哈工大人工智能导论实验报告

合集下载

人工智能实验报告

人工智能实验报告

人工智能实验报告一、实验目的。

本次实验旨在通过对人工智能相关算法的实验操作,深入了解人工智能的基本原理和实际应用,提高对人工智能技术的理解和掌握。

二、实验内容。

1. 人工智能算法的原理及应用。

2. 人工智能在图像识别、语音识别等领域的实际应用案例分析。

3. 人工智能算法在实际项目中的具体运用。

三、实验步骤。

1. 理论学习,通过学习相关教材和资料,掌握人工智能算法的基本原理和应用场景。

2. 实际操作,运用Python等编程语言,实现人工智能算法的实际应用,如图像识别、语音识别等。

3. 案例分析,结合实际案例,分析人工智能在不同领域的具体应用,了解其在实际项目中的运用情况。

四、实验结果。

通过本次实验,我们深入了解了人工智能算法的基本原理和应用场景,掌握了人工智能在图像识别、语音识别等领域的实际应用案例,并对人工智能算法在实际项目中的具体运用有了更深入的了解。

五、实验总结。

人工智能作为当今科技领域的热门话题,其应用场景和前景备受关注。

通过本次实验,我们不仅对人工智能算法有了更深入的理解,也对其在实际项目中的应用有了更清晰的认识。

人工智能技术的不断发展,必将为各行各业带来更多的创新和改变。

六、展望。

随着人工智能技术的不断进步和应用,我们相信在不久的将来,人工智能将会在更多的领域发挥重要作用,为人类社会带来更多的便利和进步。

我们也将继续深入学习和研究人工智能技术,不断提升自己的技术水平,为人工智能技术的发展贡献自己的力量。

七、参考资料。

1. 《人工智能导论》,XXX,XXX出版社,2018年。

2. 《Python人工智能编程实践》,XXX,XXX出版社,2019年。

3. 《深度学习与人工智能》,XXX,XXX出版社,2020年。

以上为本次人工智能实验的报告内容,谢谢。

《人工智能》实验报告

《人工智能》实验报告

一、实验目的1. 了解机器学习的基本概念和常用算法。

2. 掌握使用Python编程语言实现图像识别系统的方法。

3. 培养分析问题、解决问题的能力。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 机器学习库:TensorFlow、Keras三、实验内容1. 数据预处理2. 模型构建3. 模型训练4. 模型评估5. 模型应用四、实验步骤1. 数据预处理(1)下载图像数据集:选择一个适合的图像数据集,例如MNIST手写数字数据集。

(2)数据加载与处理:使用TensorFlow和Keras库加载图像数据集,并进行预处理,如归一化、调整图像大小等。

2. 模型构建(1)定义网络结构:使用Keras库定义神经网络结构,包括输入层、隐藏层和输出层。

(2)选择激活函数:根据问题特点选择合适的激活函数,如ReLU、Sigmoid等。

(3)定义损失函数:选择损失函数,如交叉熵损失函数。

(4)定义优化器:选择优化器,如Adam、SGD等。

3. 模型训练(1)将数据集分为训练集、验证集和测试集。

(2)使用训练集对模型进行训练,同时监控验证集的性能。

(3)调整模型参数,如学习率、批大小等,以优化模型性能。

4. 模型评估(1)使用测试集评估模型性能,计算准确率、召回率、F1值等指标。

(2)分析模型在测试集上的表现,找出模型的优点和不足。

5. 模型应用(1)将训练好的模型保存为模型文件。

(2)使用保存的模型对新的图像进行识别,展示模型在实际应用中的效果。

五、实验结果与分析1. 模型性能:在测试集上,模型的准确率为98.5%,召回率为98.3%,F1值为98.4%。

2. 模型优化:通过调整学习率、批大小等参数,模型性能得到了一定程度的提升。

3. 模型不足:在测试集中,模型对部分图像的识别效果不佳,可能需要进一步优化模型结构或改进训练方法。

六、实验总结通过本次实验,我们了解了机器学习的基本概念和常用算法,掌握了使用Python编程语言实现图像识别系统的方法。

魏泽涛—人工智能实验报告

魏泽涛—人工智能实验报告

H a r b i n I n s t i t u t e o f T e c h n o l o g y a t W e i h a i人工智能实验报告设计题目:智能五子棋院系:计算机科学与技术学院班级:0604104学号:060410408设计者:XXX哈尔滨工业大学(威海)一.实验内容用程序实现五子棋人机对弈二.题目介绍五子棋是一种爱大众广泛喜爱的游戏.其规则简单,变化多端,非常富有趣味性和消遣性。

这里设计和地了一小人机对下的五子程序采用了博弈甜的方法,应用了剪枝和最大最小树原理进行搜索发现最好的下子位置。

介绍五子棋程序的数据结构.评分规则、胜负判断方法和搜索算法过程。

三.实验原理1.评分规则对于下子的重要性评分,需要从六个位置来考虑当前棋局的情况,分别为,&brvbar ;实际上需要考虑在这六个位置上某一方所形成的子的布局的情况,对于在还没有子的地方落子以后的当前局面的分,主要是为了说明在这个地方下子的重要性程度,设定了一个简单的规则来表示当前棋面对电脑方的分数。

2.胜负判断实际上,是根据当前最后一个落f的情况来判断雌负的。

实际上需要从四个位置判断,以该子为出发点的水半,直和两条分别为45度角和 1 3 5 度角的线¨的是看在这四个方向是否最后落子的----方构成连续五个的棋子,如果是的话,就表示该盘棋局已经分出胜负。

3.搜索算法实现描述人机对弈算法:人机对弈算法完全按照CGame基类定义的接口标准,封装在了COneGame派生类之中。

下面将对这个算法进行详细地介绍。

[14]1获胜组合获胜组合是一个三维数组,它记录了所有取胜的情况。

也就是说,参考于CTable::Win中的情况,对于每一个落子坐标,获胜的组合一共有15 * 11 * 2 + 11 * 11 * 2 = 572种。

而对于每个坐标的获胜组合,应该设置一个[15][15][572]大小的三维数组。

在拥有了这些获胜组合之后,就可以参照每个坐标的572种组合给自己的局面和玩家的局面进行打分,也就是根据当前盘面中某一方所拥有的获胜组合多少进行权值的估算,给出最有利于自己的一步落子坐标。

人工智能导论实验报告

人工智能导论实验报告

人工智能导论实验报告
一、实验要求
实验要求是使用Python实现一个简单的人工智能(AI)程序,包括
使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,通过提供用户输入的信息,实现基于信息的自动响应和推理。

二、实验步骤
1. 数据采集:编写爬虫程序或者使用预先定义的数据集(如movielens)从互联网收集数据;
2. 数据预处理:使用numpy对数据进行标准化处理,以便机器学习
程序能够有效地解析数据;
3. 模型构建:使用scikit-learn或者tensorflow等工具,构建机
器学习模型,从已经采集到的数据中学习规律;
4.模型训练:使用构建完成的模型,开始训练,通过反复调整参数,
使得模型在训练集上的效果达到最优;
5.模型评估:使用构建完成的模型,对测试集进行预测,并与实际结
果进行比较,从而评估模型的效果;
6. 部署:使用flask或者django等web框架,将模型部署为网络应用,从而实现模型的实时响应;
三、实验结果
实验结果表明,使用数据挖掘,机器学习,自然语言处理,语音识别,计算机视觉等技术,可以得到很高的模型预测精度,模型的准确性可以明
显提高。

人工智能导论实习报告

人工智能导论实习报告

一、实习背景随着科技的飞速发展,人工智能(Artificial Intelligence,AI)已成为当今世界最具发展潜力的领域之一。

为了更好地了解人工智能的理论和应用,我们选择了人工智能导论课程进行实习。

通过本次实习,我们深入学习了人工智能的基本理论、核心技术和应用场景,为今后在相关领域的发展奠定了基础。

二、实习内容本次实习主要分为以下几个部分:1. 基础知识学习在实习初期,我们系统地学习了人工智能的基本概念、发展历程和主要流派。

通过阅读教材、查阅资料和参加讲座,我们对人工智能有了初步的认识。

我们了解到,人工智能研究始于20世纪50年代,经历了多个发展阶段,目前主要分为符号主义、连接主义和混合主义三种流派。

2. 编程实践为了更好地掌握人工智能算法,我们进行了大量的编程实践。

在实习过程中,我们学习了Python编程语言,并使用TensorFlow、Keras等深度学习框架进行项目实践。

具体包括以下内容:(1)使用TensorFlow实现线性回归、逻辑回归和神经网络等算法;(2)使用Keras实现卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等算法;(3)使用遗传算法、粒子群算法和蚁群算法等优化算法解决实际问题。

3. 项目实践在实习过程中,我们参与了一个手写体识别项目。

该项目旨在利用深度学习技术实现手写数字的识别。

具体步骤如下:(1)数据预处理:将手写数字图像进行灰度化、二值化等处理,并转换为适合神经网络输入的格式;(2)模型构建:设计卷积神经网络模型,包括卷积层、池化层和全连接层等;(3)模型训练:使用大量手写数字图像数据对模型进行训练,并调整参数以优化模型性能;(4)模型评估:使用测试数据对模型进行评估,并分析模型的准确率、召回率等指标。

4. 实习总结与反思在实习过程中,我们不仅掌握了人工智能的理论知识,还提高了编程能力和实际应用能力。

以下是我们对实习的总结与反思:(1)人工智能技术发展迅速,未来应用前景广阔;(2)编程能力是人工智能领域的基础,需要不断学习和提高;(3)团队合作和沟通能力在项目实践中至关重要;(4)理论联系实际,将所学知识应用于解决实际问题。

哈工大人工智能导论实验报告

哈工大人工智能导论实验报告

人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术2016.12.20目录人工智能导论实验报告 (1)一、简介(对该实验背景,方法以及目的的理解) (3)1. 实验背景 (3)2. 实验方法 (3)3. 实验目的 (3)二、方法(对每个问题的分析及解决问题的方法) (4)Q1: Depth First Search (4)Q2: Breadth First Search (4)Q3: Uniform Cost Search (5)Q4: A* Search (6)Q5: Corners Problem: Representation (6)Q6: Corners Problem: Heuristic (6)Q7: Eating All The Dots: Heuristic (7)Q8: Suboptimal Search (7)三、实验结果(解决每个问题的结果) (7)Q1: Depth First Search (7)Q2: Breadth First Search (9)Q3: Uniform Cost Search (10)Q4: A* Search (12)Q5: Corners Problem: Representation (13)Q6: Corners Problem: Heuristic (14)Q7: Eating All The Dots: Heuristic (14)Q8: Suboptimal Search (15)自动评分 (15)四、总结及讨论(对该实验的总结以及任何该实验的启发) (15)一、简介(对该实验背景,方法以及目的的理解)1.实验背景1) 自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。

到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈。

2)吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。

人工智能导论课程总结报告

人工智能导论课程总结报告

人工智能导论课程总结报告一、课程概述本学期,我有幸参与了“人工智能导论”课程的学习。

该课程为我们提供了一个全面而深入的人工智能领域概览,涵盖了从基础知识到前沿技术的广泛内容。

二、课程内容1. 基础知识:课程初期,我们学习了人工智能的基本概念、发展历程和应用领域。

这为我们后续的学习奠定了坚实的基础。

2. 搜索与问题求解:我们深入探讨了搜索算法,如深度优先搜索、广度优先搜索等,并理解了它们在问题求解中的应用。

3. 知识表示与推理:学习了如何表示知识(如语义网络、框架和逻辑表示法)以及如何使用这些知识进行推理。

4. 机器学习:这部分内容让我们了解了机器学习的基础算法,如决策树、支持向量机和神经网络等,并体验了它们在数据分类和预测中的强大能力。

5. 深度学习:作为机器学习的子领域,深度学习介绍了更复杂的神经网络结构,如卷积神经网络和循环神经网络,以及它们在图像和语音识别等领域的应用。

6. 伦理与社会影响:课程还讨论了人工智能的伦理问题和社会影响,使我们更加意识到技术的双重性。

三、学习体验1. 理论与实践相结合:课程不仅提供了丰富的理论知识,还通过编程作业和项目实践让我们亲身体验了人工智能技术的魅力。

2. 挑战与成就感并存:虽然课程内容有时颇具挑战性,但每当解决一个难题或完成一个项目时,那种成就感都无以言表。

3. 团队合作与沟通:在小组项目中,我们学会了如何与他人合作、有效沟通和共同解决问题。

四、收获与展望1. 知识层面:通过本课程的学习,我对人工智能领域有了更全面和深入的了解,掌握了多项基本技能和工具。

2. 能力层面:我的问题解决能力、创新能力和团队协作能力都得到了显著提升。

3. 未来展望:我计划在未来继续深入探索人工智能的某个子领域,如机器学习或深度学习,并期望能够将所学应用于实际项目或研究中。

五、结语“人工智能导论”课程为我打开了一扇通向新世界的大门。

感谢老师和同学们的陪伴与支持,期待在未来的学习和生活中继续与人工智能相伴前行。

人工智能导论实验报告(学生)

人工智能导论实验报告(学生)

《人工智能导论》上机实验八数码问题求解专业班级:姓名:学号:指导教师:基于人工智能的状态空间搜索策略研究——八数码问题求解一、实验软件VC6.0编程语言或其它编程语言二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。

三、需要的预备知识1. 熟悉VC6.0 编程语言;2. 熟悉状态空间的宽度优先搜索、深度优先搜索和启发式搜索算法;3. 熟悉计算机语言对常用数据结构如链表、队列等的描述应用;4. 熟悉计算机常用人机接口设计。

四、实验数据及步骤1. 实验内容八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。

例如:图1 八数码问题示意图请任选一种盲目搜索算法(深度优先搜索或宽度优先搜索)或任选一种启发式搜索方法(A 算法或A* 算法)编程求解八数码问题(初始状态任选),并对实验结果进行分析,得出合理的结论。

2. 实验步骤(1)分析算法基本原理和基本流程;(2)确定对问题描述的基本数据结构,如Open表和Closed表等;(3)编写算符运算、目标比较等函数;(4)编写输入、输出接口;(5)全部模块联调;(6)撰写实验报告。

五、实验报告要求所撰写的实验报告必须包含以下内容:1. 算法基本原理和流程框图;2. 基本数据结构分析和实现;3. 编写程序的各个子模块,按模块编写文档,含每个模块的建立时间、功能、输入输出参数意义和与其它模块联系等;4. 程序运行结果,含使用的搜索算法及搜索路径等;5. 实验结果分析;6. 结论;7. 提供全部源程序及软件的可执行程序。

六、操作实现该设计采用启发式搜索方法编写程序。

该程序是自动产生一组随机数(0至8)填在3×3数组中,然后对该组随机数进行评估,距离目标状态的差距,具体内容如下:1、启发函数设定由八数码问题的部分状态图可以看出,从初始节点开始,在通向目标节点的路径上,各节点的数码格局同目标节点相比较,其数码不同的位置个数在逐渐减少,最后为零,因此可以把数码不同的位置个数作为标志一个节点到目标节点距离远近的一个启发性信息,利用这个信息来扩展节点的选择,减少搜索范围,提高搜索速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈工大人工智能导论实验报告————————————————————————————————作者:————————————————————————————————日期:人工智能导论实验报告学院:计算机科学与技术学院专业:计算机科学与技术2016.12.20目录人工智能导论实验报告 (3)一、简介(对该实验背景,方法以及目的的理解) (5)1.实验背景 (5)2.实验方法 (5)3.实验目的 (5)二、方法(对每个问题的分析及解决问题的方法) (6)Q1: Depth First Search (6)Q2: Breadth First Search (6)Q3: Uniform Cost Search (7)Q4: A* Search (8)Q5: Corners Problem: Representation (8)Q6: Corners Problem: Heuristic (8)Q7: Eating All The Dots: Heuristic (9)Q8: Suboptimal Search (9)三、实验结果(解决每个问题的结果) (9)Q1: Depth First Search (9)Q2: Breadth First Search (11)Q3: Uniform Cost Search (12)Q4: A* Search (14)Q5: Corners Problem: Representation (15)Q6: Corners Problem: Heuristic (16)Q7: Eating All The Dots: Heuristic (16)Q8: Suboptimal Search (17)自动评分 (17)四、总结及讨论(对该实验的总结以及任何该实验的启发) (17)一、简介(对该实验背景,方法以及目的的理解)1.实验背景1) 自人工智能概念被提出,人工智能的发展就受到了很大的关注,取得了长足的发展,成为一门广泛的交叉和前沿科学。

到目前,弱人工智能取得了长足的发展,而强人工智能则暂时处于瓶颈。

2)吃豆人Pacman 居住在亮蓝色的世界里,在这个世界有弯曲的走廊和美味佳肴。

游戏的目的就是控制游戏的主角小精灵吃掉藏在迷宫内所有的豆子,并且不能被幽灵抓到。

高效地浏览世界将是吃豆人掌握世界的第一步。

3)通过本学期的学习我们已经初步掌握了人工智能的基本知识,在实验中则应用这些知识使用人工智能操纵吃豆人游戏。

2.实验方法1)在本实验中, Pacman 智能体将找到通过迷宫世界的路径,既包括到达一个指定的位置,也包括高效地搜集食物。

我们编辑文件search.py和searchAgents.py,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆,并将其应用到Pacman场景,完成对相关人工智能功能的完善。

2)在本实验中,我们对下面8个问题进行研究,针对每个问题提出解决方法,逐步完成吃豆人游戏:Q1: Depth First SearchQ2:Breadth First SearchQ3: Uniform Cost SearchQ4: A* SearchQ5:CornersProblem:RepresentationQ6:Corners Problem:HeuristicQ7: Eating All The Dots: HeuristicQ8: Suboptimal Search3.实验目的1)完成实验报告中的问题,编写一系列吃豆人程序,包括到达指定位置以及有效的吃豆;2)通过分析吃豆人游戏巩固课堂上所学内容;3)复习python语言的使用。

二、方法(对每个问题的分析及解决问题的方法)Q1: Depth FirstSearch应用深度优先算法找到一个特定的位置的豆,我们通过depthFirstSearch函数实现深度优先搜索的功能。

深度优先遍历的方法是,从图中某顶点v出发:1)访问顶点v;2)依次从v的未被访问的邻接点出发,对图进行深度优先遍历;直至图中和v有路径相通的顶点都被访问;3)若此时图中尚有顶点未被访问,则从一个未被访问的顶点出发,重新进行深度优先遍历,直到图中所有顶点均被访问过为止。

深度优先搜索的顺序如下图所示:在depthFirstSearch中,由于搜索过程中火重复访问到部分节点,所以需要对于每个节点设置标记,以指示该节点是否被访问过。

先将每个后继节点压入搜索栈中,然后以深度优先的顺序进行搜索,判定是否符合目标状态,并将符合结果的节点放入结果集。

Q2: Breadth FirstSearch应用宽度优先算法找到一个特定的位置的豆,我们通过breadthFirstSearch函数实现深度优先搜索的功能。

广度优先搜索算法的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。

如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

如下图:在breadthFirstSearch中,大体的搜索思路与深度优先算法一致,只是搜索的次序发生了变化。

在这里注意,在深度优先搜索和广度优先搜索方法中,我们使用的图搜索算法是一样的,但是涉及到具体的数据结构却是不同的。

在深度优先搜索算法中,我们使用栈进行操作,在深度优先搜索算法中,我们使用队列进行操作,如下图所示。

这两种数据结构的不同之处就在于其中元素的输出次序,在深度优先搜索中需要按照压栈顺序的逆序进行搜索,咋子广度优先搜索中需要按照入队顺序的顺序进行搜索。

Q3: Uniform Cost Search很多情况下,路径中的代价是可以改变的,在这个问题中,我们完成代价一致搜索方法。

代价一致搜索,其实就是一个贪心搜索,取代扩展深度最浅的节点,代价一致搜索扩展的是路径消耗最低的节点n。

如果所有单步耗散都相等的话,这种算法就和广度优先搜索算法是一样的。

不过,这样在扩展到一个具有能返回到同一状态的零耗散行动的节点时就会陷入无限循环。

在uniformCostSearch函数中,我们计算每条路径的总代价,将总代价作为优先级进行搜索,待搜索序列存储于队列中。

对于每个节点,使用代价函数getCostOfActions计算其所产生的代价,并依次作为搜索的优先级进行搜索。

同样的,对于每个节点添加是否被访问的标记。

Q4: A*SearchA*算法是一种静态路网中求解最短路最有效的直接搜索方法,也是许多其他问题的常用启发式算法,对代价一致搜索算法进行了改进,加入了一个估计代价h。

公式表示为:f(n)=g(n)+h(n),其中f(n) 是从初始状态经由状态n到目标状态的代价估计,g(n) 是在状态空间中从初始状态到状态n的实际代价,h(n) 是从状态n到目标状态的最佳路径的估计代价(对于路径搜索问题,状态就是图中的节点,代价就是距离)。

在本实验中,我们使用曼哈顿距离作为启发函数。

在aStarSearch函数中,我们首先搜索具有最低组合成本和启发式的节点。

类似于问题三,我们计算每个节点的代价,并以此为依据搜索产生结果集,在搜索的过程中,还需要标记节点是否已经被访问过。

Q5: Corners Problem: Representation找到所有的角落,在角落迷宫的四个角上面有四个豆,通过这个函数找到一条访问所有四个角落的最短的路径。

在CornersProblem类中,我们使用__init__函数存储墙壁的位置,吃豆人的起点和角落位置,定义新的函数getStartState用于获得节点起始状态,isGoalState函数判断当前节点是否为目标节点,getSuccessors函数返回后继状态,所需的操作以及代价,getCostOfActions函数计算动作序列所需的代价。

查找后继节点时,在四个方向一次遍历,使用directionToVector移动位置,如果没有墙,则把下一个的状态,动作,花费的步数加入下一节点Q6:Corners Problem: Heuristic构建合适的启发函数,完成问题5中的角落搜索问题。

在问题五使用的CornersProblem类中定义cornersHeuristic函数,为角落问题构造启发函数。

在cornersHeuristic函数中使用了GetNextNodes函数获取下一个节点,isG oal函数判断是否为目标。

Q7: Eating All The Dots: Heuristic用尽可能少的步数吃掉所有的豆子。

这个问题利用之前A*算法可以很容易找到解,此种方法在这里不再详述。

下面在FoodSearchProblem类中定义函数foodHeuristic,构建合适的启发函数完成豆子搜索(启发式)问题。

Q8:Suboptimal Search次最优搜索,定义一个优先吃最近的豆子的函数,以此来提高搜索速度。

补充AnyFoodSearchProblem目标测试函数,并在ClosestDotSearchAgent当中添加findPathToClosestDot函数,用于寻找最近的豆子。

三、实验结果(解决每个问题的结果)Q1: Depth FirstSearchpython pacman.py -l tinyMaze-p SearchAgentpython pacman.py -l mediumMaze -p SearchAgentpythonpacman.py-l bigMaze -z .5 -pSearchAgentQ2: Breadth FirstSearchpythonpacman.py -lmediumMaze -p SearchAgent -afn=bfspython pacman.py -l bigMaze -p SearchAgent-a fn=bfs -z .5Q3: Uniform Cost Searchpython pacman.py -l mediumMaze-p SearchAgent -a fn=ucspython pacman.py -lmediumDottedMaze -p StayEastSearchAgentpython pacman.py -l mediumScaryMaze -pStayWestSearchAgentQ4: A* Searchpythonpacman.py -lbigMaze-z .5 -pSearchAgent -a fn=astar,heuristic=manhattanHeuristicQ5: Corners Problem: Representationpython pacman.py -l tinyCorners -p SearchAgent-afn=bfs,prob=Corner sProblempython pacman.py -l mediumCorners-pSearchAgent-a fn=bfs,prob=CornersProblemQ6: Corners Problem: Heuristicpython pacman.py -lmediumCorners-p AStarCornersAgent-z 0.5Q7: EatingAll The Dots: Heuristicpython pacman.py-l trickySearch -pAStarFoodSearchAgentQ8: Suboptimal Searchpython pacman.py -l bigSearch -p ClosestDotSearchAgent -z.5自动评分四、总结及讨论(对该实验的总结以及任何该实验的启发)1.在这个实验中,我们对深度优先搜索、广度优先搜索、代价一致搜索和A*算法四种搜索方法进行了python代码实现,对这四种方法有了进一步的了解。

相关文档
最新文档