特斯拉线圈与无线电力传输要点

特斯拉线圈与无线电力传输要点
特斯拉线圈与无线电力传输要点

特斯拉线圈与无线输电

摘要:美籍塞尔维亚裔科学家尼古拉·特斯拉在1891年发明特斯拉线圈,主要用来生产超高电压但低电流、高频率的交流电力。为更好地解释特斯拉现象,我们做了特斯拉闪电实验。现在特斯拉线圈被很多爱好者用来制作绚丽的人工闪电,其最重要的应用之一就是可以用来实现无线输电。无线输电是可实现供电体与用电体之间的非物理接触而进行能量传输的一种模式。无线输电技术不仅在实际生产生活中应用前景巨大,利用无线输电可减少电线的使用,从而降低生产成本,增加生产过程安全性,如减少电线使用一定程度上降低火灾发生几率。本文就特斯拉线圈和无线电力传输的基本原理做了一些介绍,并对其未来可能的应用做了一些探讨。

关键词:特斯拉线圈高频振荡无线输电应用前景

引言:19世纪末被誉为“迎来电力时代的天才”的名尼古拉·特斯拉在电气与无线电技术方面作出了突出贡献。他1891年发明高频变压器( 特斯拉线圈) ,现仍广泛用于无线电、电视机及其他电子设备。他曾致力于研究无线传输信号及能量的可能性,并在1899年演示了不用导线采用高频电流的电动机,但由于效率低和对安全方面的担忧,无线力传输的技术无突破性进展。1 9 0 l —1 9 0 5 年在纽约附近的长岛建造Warden.clyfe 塔,是一座复杂的电磁振荡器,设想它将能够把电力输到世界上任何一角落,特斯拉利用此塔实现地球与电离层共振。特斯拉有生之年没有财力实现这一主张。后人从理论上完全证实了这种方案的可行性,证明这种方案不仅可行,而且效率极高,对生态安全,并且不会干扰无线电通信。

若无线充电技术可实现,电池、电线等将逐渐被无线取代,这将大大缓解由

电池、电线带来的环境、能源问题,如应用到医疗救援事业——心脏起搏器,病人无需为更换“心脏起搏器”而动手术,可直接进行无线输电;若生命探测机器人可进行无线充电,那么它就可长时间不间断进行搜救工作,使其工作效率大大提高。如应用在军事方面——间谍机器人可进行无线充电,无需担心供能问题,长时间持续工作便可实现。至于家庭应用方面,通过无线充电则可克服很多麻烦如手机充电线,电脑充电线等。总之,无线输电技术普及,将有益于提高人类的生活水平。

1. 特斯拉无线输电的发展现状:

国外对无线电能传输技术的研究较早,早在20世纪70年代中期就出现了无线电动牙刷,随后发布了几项有关这类设备的美国专利。20世纪90年代初期,新西兰奥克兰大学对感应耦合功率传输技术(ICPT)进行研究,经过十多年的努力,该技术在理论和实践上已经获得重大突破研究主要集中在给移动设备,特别是在恶劣环境下工作的设备的供破。

1995年1月,美国汽车工程协会根据Magne-chargeTM系统的设计,制订了在美国使用非接触感应电能传输技术进行电动汽车充电的统一标准———SAEJ.1773[4]。

通过对近年来国外无接触功率传输理论与实验的研究成果发现,目前无接触功率传输的研究绝大部分是近距离传输方面的研究,国外对带气隙的变压器模型的理论分析和应用设计已有不少成果,且有部分成果已经得到了实际应用,而对于远距离的无接触功率传输的研究,国外直到近几年才有相关实验成果的报道。如美国麻省理工学院的马林·索尔贾希克教授及其团队在2006年用所谓的“电磁共振原理”成功将2.13m外的60W的灯泡点亮。2008年9月美国内华达州的雷电

实验,日本也研究出远距离室成功的将800W电力无线传输到5m远的距离,提供30W功率的实验装置。

2.2 国内研究现状

国内在无线输电技术方面研究还处于起步阶段,近年来,中科院院士严陆光和西安交通大学的王兆安等人也开始对该新型电能接入技术进行研究。重庆大学自动化学院非接触电能传输技术研发课题组自2001年便开始了对国内外非接触式电能接入技术相关基础理论与实用技术的密切跟踪和研究,并与国际上在该领域研发工作处于领先水平的新西兰奥克兰大学波依斯教授为首的课题组核心成员PatrickAiguoHu博士进行了深层次的学术交流与科技合作,在理论和技术成果上有了较大的突破。2007年2月,课题组攻克了非接触感应供电的关键技术。

国内科技企业在无线输电研究方面也有较快进展。2010年1月,海尔在第四十三届国际消费类电子产品展览会上推出全球首台无尾电视。

2.特斯拉线圈原理:

特斯拉线圈是利用电路谐振进行能量变换的高压发生装置。它的工作原理与普通变压器有较大不同。普通变压器的耦合系数K 一般接近于1,所以初级和次级电压基本成比例关系;而特斯拉线圈的耦合系数一般都小于0.3,工作时,两级电压比例是随时间变化而变化的,不成线性关系。下面先来看看特斯拉线圈的主体结构:

特斯拉线圈的主体部分包括:升压充电回路、初级谐振回路和次级回路;初级谐振回路由初级线圈、主电容、打火器构成。次级谐振回路次级线圈和放电顶端构成,电容和电感的数值可根据实际制作而定。但最关键的是两回路的谐振频率要相同。

特斯拉线圈的工作过程:电源要先给主电容充电,当电压达到打火器的放电阀值时,打火器间隙的空气电离打火,近似导通,建立初级谐振回路,通过振荡向次级回路传递能量。次级回路随之振荡,接收能量,放电顶罩的电压逐渐增大,并电离附近的空气,‘寻找’放电路径,一旦与地面形成‘通路’,‘闪电’也就出现了,如果没有‘闪电’,几个(次数主要与耦合系数有关)周波后,初级回路能量释放完毕。较大部分的能量都转移到次级回路上,一部分能量损耗在回路上。次级回路继续振荡,并反客为主,带动初级回路振荡,以相同的方式把刚才得到的能量还给初级回路。但又一部分能量损耗在回路上,如此反复(见原理演示图),直到损耗掉大部分能量。打火器两端电压和电流都不足后,打火器等效断开,由外部电源继续给主电容充电。充电过程要比放电过程长得多,大概在3~10 毫秒左右。所以特斯拉线圈放电频度都在每秒100 次以上,也使肉眼看上去为连续放电效果。原理演示图如下:

上面这张形象地描述了特斯拉线圈工作时的能量传递过程,为了更进一步

了解变化的快慢,下面从波形仿真角度来看看电压的变化过程:

进一步放大比较:

模拟以上波形的各项参数:

L1=11uH, C1=230nF; L2=60mH, C2=42pF; 主电容工作电压:V=10KV 耦合系数:K=0.14; 谐振频率:f=100KHz;

实物参照图:

3.利用特斯拉线圈原理实现小型无线输电实验

3.1 总体设计

无线供电系统由电源电路、高频振荡电路、高频功率放大电路、发射、接收线圈和高频整流滤波电路5 部分组成,系统框架如下图所示,最后给可充电电池充电。从无线电路传输的原理上看,电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播,要产生电磁波首先要有电磁振荡,电磁波的频率越高其向空间辐射能力的强度就越大,电磁振荡的频率至少要高于100KHZ,才有足够的电磁辐射。

3.2 高频振荡电路设计

用CMOS 电路六反相器CD4069 的晶体振荡电路CD4069 构成的两种晶体

振荡电路如图(2)所示

3.3 功率放大器的设计

电路如图(3)所示场效应管属于电压控制元件,是一种类似于电子管的三极管,与双极型晶体管相比,场效应晶体管具有输入阻抗高,输入功耗小,温度稳定性好,信号放大稳定性好,信号失真小,噪声低等特点,而且其放大特性也比电子三极管好,图(3)功率场效应管电路中三个电阻R1、R2、R3 并联接到场效应管的栅极G,前级的高频振荡电路也接到G;原级S 直接接地;漏极D 接LC 振荡电路,其谐振频率和前级的高频振荡频率相同。

3.4 发射、接收线圈电路流程图4 如下所示

发射模块接收模块

发射和接收线圈都采用直径0.5ram左右的漆包线绕12 匝,线圈直径约为80r。发射模块的作用是将直流能量高效率地转换为射频功率信号,以便接收电路能够充分利用能量接收模块是在接收到前级的能量后对其进行处理的模块。为了满足实际应用的需求,需要将接收到的射频信号进行整流、滤波、降压以及稳压处理,处理之后的直流电压方可供其他负载使用。该模块主要包括整流电路以及降压电路。

4.无线电力技术的应用前景

无线电力传输作为一种先进的技术一般应用于特殊的场合,具有广泛的应用前景。

4.1 给一些难以架设线路或危险的地区供应电能

高山、森林、沙漠、海岛等地的台站经常遇到架设电力线路困难的问题,而工作在这些地方的边防哨所、无线电导航台、卫星监控站、天文观测点等需要生活和工作用电,无线输电可补充电力不足。此外,无线输电技术还可以给游牧等分散区村落无变压器供电和给用于开采放射性矿物、伐木的机器人供电。

4.2 解决地面太阳能电站、水电站、风力电站、原子能电站的电能输送问题

我国的新疆、西藏、青海等地降雨量少、日照充足且存在大片荒芜土地,南方部分地区水力、风力资源丰富,这些地区有利于建造地面太阳能发电站或水电站、风力电站。可是,这些地区人烟稀少、地形复杂,在崇山峻岭之中难以架设线路,这时无线输电技术就有了用武之地。采用无线输电技术,还可以把核电站建在沙漠、荒岛等地。这样一方面便于埋葬核废料,另一方面当电站运行发生故障时也可以避免对周围动植物的大量伤害和耕地的污染。

4.3 传送卫星太阳能电站的电能

所谓卫星太阳能电站,就是用运载火箭或航天飞机将太阳能电池板或太阳能聚光镜等材料发送到赤道上空35800km的地球静止同步轨道上。在太空的太阳光线没有地球大气层的影响,辐射能量十分稳定,是“取之不尽”的洁净能源。并且一年中有99%的时间是白天,其利用效率比地面上要高出6—15倍。在那里利用太阳能电池板把阳光直接转变为电能,或者用太阳能聚光镜把阳光汇聚起来作为热源,像地面热电厂一样发电。这样产生的电能供给微波源或激光器,然后采用无线输电技术将大功率电磁射束发送至地面,接收到的微波能量经整流器后变成直流电,由变、配电设施供给用户。

4.4 无接点充电插座

随着无线电力技术的发展,一些小型用电设备已经实现了无线供电。如:电动牙刷、“免电池”无线鼠标、无线供电“膜片”/“垫”等。无线供电“膜片”/“垫”是一种家用电器无线供电方式,用一片图书大小的柔软塑料膜片就可对家电进行无线供电,可为圣诞树上的LED、装饰灯、鱼缸水中的灯泡、小型电机、手机、MP3、随身听、温度传感器、助听器、汽车零部件、甚至是植入式医疗器件等供电。4.5 给以微波发动机推进的交通运输工具供电

现在大部分交通运输工具燃烧石油产品,其发动机叫做柴油发动机、汽油发动机等。与此类比,以微波作为能源推进的发动机叫做微波发动机。微波是工作频率在0.3—300GHz的电磁波,不能直接用它来驱动电动机,因为要设计出在如此高的频率下工作的发动机非常困难。如果思路加以改变,把微波能量转变为直流电流的整流器,那么微波就可以直接作为交通工具的能源了。煤、石油、天然气的存储量有限,而日消耗量巨大,总有耗尽之日,到那时卫星太阳能电站可

望成为能源供给的主干,通过无线输电技术就可以直接把微波能量输给交通运输工具。

4.6 在月球和地球之间架起能量之桥

世界人口的不断增长和地球资源的日益耗尽,太阳系中其他星球的开发利用是人类一直以来的夙愿。月球是地球的天然卫星,其上资源丰富,地域辽阔,是首先要开发的星体。未来人类对月球的利用主要是移民和资源获取。月球的土壤里富含SiO2,是制造太阳能电池的原料。如果先在月球上建立起工厂,然后把太阳能电站直接建在月球上,比起建在地球静止同步轨道上要容易些,借助于微波束或激光束把电能发送到地球。

5.结语

随着无线电力传输技术的不断发展与成熟,不但使人们未来的生活有望摆脱手机、相机、笔记本电脑等移动设备电源线的束缚,享受在机场、车站、酒店多种场所提供的无线电力,而且可用于一些特殊场合,如人体植入仪器如心脏起搏器等的输电问题、新能源(电动)汽车、低轨道军用卫星、太阳能卫星发电站等。在世界经济迅速发展的今天,节能和新的、可再生能源的开发是摆在能源工作者面前的首要问题。太阳能是取之不尽、用之不竭的干净能源。除核能、地热能和潮汐能之外,地球上的所有能源都来自太阳,建造卫星太阳能电站是解决人类能源危机的重要途径。要将相对地球静止的同步轨道上的电能输送的地面,无线输电技术将发挥至关重要的作用。从长远来看,该技术具有潜在的广泛应用前景。但是,每一种无线传输方式,都有一系列问题需要解决,如电能传输效率问题,电力公司如何收费和计费,能量传输所产生的电磁波是否对人体健康带来危害,等等。不管怎样,一旦这项技术能够普及,就会给人们的生活带来巨大的便利。

参考文献:

1.冯慈璋、马西奎:《工程电磁场导论》,高等教育出版社2000版。

2.杨拴科、赵进全:《模拟电子技术基础》,高等教育出版社2010版。

3.杨建国、宁改娣:《电子技术实验指导书》,西安交通大学出版社。

4.张克农、宁改娣:《数字电子技术基础》,高等教育出版社2010版。

5.王锡凡:《电气工程技术》,西安交通大学出版社2009版。

6.中国科协学会学术部:《无线电能传输关键技术问题与应用前景》,中国科学技术出版社2012版。

7.Admin,《电磁感应与耦合融合的无线输电》,文章出自中国CN期刊在线投稿联盟。

8.(美) 玛格丽特.切尼《被埋没的天才:科学超人尼古拉·特斯拉》,陈璐译,重庆出版社2010版。

9.《特斯拉线圈制作》、《特斯拉线圈原理》、《无线输电技术原理》,文章出自百度文库。

10.《特斯拉线圈》,文章出自百度百科。

浅谈无线电力传输

浅谈无线电力传输 张业邹代宇陈昊 内容摘要:无线电力传输技术是一项新兴的科技,这项技术未来将很大程度的造福人类。本文将对无线电力传输技术的历史,基本原理,研究现状以及未来前景进行介绍,让人们更好地认识这门新兴技术。 关键词:无线电力传输,电磁感应,耦合,共振,无线充电,改变世界。 一、无线电能传输的发展历史 1820年:安培,安培定理表明电流可以产生磁场。1831年:法拉第,法拉第电磁感应定律是电磁学的一个重要的基本规律。1864年:麦克斯韦建立了统一的电磁场方程,用数学的方法描述电磁辐射。1864年:赫兹证实了电磁辐射的存在。赫兹产生电磁波的设备是VHF和UHF 波段的放电发射机。1891年:特斯拉(NikolaTesla)改善了赫兹的微波发射器的射频功率供应,并申请专利。1893年:特斯拉在芝加哥的哥伦比亚世界博览会展示了他的无线传输的荧光照明灯。1894年:勒布朗(Hutin&LeBlanc)相信可以感应传输电能,并申请了关于一个能传输3KHz电能的系统的美国专利。1894年:特斯拉分别在纽约的第五大道南35号的实验室和休斯敦街46号的实验室通过无线方式点亮了一个单极白炽灯,实验手段用到电力感应、无线共振感应耦合等技术。1894年:钱德拉玻(JagdishChandraBose)使用电磁波信号远距离点燃火药和

触响铃铛,表明不用电线也能传递能量。1895年:钱德拉玻无线传输信号将近一英里远的距离。1896年:特斯拉发射了约48公里(30英里)距离的信号。1897年:马可尼(GuglielmoMarconi)使用超低频无线电发射器传送6公里的摩尔斯电码信号。1897年:特斯拉申请了无线传输的专利。自此,无线电力传输技术真正走上了历史的舞台。 一、无线电能传输的基本原理 无线输电技术根据其应用场合的变化有不同的原理,技术方案也不尽相同。 1.电磁感应原理 此原理与电力系统中常用的变压器原理类似。在变压器的原边通入交变电流,副边会由于电磁感应原理感应出电动势,若副边电路连通,即可出现感应电流,其方向的确定遵从楞次定律,大小可由麦克斯韦电磁理论解出。电力系统中的电压、电流互感器也是采用了类似的原理。相对于无线输电而言,变压器的原边相当于电能发射线圈,副边相当于电能接收线圈,这样就可以实现电能从发射线圈到接收线圈的无线传输。虽然电磁感应原理在电力系统中应用的初衷并不侧重于电能的传输,而是利用能量的转化改变电压、电流的数量级,但其对无线输电确实产生了一定的启发作用, 尤其是电能的小功率、短距离传送。目前使用电磁感应传递电能的主要有电动牙刷, 以及手机、相机、MP3等小型便携式电子设备,由充电底座对其进行无线充电。电能发射线圈安装在充电底座内,接收线圈则安装在电子设备中。这种原理的无

高效无线电力传输系统

高效无线电力传输系统 摘要——本文提出了基于自动引导车辆的无线电力传输系统的概念,该系统在车上装有充电电池,并在特定的地方进行充电。当给车辆充电时,要接近蓄电池充电器进行自动充电,因此,蓄电池充电器的初级变压器与车上的次级变压器之间需要较大的间隙,用以防止碰撞损坏。这样的话就要设法预防由于这个较大距离产生的变压器耦合率的降低,传统的无线电力传输技术由于电力需要通过拾波电圈从电线获得,就要装备一个大尺寸的变压器,并且当距离超过车行驶的长度铜的损失也会加大。先进的系统采用一个高频率的应用软开关方法变极器减小变压器尺寸,变压器间隙每10mm耦合率0.88,并且可达到91%的运行效率。 1.引言 最近,研究者对基于诸如自动引导车辆等运动机械的无线电力传输系统进行了测试,自动引导车辆通常使用带台车的供电系统,但好的金属粒子是通过供电时的摩擦产生的,由于无线电力传输系统不产生摩擦,其严格要求在清洁的室内或医院里,并且因为没有磨损从而该系统有减低维修频率的有点。 传统的带有无线电力传输系统的自动引导车辆需要一条与轨道平行的电线并且通过拾波电圈获得电能,但是因为拾波电圈在结构上与变压器的第一圈相似,所以为了在次级变压器端(车辆端)获得足够的电能,在初级变压器一端(电线端)需要超额的电流,特别是当车辆行驶一段长距离,铜损失不能被忽略,并且由于发生磁通量的大量泄漏,耦合率不足,所以拾波线圈也需要大型的变压器和较大的电能供应设备。 本文提出了基于自动引导车辆的无线电力传输系统的概念,在无线变压器见有10mm间隙的情况下,得到不同变压器结构的仿真和实验结果,从这些结果中给出了一种高耦合率的变压器结构,此外采用了0V变换方式的回荡变极器作为供电设备(蓄电池充电器)的变极器,选取100kHz变换频率以减小变压器尺寸。对充电器和变压器的实验评价显示该提出的系统可以高效率运行。 2.无线电力传输系统的概念 图1.表示基于自动引导车辆的无线电力传输系统的新概念,该系统的充电电池装载在车

无线电能传输实验报告

实验报告 1.实验原理 与无线通信技术一样摆脱有形介质的束缚,实现电能的无线传输是人类多年的一个美好追求。无线电能传输技术 (Wireless Power Transfer, WPT )也称之为非接触电能传输技术(Contactless PowerTransmission, CPT ),是一种 借于空间无形软介质(如电场、磁场、微波等)实现将电能由电源端传递至用电设备的一种供电模式,该技术是集电磁场、电力电子、高频电子、电磁感应和耦合模理论等多学科交叉的基础研究与应用研究,是能源传输和接入的一次革命性进步。 无线电能传输技术解决了传统导线直接接触供电的缺陷,是一种有效、安全、便捷的电能传输方法,因而它被美国技术评论》杂志评选为未来十大科研方向之一。该技术不仅在军事、航空航天、油田、矿井、水下作业、工业机器人、电动汽车、无线传感器网络、医疗器械、家用电器、RFID识别等领域具有重要的应用价值,而且对电磁理论的发展亦具有重要科学研究价值和实际意义。在中国科协成立五十周年的系列庆祝活动中,无线能量传输技术被列为“0 项引领未来的科学技术”之一。 到目前为止,根据电能传输原理,无线电能传输大致可以分为三类:感应耦合式、微波辐射式、磁耦合谐振式。作为一个新的无线电能传输技术,磁耦合谐振式是基于近场强耦合的概念,基本原理是两个具有相同谐振频率的物体 学习参之间可以实现高效的能量交换,而非谐振物体之间能量交换却很微弱。

磁耦合谐振式无线电能传输的传输尺度介于前两者之间,因此也被称之为中尺度(mid-range)能量传输技术,其尺度为几倍的接收设备尺寸(可扩展到几米到几十米)。 除了较大的传输距离,还存在以下优势:由于利用了强耦合谐振技术,可以实现较高的功率(可达到kW)和效率;系统采用磁场耦合(而非电场,电场会发生危险)和非辐射技术,使其对人体没有伤害;良好的穿透性,不受非金属障碍物的影响。因此该技术已经成为无线电能传输技术新的发展方向。 基于磁耦合谐振技术的无线电能传输技术主要利用的是近场磁耦合共振技术,共振系统由多个具有相同本征频率的物体构成,能量只在系统中的物体间 传递,与系统之外的物体基本没有能量交换,在达到共振时,物体振动的幅度达到最大。 基于磁耦合谐振技术的无线电能传输系统一般由高频发射源、发射系统、接收系统、负载等部分组成,其中发射系统和电磁接收系统,是无线电能传输系统的关键部分。 其典型模型如下图所示。由下图可知发射系统包括励磁线圈和发射线圈,它们之间是通过直接耦合关系把能量从励磁线圈传到发射线圈,励磁线圈所需能量直接从高频电源处获得。电磁接收系统包括接收线圈和负载线圈,它们之间也是通过直接耦合关系把能量从接收线圈传到负载线圈。发射线圈与接收线圈之间通过空间磁场的谐振耦合实现电能的无线传输。 学习参

浅析水下无线电能传输技术的发展及应用趋势

浅析水下无线电能传输技术的发展及应用趋势 发表时间:2019-06-28T09:41:40.967Z 来源:《中国电气工程学报》2019年第4期作者:赵文圣  [导读] 摘要:无线电能传输技术是当下研究的热点,是人工智能、电子信息、电气设备等方面重要研发方向,因其使用较比方便,在某些特殊的环境能够发挥更大的作用。而水下无线电能传输根据研究价值,笔者粗浅分析了水下无线电能传输技术的发展及应用趋势。中国矿业大学 221116 摘要:无线电能传输技术是当下研究的热点,是人工智能、电子信息、电气设备等方面重要研发方向,因其使用较比方便,在某些特殊的环境能够发挥更大的作用。而水下无线电能传输根据研究价值,笔者粗浅分析了水下无线电能传输技术的发展及应用趋势。 关键词:无线电能传输技术;水下传输;应用趋势 海洋搜救、水下探测、潜水运动等使用的水下设备,大多使用传统电池供电方式,而水下设备其他供电方式的研究不断进行,无线电传输技术也随着引入水下设备供电系统之中。在未来,谁能首先解决水下无线电能传输问题,谁就能在未来海洋工程中占得先机。 1、无线电能传输技术的发展 19世纪30年代,作为第一发现电磁感应现象的英国科学家法拉第,开创了无线电能传输的新纪元。1890年,克罗地亚科学家尼古拉·特斯拉(Nikola Tesla)提出一个大胆的构想:把地球作为导体,在地球与电离层之间建立起低频共振,利用环绕地球的表面电磁波来远距离传输电力[1],后来特斯拉建成了187英尺的无线电能传输铁塔。20世纪90年代,飞利浦公司研发出了无线充电牙刷,通过内部线圈感应充电器发出的磁场后充电。2007年6月,知名的美国麻省理工学院,校内研究小组利用无线电能传输技术给远处的灯泡供电,成功点亮了灯泡,同时点亮了世界对于无线电能传输技术的新里程碑。随着历史的不断发展,科学的不断进步目前无线电能传输主要有三种方式,即电磁感应式、电磁共振式、电磁波发射式。 水下无线电能传输技术也随着无线电技术的发展而发展,在我国,浙江大学流体传动及控制实验室对于水下电磁耦合、充放电系统、线圈优化等方面都有较大的研究成果,是我国国家重点实验室;西北工业大学对于水下电路结构设计、水下电磁耦合等方面也进行重点研究;国防科技大学也研究了独有的水下无线电能传输系统。 2、水下无线电能传输技术应用发展趋势 随着人类对于海洋的不断开发,水下作业不断增加,同时要求工作要求难度越高、时间越长,因此水下设备要求更高,能解决更多问题,而无线电能传输技术也在向结构多样化、功能集成化等方向发展,同时也存在急需解决的各种问题。 2.1 结构多样化 由于各国工业用电标准不一致,设备多样化,因此无线电能传输也在向着多样化结构发展。以线圈绕组方式分类,可分为单面和双面绕组方式。单面绕组需要宽度达的耦合器,而耦合器的位置在整个无线电能传输系统中有会有很大影响。而且单面绕组式需要设置屏蔽板,用以阻止漏磁通[2]。但由于现代技术的不断发展,对于电子设备的体积也需要不断变小,而此时单面绕组式则体现了其体积小、重量轻、扁平化等特性,适用于未来发展需要。 由于水下作业的特殊情况,设备精度一般较低,使用比较困难,因此选择合适的磁芯对于整个设备的电能传输尤为重要。罐型磁芯的电磁屏蔽性较好,在一定程度上能够很好的抗干扰性,适用于水下作业对于设备的多项要求。 2.2 功能集成化 水下设备功能的实现主要靠能量和信号两个概念,能量为电气系统的正常运行提供保障,信号为整个系统的运行、控制、检测提供了命令。在一个完整的水下无线电能传输系统中,需要有控制指令、检测信号的同时,实现能量的传输,这就需要整套系统集能量传输和信号发送于一体。目前行业内主要有两种不同的设备能量信号传输方式: (1)独立式。整个系统设置两组线圈,分别进行无线能量传输和信号传输,两个线圈相对独立。但两组线圈无论水平放置,还是垂直放置,都会发生线圈耦合,产生很大的干扰,同时对于能量有很大损失,数据难以正常传输。 (2)高频注入式。信号和能量的无线传输可以通过同一磁路进行,这是高频注入式的最大特点,它将信号和能量的传输集中于一种线圈,通过相同的两极线圈工作。通过高频信号波和低频电能传输波结合,形成一个复合波,经过传输设备进行传输。在此传输过程中,能量损耗能控制在一定范围内,不会影响数据的传输,最终达到信号和能量最大化传输的目的。 2.3 急需解决的问题 (1)电能传输稳定性问题。无线电能传输本身就存在很大的不稳定性,在水下作业要求更高。 (2)传输距离问题。在各种实验中发现,一旦距离增大,就需要同时增大线圈半径,而线圈半径体积不可能无线增大。 (3)生物安全问题。在整个传输系统中,都存在高频电流和磁场,对生物生存环境有很大的负面影响。 3、结语 无线电能传输技术由于其特有的便捷性,特别是针对水下设备能量补给问题,比传统供电方式有很大的优点,虽然还存在的很多问题,但是通过广大研究学者的不断努力,必将逐步解决当下各种技术难点,让水下无线电能传输技术得到更大的发展,拥有更广阔的前景。 参考文献: [1]王浩.磁耦合谐振无线电能传输系统耦合状态与传输特性研究[D].东北大学,2015. [2]贺县林,戚连锁,罗宁昭.基于海水环境下ICPT系统电磁耦合器的研究[J].船电技术,2015,35(11):47-51

谐振耦合式无线电力传输系统matlab建模

Modeling Resonant Coupled Wireless Power Transfer System 谐振耦合式无线电力传输系统建模 This example shows how to create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis is based on a 2-element system of spiral resonators. 这个例子显示了如何创建和分析谐振耦合式无线电力传输系统(WPT)的概念如谐振模式,强调耦合效应和磁场模式。此分析是基于两螺旋谐振器系统。 This example requires the following product: 这个例子需要以下产品: Partial Differential Equation Toolbox? Design Frequency and System Parameters设计频率和系统参数 Choose the design frequency to be 30MHz. This is a popular frequency for compact WPT system design. Also specify the frequency for broadband analysis, and the points in space to plot near fields. 选择的设计频率为30MHz。这是便携式WPT系统设计的一个流行的频率。还指定了宽带分析的频率,和在附近的空间中的点。 fc=30e6; fcmin = 28e6; fcmax = 31e6; fband1 = 27e6:1e6:fcmin; fband2 = fcmin:0.25e6:fcmax; fband3 = fcmax:1e6:32e6; freq = unique([fband1 fband2 fband3]); pt=linspace(-0.3,0.3,61); [X,Y,Z]=meshgrid(pt,0,pt); field_p=[X(:)';Y(:)';Z(:)']; The Spiral Resonator螺旋谐振器 The spiral is a very popular geometry in resonant coupling type wireless power transfer system for its compact size and highly confined magnetic field. We will use such a spiral as the fundamental element in this example. 螺旋是一种非常流行的几何形状在谐振耦合型无线功率传输系统,其紧凑的尺寸和高度密闭的磁场。我们会使用这样一个螺旋的基本元素在这个例子中。 Create Spiral Geometry The spiral is defined by its inner and outer radius, and number of turns. Express the geometry by its boundary points, then import its boundary points into pdetool. The mesh is generated in pdetool and exported. The mesh is described by points and triangles. 创建螺旋几何形状的螺旋是由它的内部和外部半径定义,和数量的圈数。由边界点的几何表达,那么进口边界点为有效。网格产生有效和出口。网格是由点和三角形描述的。 Rin=0.05; Rout=0.15; N=6.25; [p,t]=createSpiral(Rin,Rout,N);

无线电能传输

Frequency dependence of magnetic flux profile in the presence of metamaterials for wireless power transfer Boopalan G School of Electronics Engineering VIT University Vellore, Tamil Nadu, India boopalan@vit.ac.in Subramaniam C K School of Advance Sciences VIT University Vellore, Tamil Nadu, India subramaniam@vit.ac.in Abstract— We discuss the change in the magnetic flux profile by introducing a negative refractive index material (metamaterial) in between the source and receiver. The environment parameters, ε and μ , has a significant effect on the propagation of electromagnetic wave. The behavior of Transverse Magnetic (TM) wave when the medium in the path of propagation is changed to negative permittivity and permeability is simulated and discussed. The effect of size, shape and anisotrophy of the metamaterials, for near-field regions, on the magnetic flux density has been studied using finite element analysis. An enhancement in the magnetic flux density when a metamaterial is introduced in between the source and receiver was observed. The results show that the static and quasi-static behavior of the system is same. Keywords—metamaterials, quasi static, magnetic flux transverse magnetic I.I NTRODUCTION The idea of charging on the go is an exciting option for various high power applications like Electric Vehicle. Wireless power charging can be done by radiative or non-radiative processes. Use of microwave and optical frequencies falls into the radiative category while non-radiative process refers to the near-field domain. This concept was put forward by Nikola Tesla when he invented an apparatus for transmitting electrical energy wirelessly [1]. Later, with the advent of microwave transmission technology in 1960’s researchers dreamed power transfer from satellite space station to earth [2]. For short distances inductive coupling is very convenient [3-4]. The enhancement in coupling efficiency is obtained by replacing coils with resonators [5-7]. The efficiency can further be improved by introducing a negative refractive index material between the source and the receiver [8-12]. The negative refractive index material or metamaterial has the unique property of enhancing the evanescent as well as non-evanescent waves [10]. In this paper we present the magnetic flux density variations for quasi-static scenarios when a metamaterial is introduced in between the source and the receiver. The model used for simulation is a 2-dimensional one as we are interested only in the profile in that direction which is in the direction of propagation. II.T HEORY Our system consists of a source, receiver and a metamaterial as shown in fig. 1. The source is a circular loop of radius ‘a’ located in free space. The receiver is a point of interest ‘P’ where the magnetic flux density enhancement is observed. The metamaterial in between the source and the receiving point is a rectangular block which enhances the magnetic flux density at the point ‘P’. The transmitter is a single turn coil carrying current ‘I’ which in turn generates the magnetic field H in the surrounding medium. The magnetic field H at a distance ‘z’ from the center of the coil is given by I (1) The coil is fed with a current of ‘I’ amperes as given by the equation below I . (2) Fig. 1. Schematic of Wireless Power transfer y x z

浅析无线充电技术的发展历史与最新趋势

浅析无线充电技术的发展历史与最新趋势 摘要:文章主要追溯了国内外无线充电技术在近一百年里的发展历史。通过对无线充电技术最新发展现状的解读,浅析其当今发展的四大趋势,即发展领域扩展化、发展动力多重化、实现方式多样化与智能化以及发展瓶颈明朗化,并就该技术未来的发展进行展望。 关键词:无线充电;历史;发展现状;趋势 随着科技与社会的进步,人们对充电方式也提出了新的要求,无线充电,顾名思义,就是在不借助金属导线以及其他物理连接的条件下,以空气为介质实现电能传输,为设备进行充电。现阶段无线充电技术主要实现方式有三种,第一种是利用变化的电流通过线圈产生磁场实现电能传输的电磁感应式,第二种是利用电磁耦合共振效应的电磁共振式,第三种是将电力以微波的形式辐射到接收端的电磁波辐射式。目前,无线充电技术是国内外研究的热点问题之一,具有很好的发展前景。 1 发展历史与现状 1.1 国外发展历史与现状 无线充电技术(Wireless Charging Technology,WCT)并不是一项新兴的技术,早在1890年,克罗地亚的发明家、物理学家——尼古拉·特斯拉(Nikola Tesla)就提出一个大胆的构想:把地球作为导体,在地球与电离层之间建立起低频共振,利用环绕地球的表面电磁波来远距离传输电力,并且将这一设想付诸于实践。虽然这项研究最终因经费被撤、危险系数过高等原因终止,但却为人们打开了无线充电技术梦想的大门。在随后的几十年中,研究人员沿着特斯拉的脚步,对该技术有了非常多的探索,也取得了一些成就。 2007年6月,美国麻省理工学院研究团队利用电磁共振器和电源隔空点亮了一盏2 m开外的60 W电灯泡。日本昭和飞机工业公司在2009年At International 会展上展出了基于电磁感应原理无线传输电力的非接触式电源供应系统。2010年9月,日本富士通公司利用磁共振技术实现设备无线充电。2011年7月第一辆无线充电电动车在韩国首尔公园试运。2012年9月,诺基亚发布的两款智能手机:Lumia920和Lumia 820,可实现无线充电,引发公众热议。2013年芬兰首都机场,为乘客免费提供无线充电器。2013年3月,苹果公司的一项名为“保护外套综合感应充电技术”的发明专利申请书曝光。在各经济大国的研究团队与企业的共同努力下,无线充电技术有了质的飞跃,它已经从最初的概念设想发展到如今的生活实用地步。 1.2 国内发展历史与现状 我国在无线充电技术领域的起步滞后于国外,目前还处于研究的初级阶段。在国外市场旋风般的影响下,近十年来我国的无线充电技术取得了一些进展。

无线电能传输系统报告.doc

摘要 随着电子产品的快速发展,越来越多的电源连接线开始困扰人们的生活,为改善传统导线电路电能传输的弊端,给出了一种基于近距离无线电能传输原理的传输系统,而电磁谐振耦合无线电能传输技术正可以很好解决对距离有较高要求的这类问题。 本设计主要包括发射模块、传输模块和接收模块三大部分。首先由有源晶振产生1MHZ的方波,通过驱动IR2110及MOS管提高了交流信号,加强后的信号源经发送线圈通过磁耦合谐振感应到接收线圈,再经过半波整流和滤波后得到稳定直流电压,带动负载工作,即实现了无线电能的传输。在本实验中,我们采用单片机STC89C52控制液晶屏LC1602来显示负载短的的实时电压和电流值。 关键字:无线电能有源晶振驱动电路谐振半波整流 Abstract In this paper, With the rapid development of electronic products, more and more power cables on people's lives, to improve the disadvantages of traditional power transmission conductor circuit, presents a transmission system based on can close radio transmission principle, and the electromagnetic resonance coupling can radio transmission technology is very good to solve this kind of problem have higher request for the distance. This design mainly includes the transmitting module, transmission module and receiving module three parts. First 1 MHZ square wave generated by the active crystals, driven by IR2110 and MOS tube improve the signal communication, strengthen the signal source approved by the sending coil magnetic coupling resonant induction to the receiving coil, and after a half-wave rectifier and filter get steady dc voltage, drive the work load, which can realize the radio transmission. In this experiment, we adopt LC1602 STC89C52 MCU LCD screen to display the real-time voltage and current value of load short. Key words: radio can active vibration crystal driver circuit resonance half-wave rectifier

国外无线电力传输技术进展

86 上 海信息 化 无线电力传输(Wireless Power Transmission,WPT)也称无线能量传输或无线功率传输,主要通过电磁感应、电磁共振、射频、微波、激光等方式实现非接触式的电力传输。随着电力电子器件、功率变换和控制技术的发展,无线电力传输技术在转换率、低辐射等方面逐渐取得突破,无线电力传输在军事、通信、工业、医疗、运输、电力、航空航天、节能环保等领域呈现良好应用前景。 近年来,全球无线电力传输市场规模逐年递增,据IHS iSuppli数据显示,2010年无线充电设备市场收入达到1.2亿美元,到2015年将达到237亿美元。从2011 年开始,全球无线充电模块销量急剧增长,2019年将增长到9.23亿个(见表1)。手机、笔记本电脑等是无线电力传输的主要应用对象,厂商正将无线电力传输技术嵌入到包括智能手机、平板电脑、蓝牙耳机在内的终端。 十九世纪末,尼古拉?特斯拉发明了“特斯拉”线圈,使无线电力传输成为可能。近年来,无线电力传输技术发展迅猛,在军事、通信、工业等各大领域都拥有十分广阔的应用前景。对于消费者来说,无线充电的意义还不仅仅是带来充电方式的便捷化,随着无线充电技术从手机、平板等小功率设备向笔记本电脑、智能电视甚至电动汽车等大型设备的拓展,可以说,无线电力传输技术必将为人们的日常生活带来更多的惊喜。 文/陈 骞 美日两国处于领先地位 美国、日本等国众多企业或研究机构竞相研发无线电力传输技术,探索无线电力传输系统在不同领域的应用,致力于将其实用化,目前,已获得了一定的技术突破,相应产品也陆续面世。 美国电子信息企业对短距离电力传输技术给予极大投入。Power Cast 公司利用电磁波损失小的天线技术,借助二极管、非接触IC 卡和无线电子标签等,实现了效率较高的无线电力传输,将无线电波转化成直流电,并在约1 米范围内为不同电子装置的电池充电。Palm 公司将无线充电应用在手机上,推出充电设备“触摸石”,利用电磁感应原理为手机进行无线充电。Powermat 推出的充电板有桌面式和便携式等多种,主要由底座和无线接收器组成。Fulton 公司开发的eCoupled 无线充电技术,充电器能够自动地通过超高频电波寻找待充电电器,动态调整发射功率。Visteon 公司计划为摩托罗拉手机和苹果的iPod 生产eCoupled 无线充电器。Power 公司开发的电波接收型电能储存装置以美国匹兹堡大学研发的无源型 RFID 技术为基础,通过射频发射 装置传递电能。WildCharge 公司开发的无线充电系统,充 电板的外观像一个鼠标垫,能够放置在桌椅等任何平坦表 数据来源:IHS iSuppli 单位:百万个 表1 全球无线充电应用数量 Oversea View 他山之石

浅谈无线电能传输的发展趋势

龙源期刊网 https://www.360docs.net/doc/6814741722.html, 浅谈无线电能传输的发展趋势 作者:李晨晨 来源:《科教导刊·电子版》2013年第36期 摘要文章叙述了无线电能传输的概念和发展历程,着重对电磁感应式、电磁共振式和电磁辐射式三种无线电能传输进行了分析。同时,也总结概括了无线电能传输对我国经济发展的优势以及发展前景。 关键词无线电能传输能量传输感应电能 中图分类号:TM472 文献标识码:A 1无线电能传输的概念及优势 无线电能传输(Wirelss Power Transmission——WPT)是指借助于一种特殊的设备将电源的电能转变为电磁场或电磁波等无线传播的能量,在接收端又将无线能量转变回电能进行传递的一种技术。无线输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。 传统的直接接触式电能传输存在例如产生接触火花,影响供电的安全性和可靠性,甚至引起爆炸,造成重大事故等弊端。同时,近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损,并且错综复杂的电线既限制了设备移动的灵活性,又影响了环境的美观。一些充电器、电线、插座标准也并不完全统一,这样既造成了浪费,也形成了对环境的污染。无线电能传输技术有效克服了传统导体物理接触传输方式带来的磨损、火花、不灵活等一系列缺点和不足,目前得到了广泛关注和研究。 同时随着能源问题的突出,怎样能最好地利用现有的能源,已经越来越多地引起人们的重视和关注,无线电能传输技术作为新型的电能传输技术,是实现能源高效利用的重要途径之一。 2无线电能传输技术分类 到目前为止,根据电能传输原理,无线电能传输可以分为以下三类:(1)电磁感应式,通过一个线圈给另外一个线圈供电,虽然具有传输效率高的优点,但传输距离被限制在厘米级范围内,效率受位置偏差的影响较大,还存在当异物进入时会发热和高频波泄露等问题。这种非接触式充电技术在许多便携式终端里应用日益广泛。(2)谐振耦合式,发射和接收装置通过磁场或电场建立的传输通道相互耦合,在谐振频率下传输效率达到最大,适合用于中等距离的无线电能传输;谐振技术在电子领域应用广泛,但是,在供电技术中应用的不是电磁波或者

无线电能传输技术

所谓无线电能传输,就是借助于电磁场或电磁波进行能量传递的一种技术。无线 输电分为:电磁感应式、电磁共振式和电磁辐射式。电磁感应可用于低功率、近距离传输;电磁共振适于中等功率、中等距离传输;电磁辐射则可用于大功率、远距离传输。近年来,一些便携式电器如笔记本电脑、手机、音乐播放器等移动设备都需要电池和充电。电源电线频繁地拔插,既不安全,也容易磨损。一些充电器、电线、插座标准也并不完全统一,这样即造成了浪费,也形成了对环境的污染。而在特殊场合下,譬如矿井和石油开釆中,传统输电方式在安全上存在隐患。孤立的岛屿、工作于山头的基站,很困难采用架设电线的传统配电方式。在上述情形下,无线输电便愈发显得重要和迫切,因而它被美国《技术评论》杂志评选为未来十大科研方向之一。在此旨在阐述当前的技术进展,分析无线输电原理。 1无线电能传输技术的发展历程 最早产生无线输能设想的是尼古拉?特斯拉(NikolaTesla),因而有人称之为无线电能 传输之父。1890年,特斯拉就做了无线电能传输试验。特斯拉构想的无线电能传输方法是把地球作为内导体,把地球电离层作为外导体,通过放大发射机以径向电磁波振荡模式,在地球与电离层之间建立起大约8 Hz的低频共振,利用环绕地球的表面电磁波来传输能量。最终因财力不足,特斯拉的大胆构想没能实现。 其后,古博(Goubau)、施瓦固(Sohweing)等人从理论上推算了自由空间波束导波可达到近100%的传输效率,并随后在反射波束导波系统上得到了验证。20世纪20 年代中期,日本的H.Yagi和S.Uda发明了可用于无线电能传输的定向天线,乂称为八木一宇田天 线。20世纪60年代初期雷声公司(Raytheon)的布iM(W.C.Brown)做了大量的无线电能传输研究工作,从而奠定了无线电能传输的实验基础,使这一概念变成了现实。在实验中设计了一种效率高、结构简单的半波电偶极子半导体二极管整流天线,将频率2.45GHz的微 波能量转换为了直流电。1977年在实验中使用GaAs—Pt 肖特基势垒二极管,用铝条构造 半波电偶极子和传输线,输入微波的功率为8 W,获得了90.6%的微波一一直流电整流效率。后来改用印刷薄膜,在频率2.45 GHz时效率达到了85%o 自从Brown实验获得成功以后,人们开始对无线电能传输技术产生了兴趣。1975 年,在美国宇航局的支持下,开始了无线电能传输地面实验的5 ail'划。喷气发动机实验室和Lewis科研中心曾将30 kW的微波无线输送1.6 km,微波一一直流的转换效率达83%。1991

无线电力传输技术

无线电力传输技术 无线电力传输技术 人类追逐自由的本能,在现实面前屡屡受挫。自从广泛使用电能以来,许多人都为了那些电器拖着的长长电线而绞尽脑汁,但无线供电却一直只能作为一个在前方远远招手的梦想。现在,我们也许看到了一线曙光。 在2008年8月的英特尔开发者论坛(IDF,Intel Developer Forum)上,西雅图实验室的约书亚·史密斯(Joshua R. Smith)领导的研究小组向公众展示了一项新技术——基于“磁耦合共振”原理的无线供电,在展示中成功地点亮了一个一米开外的60瓦灯泡,而在电源和灯泡之间没有使用任何电线。他们声称,在这个系统中无线电力的传输效率达到了75%。 大刘在《三体II·黑暗森林》中描绘了一个两百年后的世界。因为人们掌握了可控核聚变技术,可以提供极大丰富的能源,无线供电的损失在可接受范围之内,所以大部分电器都可以采用无线方式来供电,从电热杯一直到个人飞行器都是如此。电像空气一样无处不在,人类再也不用受电线的拖累了。 正如书中所提到的那样,无线供电技术现在也已经出现了。实际上,近距离的无线供电技术早在一百多年前就已经出现,而我们现在生活中的很多小东西,都已经在使用无线供电。也许不远的未来,我们还会看到远距离和室内距离的无线供电产品,而不会看到电线杆和高压线,“插头”也将会变成一个历史名词。 好兆头 英特尔的这种无线供电技术,是基于麻省理工大学的一项研究成果而开发的。 2007年6月,麻省理工大学的物理学助理教授马林·索尔贾希克(Marin Soljacic)和他的研究团队公开做了一个演示。他们给一个直径60厘米的线圈通电,6英尺(约1.9米)之外连接在另一个线圈上的60瓦灯泡被点亮了。这种马林称之为“WiTricity”技术的原理是“磁耦合共振”,而他本人也因为这一发明获得了麦克阿瑟基金会2008年的天才奖。 新技术所消耗的电能只有传统电磁感应供电技术的百万分之一,不由让人们对室内距离的无线供电重新燃起了希望。而它的关键在于“共振”。 科学家们早就发现,共振是一种非常高效的传输能量方式。我们都听过诸如共振引起的铁桥坍塌、雪崩或者高音歌唱家震碎玻璃杯的故事。无论这些故事可信度如何,但它们的基本原理是正确的:两个振动频率相同的物体之间可以高效传输能量,而对不同振动频率的物体几乎没有影响。在马林的这种新技术中,将发送端和接收端的线圈调校成了一个磁共振系统,当发送端产生的振荡磁场频率和接收端的固有频率相同时,接收端就产生共振,从而实现了能量的传输。根据共振的特性,能量传输都是在这样一个共振系统内部进行,对这个共振系统之外的物体不会产生什么影响。这就像是几个厚度不同的玻璃杯不会因为同一频率的声音而同时炸碎一样。 最妙的就是这一点了。当发射端通电时,它并不会向外发射电磁波,而只是在周围形成一个非辐射的磁场。这个磁场用来和接收端联络,激发接收端的共振,从而以很小的消耗为代价来传输能量。在这项技术中,

浅谈优化电力通信传输网的基本措施

浅谈优化电力通信传输网的基本措施 发表时间:2017-01-19T17:38:43.967Z 来源:《电力设备》2016年第22期作者:祁钊贾忱灏 [导读] 随着经济的发展和电力线覆盖面积规模的不断扩大,电力通信网的结构也日趋完整和复杂。 (国网陕西省电力公司西咸新区供电公司陕西西咸新区 712000) 摘要:随着经济的发展和电力线覆盖面积规模的不断扩大,电力通信网的结构也日趋完整和复杂,从而使得电力通信网对新技术的要求也越来越高。当前,电力通信传输网系统应用仍存在较多的问题,如电力通信网中节点较多,系统安全性能有待提升;接入层网络结构繁杂,难以满足业务发展的需求;部分设备技术落后,且老化严重,已难以适应电力系统快速发展的需求等,影响着电力系统安全生产和稳定运行,亟需不断研究有效的技术措施加以完善和优化,才能确保电力通信传输网络系统的安全性、可靠性、稳定性以及流畅性。本文探讨了优化电力通信传输网的基本技术措施,以供参考借鉴。 关键词:电力通信传输网络问题基本措施 一、电力通信传输网中存在的问题 经过多年建设,我国电力通信传输网已具备一定的规模,在很大程可满足电力系统的通信需要,但随着近年来电网事业的快速发展,现有电力通信传输网在仍暴露出诸如问题亟待解决。具体体现在以下方面: 1.通信网络安全性和可靠性亟待提高 现代的电力通信网络虽然发展速度快,但现有的电力通信网络的可靠性较低,资源共享能力较差。若是电力网络通信中心系统及其站点出现故障问题,整个电力通信系统都可能趋于瘫痪。许多通信设备经过长期的运行,会进入设备的护理期、维修期,甚至老化期,如此需要护理、维修甚至是更换的不良情况将直接抑制电力通信传输网络的整体稳定发展。此外,随着现代网络技术的发展,网络安全问题日益暴露出来,由于计算机软件或网络系统本身的漏洞而导致计算机病毒的传播、木马病毒的植入,往往容易导致网络用户信息被非授权用户或一些居心不良的非法网络报务人员非法授权访问,造成网络信息数据的丢失以及用户隐私的泄露或财产损失。 2.通信网之间缺乏协调和有效衔接 目前,电力通信系统网络根据不同的特定业务(行政通信、调度通信、数据通信)而设计为数个独立的网络,所以其中的某一个网络往往不能完全适应于其他业务,从而造成各种业务相互联系困难,通信网之间缺乏协调和有效衔接,造成资源的浪费和维护管理的不便,通信信息资源缺乏有效优化整合。由于电力系统分步广泛,基层变电站和供电营业所遍及城市和乡村,这个问题显得尤其突出。 3.电力通信传输网络结构需要进一步优化 部分电力通信网络节点仍使用链状结构,并且部分接下环下挂在同一节点设备上的情况时有发生,给网络结构的安全性带来了威胁。同时,电力通信传输网络结构过于复杂,例如,未明确区接入环的环路区,出现跨汇聚环现象;光口资源利用率低且未采取有效措施保护部分环路节点的单板,一旦出现故障则不得不中断该节点业务,严重影响了网络效率。因此,必须从结构上对电力通信传输网络结构进行优化。 4.缺少完善的抵御极端天气的应急抗灾通信体系 在突如其来的大型自然灾害和公共突发事件面前,常规的通信传输手段往往无法满足其通信需求,应急通信正是为应对自然或人为紧急情况而提供的特殊通信机制,在公众通信网设施遭受破坏、性能降低、话务量突增的情况下,采用非常规的、多种通信手段组合的方式来恢复通信能力。然而当前,我国电力通信缺乏完善的抵御极端天气的应急抗灾通信体系,无法迅速跨越局部恶劣地理环境从而沟通连接,及时为各类紧急情况提供有效的通信保障。 二、优化电力通信传输网络的技术措施 1.软件无线电技术 软件无线电技术,又称为SDR技术,该技术具有以下优点:一是软件无线电技术中的A/D与D/A转换技术的技术进步为转换接近天线的高速信号提供了条件,同时也为无线转换元器件使用数量的减少提供了可能,也为制造数字元器件提供了方便;二是软件无线电技术可借助宽带无线通路提升内在机动性,并支持不同工作标准和频段;三是软件无线电技术可以借助软件的升级开发出更多的新服务;四是软件无线电技术依据不同用户的需求进行修改,可有针对性地提高用户体验满意度。 2.数字信号处理技术 数字信号处理技术,又称为DSP技术,是将模拟信息(如声音、视频和图片)转换为数字信息的技术,它是未来满足人们使用需求个性化和多样化的数据通信发展趋势和主流。如今无限数据通信已成为人们生活中不可或缺的沟通与交流手段,它的优越性能为用户提供了更可靠、准确、快捷及安全的数据交流服力,也由于其趣来越庞大的市场需求,数字信号处理技术近年来也获得跨越式的发展。数字信号处理技术如今已作为一种强大的微处理器,被广泛用于视频信号、语音信号以及数据信号的实时处理中。为确保通信在不同环境都可以顺利高效运行,并满足繁杂量大的编译码及了解压缩需求,则需要数字信号处理技术具备较高的信号处理速度。为相应这一需求,VLIW这种高级多重处理结构应运而生,能在不加快时钟速度的条件下完成较强的数字信号处理工作。 3.全光网络通信技术 全光网络通信技术是指信息流在通信网络中的交流和传输形式自始至终都以光的形式存在,不需要进行光电转换。在全光网络中,信息传输过程都在光域内完成,极大提高了传输速度和传输效率。但由于技术条件限制,如今完全实现全光域传输通信技术还存在一定的差距,未来通信技术的主流方式主要以光纤入户。光纤入户适用于各种不同宽带业务而不受传输形式和技术的限制,但建设成本较高,为解决这一问题,光纤和同轴电缆混合网模式应运而生,光纤和同轴电缆混合网模式又称为HCF模式,HCF模式可视线数据双向通信,为视线全光通信网络提供了有利条件。 4.智能天线技术 智能天线技术具有强大的技术优势,能满足由移动通信业务量快速增长而引发的更高频段复用量及系统容量需求。如今,窄带波束主

相关文档
最新文档