.(8分)先化简,再求值:(﹣)÷,其中a=﹣2.【解答】解:原式=÷=•=,当a=﹣2时,原式===2.21.(8分)如图,OM是⊙O的半径,过M点作⊙O的切线AB,且MA=MB,OA,OB分别交⊙O于C,D.求证:AC=BD.【解答】证明:∵OM是⊙O的半径,过M点作⊙O的切线AB,∴OM⊥AB,∵MA=MB,∴△ABO是等腰三角形,∴OA=OB,∵OC=OD,∴OA﹣OC=OB﹣OD,即:AC=BD.22.(10分)为了了解现行简化汉字的笔画画数情况,某同学随机选取语文课本的一篇文章,对其部分文字的笔画数进行统计,结果如下表:笔画数123456789101112131415字数4810161420243616141191071请解答下列问题:(1)被统计汉字笔画数的众数是多少?(2)该同学将数据进行整理,按如下方案分组统计,并制作扇形统计图:分组笔画数x(画)A字数(个)A组1≤x≤322B组4≤x≤6mC组7≤x≤976D组10≤x≤12nE组13≤x≤1518请确定上表中的m、n的值及扇形统计图中B组对应扇形圆心角的度数;(3)若这篇文章共有3500个汉字,估计笔画数在7~9画(C组)的字数有多少个?【解答】解:(1)被统计汉字笔画数的众数是8画;(2)m=16+14+20=50,n=14+11+9=34,∵被抽查的汉子个数为4+8+10+16+14+20+24+36+16+14+11+9+10+7+1=200(个),∴扇形统计图中B组对应扇形圆心角的度数为360°×=90°;(3)估计笔画数在7~9画(C组)的字数有3500×=1330(个).23.(10分)沿江大堤经过改造后的某处横断面为如图所示的梯形ABCD,高DH=12米,斜坡CD的坡度i=1:1.此处大堤的正上方有高压电线穿过,PD表示高压线上的点与堤面AD的最近距离(P、D、H在同一直线上),在点C处测得∠DCP=26°.(1)求斜坡CD的坡角α;(2)电力部门要求此处高压线离堤面AD的安全距离不低于18米,请问此次改造是否符合电力部门的安全要求?(参考数据:sin26°≈0.44,tan26°≈0.49,sin71°≈0.95,tan71°≈2.90)【解答】解:(1)∵斜坡CD的坡度i=1:1,∴tanα=DH:CH=1:1=1,∴α=45°.答:斜坡CD的坡角α为45°;(2)由(1)可知:CH=DH=12,α=45°.∴∠PCH=∠PCD+α=26°+45°=71°,在Rt△PCH中,∵tan∠PCH==≈2.90,∴PD≈22.8(米).22.8>18,答:此次改造符合电力部门的安全要求.24.(10分)新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求原来生产防护服的工人有多少人?(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?【解答】解:(1)设原来生产防护服的工人有x人,由题意得,=,解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y天才能完成任务.=5(套),即每人每小时生产5套防护服.由题意得,10×650+20×5×10y≥14500,解得y≥8.答:至少还需要生产8天才能完成任务.25.(12分)如图,在平面直角坐标系中,点F的坐标是(4,2),点P为一个动点,过点P作x轴的垂线PH,垂足为H,点P在运动过程中始终满足PF=PH.【提示:平面直角坐标系内点M、N的坐标分别为(x1,y1)、(x2,y2),则MN2=(x2﹣x1)2+(y2﹣y1)2】(1)判断点P在运动过程中是否经过点C(0,5);(2)设动点P的坐标为(x,y),求y关于x的函数表达式;填写下表,并在给定坐标系中画出该函数的图象;x…02468…y…52125…(3)点C关于x轴的对称点为C',点P在直线C'F的下方时,求线段PF长度的取值范围.【解答】解:(1)当P与C(0,5)重合,∴PH=5,PF==5,∴PH=PF,∴点P运动过程中经过点C.(2)由题意:y2=(x﹣4)2+(y﹣2)2,整理得,y=x2﹣2x+5,∴函数解析式为y=x2﹣2x+5,当x=0时,y=5,当x=2时,y=2,当x=4时,y=1,当x=6时,y=2,当x=8时,y=5,函数图象如图所示:故答案为5,2,1,2,5.(3)由题意C′(0,﹣5),F(4,2),∴直线FC′的解析式为y=x﹣5,设抛物线交直线FC′于G,K.由,解得或,∴G(,),K(,),观察图象可知满足条件的PF长度的取值范围为1≤PF<.26.(12分)定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中,E是CD上的点,将△BCE绕B点旋转,使BC与BA 重合,此时点E的对应点F在DA的延长线上,则四边形BEDF为“直等补”四边形,为什么?(2)如图2,已知四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,点B到直线AD的距离为BE.①求BE的长;②若M、N分别是AB、AD边上的动点,求△MNC周长的最小值.【解答】解:(1)∵四边形ABCD是正方形,∴∠ABC=∠BAC=∠C=∠D=90°,∵将△BCE绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,∴BE=BF,∠CBE=∠ABF,∴∠EBF=∠ABC=90°,∴∠EBF+∠D=180°,∴四边形BEDF为“直等补”四边形;(2)①过C作CF⊥BF于点F,如图1,则∠CFE=90°,∵四边形ABCD是“直等补”四边形,AB=BC=5,CD=1,AD>AB,∴∠ABC=90°,∠ABC+∠D=180°,∴∠D=90°,∵BF⊥AD,∴∠DEF=90°,∴四边形CDEF是矩形,∴EF=CD=1,∵∠ABE+∠A=∠CBE+∠ABE=90°,∴∠A=∠CBF,∵∠AEB=∠BFC=90°,AB=BC=5,∴△ABE≌△BCF(AAS),∴BE=CF,设BE=CF=x,则BF=x﹣1,∵CE2+BF2=BC2,∴x2+(x﹣1)2=52,解得,x=4,或x=﹣3(舍),∴BE=4;②如图2,延长CB到F,使得BF=BC,延长CD到G,使得CD=DG,连接FG,分别与AB、AD交于点M、N,过G作GH⊥BC,与BC的延长线交于点H.则BC=BF=5,CD=DG=1,∵∠ABC=∠ADC=90°,∴CM=FM,CN=GN,∴△MNC的周长=CM+MN+CN=FM+MN+GN=FG的值最小,∵四边形ABCD是“直等补”四边形,∴∠A+∠BCD=180°,∵∠BCD+∠HCG=180°,∴∠A=∠HCG,∵∠AEB=∠CHG=90°,∴∵AB=5,BE=4,∴AE=,∴,∴GH=,CH=,∴FH=FC+CH=,∴FG==8,∴△MNC周长的最小值为8.。