高中数学必修4 三角函数的图像与性质

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

高中数学必修四《正弦函数、余弦函数的图像》PPT

高中数学必修四《正弦函数、余弦函数的图像》PPT

2
2
-1
3
2
x
2
〖练习 〗 画出函数y=-cosx,x[0, 2]的简
图.
x
0
2
3
2
2
cosx 1
0
-1
0
1
- cosx -1
0
1
0
-1
y
1
o
2
2
-1
3
2
x
2
y= - cosx,x[0, 2]
归纳与整理
1. 正弦曲线、余弦曲线
几何画法 五点法(画简图)
2.注意与诱导公式、三角函数线等知识的联系
y
1
y=cosx,x[0, 2]
o
2
2
3
2
x
2
-1
y=sinx,x[0, 2]
其中“五点法”最常用,要牢记五个关键点的 坐标。
课堂延伸 思考1、你能否从正弦函数、余弦函数 的图象发现函数的哪些性质呢?
思考2、在同一坐标系中画出函数 y=sinx ,x∈[0,2π]与y=cosx ,x∈[0,2π] 的图象,你还能发现什么?
( 2 ,0) ( 2 ,0) ( 2 ,0)
( 2 ,0) ( 2 ,0) 2 ,0)
x
3
0
2
2
2
sinx
0
1
0
-1
0
【正弦函数、余弦函数的图象】
y
-4 -3
-2
1
- o
-1
2
3
正弦函数的图象
关系?
y=cosx=sin(x+ ), xR
2
余弦函数的图象 y
-4 -3

人教A版高中数学必修四课件福建省福鼎市第二中学人教版1-4三角函数的图象与性质

人教A版高中数学必修四课件福建省福鼎市第二中学人教版1-4三角函数的图象与性质

(2)求函数y=sinx-cosx+sinxcosx,x∈[0,π ]的最大值和
最小值.
【解析】(1)由2sinx-1≥0得sinx≥又s1i,nx≤1,
2
∴≤1 sinx≤1,
2
∴ 2k x 2k 5 k Z.
6
6
答案:[2k ,2k 5](k Z)
【规范解答】(1)选C.由题意可得 cos x 1 0,
2
即cosx≥如1图, 可知.
2
角的终边落在与之 间的 阴影部分
33
(包括边界).
故故2k选 C. x 2k , k Z,
3
3
(2)选A.画出函数y=sinx的草图分析,当定义域为 [5 ,13 ]
33
数,则ω 的取值范围是()
(A)[(B)3[,0-)3,0]
2
(C)((0D,)3(]0,3]
2
【解析】选A.方法一:由题意可知ω<0,
由x∈[得,ω, x]∈
33
[ , ]. 33
又∵函数在区间[上为 减, ]函数,
33
∴解得3

2
,

3
22
1.周期函数和最小正周期 (1)周期函数:对于函数f(x)的定义域中的每一个值x,都存在 一个_非__零__常__数__T,使得_f_(_x_+_T_)_=_f_(_x_)_,则称f(x)为周期函数,T 为f(x)的一个周期. (2)最小正周期:周期函数f(x)的所有周期中,最小的一个_正__ _数__.
= 2(sin x 1)2 7 ,
48
所以当时sin,x 1
4
ymin

数学必修4——三角函数的图像与性质

数学必修4——三角函数的图像与性质

数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。

4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。

利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。

途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。

途径⼆:先周期变换(伸缩变换)再平移变换。

先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。

5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。

6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。

三角函数的图像与性质说课课件

三角函数的图像与性质说课课件
本节课是数形结合思想方法的良好素材,数形结合是数 学研究中的重要思想方法和解题方法,因此,本节课在教 材中的知识作用和思想地位是相当重要的.
二.学 情 分 析
(1)高一学生有一定的抽象思维能力,而形象思
维在学习中占有不可替代的地位,所以本节要紧 紧抓住数形结合方法进行探索.
(2)本班学生对数学科特别是函数内容的学
可知:正弦函数图像每经过 2k (k Z) 单位长度就重复出现,所以
...... 6 ,4 ,2 ,2 ,4 ,6..... 都是函数的周期.
2k(kZ)
最小正周期:如果周期函数f(x)的所有周期中存在一个最小整数, 那么这个最小整数就叫做f(x)的最小正周期 根据上述定义,我们有:
正弦函数是周期函数,2k (k Z且k 0) 都是它的周期,最小正周期为2
1
6
4
2
0
2
4
x
-1
1、定义域 3、最小正周期 4、单调性 : 增区间 5、最值 当x=
余弦曲线
2、值域
减区间
时,ymin
当x= 6、奇偶性
时,ymax
[设计意图]:通过把学习任务转移给学生,激发学生的主体意识和成就 动机,通过自主探索,给予学生解决问题的自主权,促进生生交流 ,最 终使学生成为独立的学习者 ,随着问题的解决,学生的积极性将被调动
单调区间为
2k
2
,2k
2
(k
Z
)
【设计意图】:通过列举正弦函数的几个
单调区间,最后归纳出函数所有的单调区 间,体现从特殊到一般的知识认识程 ,
培养学生观察、归纳的学习能力,有助于 以后理解记忆正弦型函数的相关性质.
思考:正弦函数的减区间是? 当x取何值时,y取最值?

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

高中数学必修四 第1章 三角函数课件 1.4.3 正切函数的性质与图象

[规律方法] 正切型函数单调性求法与正、余弦型函数求法一 样,采用整体代入法,但要注意区间为开区间且只有单调增区 间或单调减区间.利用单调性比较大小要把角转化到同一单调 区间内.
【活学活用 2】 (1)求函数 y=3tanπ4-2x的单调递减区间. (2)比较 tan 65π 与 tan-173π的大小.
课堂小结 1.正切函数的图象
正切函数有无数多条渐近线,渐近线方程为 x=kπ+π2,k∈Z, 相邻两条渐近线之间都有一支正切曲线,且单调递增.
2.正切函数的性质 (1)正切函数 y=tan x 的定义域是xx≠kπ+π2,k∈Z ,值域是 R. (2)正切函数 y=tan x 的最小正周期是 π,函数 y=Atan(ωx+ φ)(Aω≠0)的周期为 T=|ωπ |. (3)正切函数在-π2+kπ,π2+kπ(k∈Z)上递增,不能写成闭区 间.正切函数无单调减区间.
xπ6+2kπ≤x≤43π+2kπ,k∈Z

.

(3)令2x-π3=0,则 x=23π. 令2x-π3=π2,则 x=53π. 令2x-π3=-π2,则 x=-π3. ∴函数 y=tan2x-π3的图象与 x 轴的一个交点坐标是23π,0, 在这个交点左、右两侧相邻的两条渐近线方程分别是 x=-π3, x=53π.从而得函数 y=f(x)在一个周期-π3,53π内的简图(如图).
【例 2】 (1)求函数 y=tan-12x+π4的单调区间; (2)比较 tan 1、tan 2、tan 3 的大小. [思路探索] (1)可先将原式转化为 y=-tan12x-π4,从而把12x-π4 整体代入-π2+kπ,π2+kπ,k∈Z 这个区间内,解出 x 便可. (2)可先把角化归到同一单调区间内,即利用 tan 2=tan (2-π), tan 3=tan (3-π),最后利用 y=tan x 在-π2,π2上的单调性判 断大小关系.

高中数学必修4三角函数的图像与性质

高中数学必修4三角函数的图像与性质

三角函数的图像和性质课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念还 不很清楚,理解也不够透彻,需要及时加强巩固。

教学目标与 考点分析 1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。

教学方法导入法、讲授法、归纳总结法1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x定义域R R{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.函数)3cos(π+=x y ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数)4tan(x y -=π的定义域为( ). A .},4|{Z k k x x ∈-≠ππ B .},42|{Z k k x x ∈-≠ππ C .},4|{Z k k x x ∈+≠ππD .},42|{Z k k x x ∈+≠ππ3.)4sin(π-=x y 的图象的一个对称中心是( ).A .(-π,0)B .)0,43(π-C .)0,23(πD .)0,2(π4.函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的周期【例1】►求下列函数的周期:(1))23sin(x y ππ-=;(2))63tan(π-=x y考向二 三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4|(|π≤x 的最大值与最小值.【训练2】 (1)求函数y =sin x -cos x 的定义域;(2))1cos 2lg(sin )4tan(--=x xx y π的定义域(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.考向三 三角函数的单调性求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.(1))23cos(x y -=π,(2))324sin(21x y -=π,(3))33tan(π-=x y .【训练3】 函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12(2)若0<α<π2,)42sin()(απ++=x x g 是偶函数,则α的值为________.【训练4】 (1)函数y =2sin(3x +φ))2|(|πϕ<的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.难点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.【示例】► 已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为]12,125[ππππ+-k k (k ∈Z ),单调递减区间为]127,12[ππππ++k k (k ∈Z ),则ω的值为________.练一练:1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.课后练习:三角函数的图象与性质·练习题一、选择题(1)下列各命题中正确的是 [ ](2)下列四个命题中,正确的是 [ ]A.函数y=ctgx在整个定义域内是减函数B.y=sinx和y=cosx在第二象限都是增函数C.函数y=cos(-x)的单调递减区间是(2kπ-π,2kπ)(k∈Z)(3)下列命题中,不正确的是 [ ]D.函数y=sin|x|是周期函数(4)下列函数中,非奇非偶的函数是 [ ](5)给出下列命题:①函数y=-1-4sinx-sin2x的最大值是2②函数f(x)=a+bcosx(a∈R且b∈R-)的最大值是a-b以上命题中正确命题的个数是 [ ]A.1B.2C.3D.4[ ] A.sinα<cosα<tgαB.cosα>tgα>sinαC.sinα>tgα>cosαD.tgα>sinα>cosα(7)设x为第二象限角,则必有 [ ][ ]二、填空题(9)函数y=sinx+sin|x|的值域是______.的值是______.(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是______.(12)给出下列命题:①存在实数α,使sinαcosα=1⑤若α,β是第一象限角,α>β则tgα>tgβ其中正确命题的序号是______.三、解答题(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.答案与提示一、(1)B (2)D (3)D (4)B (5)D (6)D (7)A (8)D提示(2)y=ctgx在(kπ,kπ+π)(k∈Z)内是单调递减函数.y=cos(-x)=cosx在[2kπ-π,2kπ](k∈Z)上是增函数,而在[2kπ,2kπ+π]上是减函数.(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之.(5)①=-y(sinx+2)2+3 sinx=-1时,y max=2②当cosx=-1时,f(x)max=a-b∴cosα<sinα<tgα二、(9)[-2,2] (10)2或3 (11)y=arctg(x+2) (12)③④提示(11)C:y=arctg(x-2),C1:-y=arctg(-x-2),∴y=arctg(x+2)由390°>45°,但tg390°=tg30°<tg45°,故⑤不正确.综上,③④正确.三、。

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

人教版高中数学必修4第一章三角函数《1.4三角函数的图象与性质:1.4.2 正弦函数、余弦函数的性质》教学PPT

解:(2)当x 2k , k Z时,函数取得最大值,ymax 1
2
当x 2k , k Z时,函数取得最小值,
2
ymin 1
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymax
1,
函数取得最大值的x的集合是x
x
2
2k
,
k
Z
,ymin
1.
二、 正、余弦函数的奇偶性
-4 -3
例1.下列函数有最大(小)值?如果有,请写出取最大(小) 值时的自变量x的集合,并说出最大(小)值是什么?
(1)y cos x 1, x R; (2)y sin x, x R.
解:(1)当x 2k , k Z时,ymax 11 2,
当x 2k , k Z时,ymin 11 0.
1.4.2 正弦、余弦函数的性质
(1)周期性
定义域、值域
-4 -3
y
1
-2
- o
-1
y=sinx (xR)
2
3
4
定义域 xR
-4 -3
y=cosx (xR)
y
1
-2
- o
-1
值 域 y[ - 1, 1 ]
2
3
4
5 6x 5 6x
举例:
生活中“周而复始”的变化规律。
24小时1天、7天1星期、365天1年……. 相同的间隔重复出现的现象称为周期现象. 数学中又有哪些周期现象呢?
思考:y=sinx,x∈R的图象为什么会重复出现形 状相同的曲线呢?
y
1
4
3
2
7 2
5
3
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的图像和性质
1.“五点法”描图
(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为
(0,0),)1,2

,(π,0),)
1,23(
-π,(2π,0).
(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为
(0,1),)0,2(π,(π,-1),)0,23(π
,(2π,1).
2.三角函数的图象和性质
(1)周期性
函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π
|ω|,y=tan(ωx+φ)的最小正周
期为π
|ω|.
(2)奇偶性
三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.
三种方法
求三角函数值域(最值)的方法:
(1)利用sin x、cos x的有界性;
(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;
(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.
双基自测
1.函数)3cos(π
+=x y ,x ∈R ( ).
A .是奇函数
B .是偶函数
C .既不是奇函数也不是偶函数
D .既是奇函数又是偶函数 2.函数)
4
tan(
x y -=π
的定义域为( ). A .
}
,4
|{Z k k x x ∈-
≠π
π
B .},4
2|{Z k k x x ∈-≠π
π
C .},4
|{Z k k x x ∈+
≠π
π
D .},4
2|{Z k k x x ∈+
≠π
π
3.)4sin(π
-=x y 的图象的一个对称中心是( ).
A .(-π,0)
B .)0,4
3(π-
C .)0,2
3(
π
D .)0,2

4.函数f (x )=cos )6
2(π
+
x 的最小正周期为________.
考向一 三角函数的周期
【例1】►求下列函数的周期: (1))
2
3
sin(
x y π
π
-
=;(2))6
3tan(π
-=x y
考向二 三角函数的定义域与值域
(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.
(2)求解三角函数的值域(最值)常见到以下几种类型的题目:
①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);
②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).
【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4
|(|π
≤x 的最大值与最小值.
【训练2】 (1)求函数y =sin x -cos x 的定义域;
(2)
)
1cos 2lg(sin )4
tan(--
=
x x
x y π
的定义域
(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.
考向三 三角函数的单调性
求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.
(1))23cos(x y -=π
,(2))324sin(21x y -=π,(3))3
3tan(π
-=x y .
【训练3】 函数f (x )=sin )3
2(π
+-x 的单调减区间为______.
考向四 三角函数的对称性
正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )3
2(π
+
x 图象的对称轴方程可能是( ).
A .x =-π6
B .x =-π12
C .x =π6
D .x =π
12
(2)若0<α<π2,)42sin()(απ
++=x x g 是偶函数,则α的值为________.
【训练4】 (1)函数y =2sin(3x +φ))2
|(|π
ϕ<
的一条对称轴为x =
π
12,则φ=________.
(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.
难点突破——利用三角函数的性质求解参数问题
含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用
三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合. 【示例】► 已知函数f (x )=sin )3

ω+
x (ω>0)的单调递增区间为]12
,125[π
πππ+-
k k (k ∈Z ),单调递减区间为]12
7,12[π
πππ+
+k k (k ∈Z ),则ω的值为________. 练一练:
1、已知函数)3
3sin()(π
+=x x f
(1)判断函数的奇偶性;(2)判断函数的对称性.
2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8
π
=
x ,则
=ϕ______. 课后练习:
三角函数的图象与性质·练习题
一、选择题
(1)下列各命题中正确的
是 [ ]
(2)下列四个命题中,正确的
是 [ ]
A.函数y=ctgx在整个定义域内是减函数
B.y=sinx和y=cosx在第二象限都是增函数
C.函数y=cos(-x)的单调递减区间是(2kπ-π,2kπ)(k∈Z)
(3)下列命题中,不正确的
是 [ ]
D.函数y=sin|x|是周期函数
(4)下列函数中,非奇非偶的函数
是 [ ]
(5)给出下列命题:
①函数y=-1-4sinx-sin2x的最大值是2
②函数f(x)=a+bcosx(a∈R且b∈R-)的最大值是a-b
以上命题中正确命题的个数
是 [ ]
A.1
B.2
C.3
D.4
[ ] A.sinα<cosα<tgα
B.cosα>tgα>sinα
C.sinα>tgα>cosα
D.tgα>sinα>cosα
(7)设x为第二象限角,则必
有 [ ]
[ ]
二、填空题
(9)函数y=sinx+sin|x|的值域是______.
的值是______.
(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是______.
(12)给出下列命题:
①存在实数α,使sinαcosα=1
⑤若α,β是第一象限角,α>β则tgα>tgβ
其中正确命题的序号是______.
三、解答题
(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.
答案与提示
一、
(1)B (2)D (3)D (4)B (5)D (6)D (7)A (8)D
提示
(2)y=ctgx在(kπ,kπ+π)(k∈Z)内是单调递减函数.
y=cos(-x)=cosx在[2kπ-π,2kπ](k∈Z)上是增函数,而在[2kπ,2kπ+π]上是减函数.
(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之.
(5)①=-y(sinx+2)2+3 sinx=-1时,y max=2
②当cosx=-1时,f(x)max=a-b
∴cosα<sinα<tgα
二、(9)[-2,2] (10)2或3 (11)y=arctg(x+2) (12)③④提示
(11)C:y=arctg(x-2),C1:-y=arctg(-x-2),∴y=arctg(x+2)
由390°>45°,但tg390°=tg30°<tg45°,故⑤不正确.
综上,③④正确.
三、。

相关文档
最新文档