概率论与数理统计lec01 11
合集下载
概率论与数理统计课件ppt

简化数据结构,解释变量间的关系。
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
操作步骤
计算相关系数矩阵、求特征值和特征 向量、确定主成分个数。
实例
分析消费者对不同品牌手机的偏好。
聚类分析
聚类分析
常见方法
目的
实例
将类似的对象归为同一 组,即“簇”,不同簇
的对象尽可能不同。
层次聚类、K均值聚类、 DBSCAN等。
揭示数据的内在结构, 用于分类、猜测和决策
用数学符号表示一个随机实验的结果 。
随机变量可以取到任何实数值,且取 每个结果的概率为一个确定的函数。
离散型随机变量
随机变量可以取到所有可能的结果, 且取每个结果的概率为一个确定的数 。
随机变量的函数变换
线性变换
对于随机变量X和常数a、b,有 aX+b的散布与X的散布不同。
非线性变换
对于随机变量X和函数g(x),g(X)的散 布与X的散布不同。
置信区间
根据样本数据对总体参数进行估计的一个范围,表示我们对 估计的可靠程度。
假设检验与置信水平
假设检验
通过样本数据对总体参数或散布进行 假设,然后根据检验结果判断假设是 否成立。
置信水平
假设检验中,我们相信结论正确的概 率,通常表示为百分比。
05 数理统计的应用
方差分析
方差分析(ANOVA)
随机进程在通讯、气象、物理等领域有广泛应用。
马尔科夫链蒙特卡洛方法
01
马尔科夫链蒙特卡洛方法是一种 基于蒙特卡洛模拟的统计推断方 法,通过构造一个马尔科夫链来 到达近似求解复杂问题的目的。
02
马尔科夫链蒙特卡洛方法在许多 领域都有应用,如物理学、化学 、经济学等。
04 数理统计基础
样本与样本空间
概率论与数理统计完整ppt课件

化学
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
概率论与数理统计课件【】

观察 n 次试验中 A 发生的次数.
试验者 德.摩根
n
2048
nA
1061
fn (A)
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
ቤተ መጻሕፍቲ ባይዱK.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有 放回地进行重复抽球,观察抽出红色球的次数。
的次数 nA
称为事件 A 发生的频 数.比值
nA n
称为事件
A 发生的频 率,并记
成 fn ( A).
通过实践人们发现,随着试验重复次数n 的大量增加,频率fn ( A)会
越来越稳定于某一个常数, 我们称这个常数为频率的稳定值.其实这个值
就是事件A的概率f ( A).
在相同的条件下,多次抛一枚均匀的硬币,设事件 A =“正面朝上”,
1.1.4 事件间的关系与运算
1. 包含关系与相等: “事件 A发生必有事件B发生 ” 记为AB。 A=B AB且BA.
A B
A
B Ω
2. 和(并)事件: “事件A与事件B至少有一个 发生”,记作AB或A+B。
显然:AAB,BAB;若AB,则AB=B。
推广:n个事件A1, A2,…, An至少有一个发生,
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
试验者 德.摩根
n
2048
nA
1061
fn (A)
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
ቤተ መጻሕፍቲ ባይዱK.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有 放回地进行重复抽球,观察抽出红色球的次数。
的次数 nA
称为事件 A 发生的频 数.比值
nA n
称为事件
A 发生的频 率,并记
成 fn ( A).
通过实践人们发现,随着试验重复次数n 的大量增加,频率fn ( A)会
越来越稳定于某一个常数, 我们称这个常数为频率的稳定值.其实这个值
就是事件A的概率f ( A).
在相同的条件下,多次抛一枚均匀的硬币,设事件 A =“正面朝上”,
1.1.4 事件间的关系与运算
1. 包含关系与相等: “事件 A发生必有事件B发生 ” 记为AB。 A=B AB且BA.
A B
A
B Ω
2. 和(并)事件: “事件A与事件B至少有一个 发生”,记作AB或A+B。
显然:AAB,BAB;若AB,则AB=B。
推广:n个事件A1, A2,…, An至少有一个发生,
1.1.3 随机事件与样本空间
❖样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. ❖样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
《概率论与数理统计》课件

频数
17 20
10
2
1
入 则参数 的极大似然估计值为 ( ).
A1
B2
C3 D4
提交
设9八是9 的极大似然估计,g(9)是9函数,
若g(9)具有单值反函数,则g(9)的极大似然估计
为g(9八).
例 4 设总体X 的概率分布为
X
12
3
p
92 29(1−9) (1−9)2
现在观察容量为 3 的样本,观测值分别为 1 ,2 ,1,
n
9k ) = ln p(xi ;91 ,92
9k );
, i=1
(三) 对9i求偏导,然后令其为零,得到方程组
? ln L(91 ,92 ,
)
?9i
9
k = 0,
i = 1, 2,
k
解方程组得 (i = 1,2, , k) 则 为9i的极大似然估计量.
X ~ B(1, p), X1 , X2 , , Xn
其中 入> 0, 山 > 0 为未知参数,求参数入, 山 的矩估计.
解 设X1 , X2 , , Xn 为来自总体X 的一个样本,由于总体中
包含了两个未知参数,因此考虑总体的一阶、二阶原点矩,
1
j j EX = xf (x)dx = x入e −入(x−山)dx =山+ 入
2
j j EX2 = x2 f (x)dx = x2入e−入(x−山)dx = 山+ 1 + 1
矩估计量为( ).
A)
n −1
n
(Xi − X)2
i=1
1n
n C)
Xi 2
i=1
A
C
B) n −1 n Xi 2 i=1
概率论与数理统计完整公式以及各知识点梳理

的次数是随机变量,设为 X ,则 X 可能取值为 0,1,2,, n 。
P( X
k)
Pn(k )
C
k n
p k q ,
其中
则称随机变量 X 服从参数为 n , p 的二项分布。记为
X ~ B(n, p) 。
当 n 1时, P( X k) p k q1k , k 0.1,这就是(0-1)分
1567014781.doc
概率论与数理统计完整版公式
第 1 章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数。
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数。
加法原理(两种方法均能完成此事):m+n
(2)加法 和乘法原 理
5° P(X x) F(x) F(x 0) 。
对于离散型随机变量, F(x) pk ; xk x
x
对于连续型随机变量, F (x) f (x)dx 。
0-1 分布
P(X=1)=p, P(X=0)=q
二项分布
(5)八大 分布
在 n 重贝努里试验中,设事件 A 发生的概率为 p 。事件 A 发生
1° 0 F(x) 1, x ;
(4)分布 函数
2° F(x) 是单调不减的函数,即 x1 x2 时,有 F(x1) F (x2) ;
3° F() lim F(x) 0, F() lim F(x) 1;
x
x
4° F(x 0) F(x) ,即 F(x) 是右连续的;
概率论与数理统计图文课件最新版-第1章-随机事件与概率

AB
注 ▲ 它是由事件 A与 B 的所有
公共样本点构成的集合。
n
▲ 称 I Ak 为 n 个事件 A1 , A2 ,L An 的积事件 k 1
I
k 1
Ak
为可列个事件
A1
,
A2
,L
L
的积事件
概率统计
5.事件的差: 若事件 A 发生而事件 B 不发生,则称 这样的事件为事件 A 与事件 B 的差。
A B 记作: A B x x A且x B
2
0.4
18 0.36
4
0.8
27 0.54
247 0.494
251 0.502 26波2 动0最.52小4
258 0.516
概率统计
从上述数据可得:
(1) 频率有随机波动性
即对于同样的 n, 所得的 f 不一定相同.
(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅 度较大, 但随 n 的增大 , 频率 f 呈现出稳定性.
解: S1 {正面,反面}
S2 0,1, 2, 3,
概率统计
S3 1, 2, 3, S4 0,1, 2, 3, ,10
S5 1, 2, 3,4,5,6
注
E3 :射手射击一个目标, 直到射中为止,观 察 其射击的次数
E4:从一批产品中抽取十 件,观察其次品数。
E5:抛一颗骰子,观察其 出现的点数。
义上提供了一个理
H
想试验的模型:
(H,T): H (T,H): T (T,T): T
T
在每次试验中必
有一个样本点出
H
现且仅有一个样
本点出现 .
T
概率统计
例4.若试验 E是测试某灯泡的寿命. 试写出该试验 E 的样本空间. 解:因为该试验的样本点是一非负数,
概率论与数理统计课件最新完整版

时间序列分析是一种统计学方法,用于分析和预测时间序列数据。随机过程在时间序列分析中用于描述数据随时间变化的随机性质。
随机过程在时间序列分析中用于建模和预测时间序列数据。通过使用随机过程,可以描述数据在不同时间点的变化和相关性,并基于历史数据预测未来的发展趋势。
THANK YOU
概率论与数理统计课件最新完整版
概率论基础数理统计初步概率论的应用数理统计的应用概率论与数理统计的交叉应用
01
概率论基础
概率是描述随机事件发生可能性大小的数值,通常用P表示。概率的取值范围在0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
概率的定义
概率具有可加性、可减性和有限可加性。可加性是指互斥事件的概率之和等于该事件的总概率;可减性是指对立事件的概率之和等于1;有限可加性是指任意有限个两两互斥事件的概率之和等于这些事件的总概率。
02
统计决策理论的基本思想是通过建立概率模型来描述不确定性,然后利用这些模型进行决策分析。
03
在统计决策理论中,常用的方法包括贝叶斯分析、假设检验和置信区间估计等。
04
统计决策理论在经济学、金融学、管理学等领域有广泛的应用,例如风险评估、投资组合优化和市场营销策略等。
01
试验设计涉及到如何选择合适的实验方法、如何分配实验对象、如何控制实验条件等问题。
03
概率论的应用
贝叶斯推断是一种基于概率的推理方法,它通过将先验知识与新获取的数据相结合,对未知参数进行估计和预测。
通过将先验概率分布和似然函数结合,可以得到后验概率分布,从而对未知参数进行推断。
在贝叶斯推断中,先验概率分布反映了在获取新数据之前对未知参数的认知,而似然函数则描述了数据与未知参数之间的关系。
《概率论与数理统计》

03
01
02
如果这个模型是线性的就称为线性回归分析。这种方法是处理变量间相关关系的有力工具,是数理统计中一种常用的方法。它不仅告诉人们怎样建立变量间的数学表达式,即经验公式,而且还利用概率统计知识进行分析讨论,判断出所建立的经验公式的有效性,从而可以进行预测或估计。这在实际中是很有用的。本章主要介绍如何建立经验公式,以及建立的经验公式其有效性的判断。
例1 以家庭为单位,某种商品年需求量与该商品价格之间的一组调查数据如表11-1所示:
Pi (xi) di (yi)
1 5
2 3.5
2 3
2.3 2.7
2.5 2.4
2.6 2.5
2.8 2
3 1.5
3.3 1.2
3.5 1.2
5 1
7 4
6 4
6.21 5.29
6 6.25
6.5 6.76
5.6 7.84
第十一章 回归分析
202X
理解变量间的相关关系以及回归分析的主要任务
会用最小二乘法建立回归直线方程
一元线性回归方程的建立
回归直线方程的有效性检验
重点
教学要求
回归分析的任务是:根据试验数据取估计回归函数,讨论有关的点估计、区间估计、假设检验等问题。
01
特别重要的是对随机变量Y的观察值做出点预测和区间预测。
一类是函数关系,即变量之间有着确定的关系。例如已知圆的半径R,则圆面积可以用公式S= πR2 来计算。这里S与R之间有着确定的关系。 另一类是统计关系或称相关关系。即变量之间虽然存在着密切的关系,但从一个(或一组)变量的每一确定的值,不能求出另一变量的确定的值。可是在大量试验中,这种不确定的关系,具有统计规律性,这种联系使称为统计相关。
01
02
如果这个模型是线性的就称为线性回归分析。这种方法是处理变量间相关关系的有力工具,是数理统计中一种常用的方法。它不仅告诉人们怎样建立变量间的数学表达式,即经验公式,而且还利用概率统计知识进行分析讨论,判断出所建立的经验公式的有效性,从而可以进行预测或估计。这在实际中是很有用的。本章主要介绍如何建立经验公式,以及建立的经验公式其有效性的判断。
例1 以家庭为单位,某种商品年需求量与该商品价格之间的一组调查数据如表11-1所示:
Pi (xi) di (yi)
1 5
2 3.5
2 3
2.3 2.7
2.5 2.4
2.6 2.5
2.8 2
3 1.5
3.3 1.2
3.5 1.2
5 1
7 4
6 4
6.21 5.29
6 6.25
6.5 6.76
5.6 7.84
第十一章 回归分析
202X
理解变量间的相关关系以及回归分析的主要任务
会用最小二乘法建立回归直线方程
一元线性回归方程的建立
回归直线方程的有效性检验
重点
教学要求
回归分析的任务是:根据试验数据取估计回归函数,讨论有关的点估计、区间估计、假设检验等问题。
01
特别重要的是对随机变量Y的观察值做出点预测和区间预测。
一类是函数关系,即变量之间有着确定的关系。例如已知圆的半径R,则圆面积可以用公式S= πR2 来计算。这里S与R之间有着确定的关系。 另一类是统计关系或称相关关系。即变量之间虽然存在着密切的关系,但从一个(或一组)变量的每一确定的值,不能求出另一变量的确定的值。可是在大量试验中,这种不确定的关系,具有统计规律性,这种联系使称为统计相关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 盛骤、谢式千、潘承毅,《概率论与数理统计》(第4版), 北京:高等教育出版社,2008,ISBN 7-040-23896-9
2020/12/2
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• Probability measures uncertainty formally, quantitatively. It is the mathematical language of uncertainty.
– "It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge." —— Pierre-Simon Laplace, Théorie Analytique des Probabilités, 1812.
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/2
4
Why study probability and statistics?
• The only purposeful impact you will have on your life and in the world will come from decisions you make.
• Statistics is the field that studies how to
• We are able to explicitly include uncertainty
into decision making using probability.
2020/12/2
6
What do we do when faced with uncertainty?
• How do you design a policy for climate change?
2020/12/2
11
What is statistics?
• Statistics provide data about uncertain relationships. They are numbers that summarize the results of a study.
• Statistical inference formalizes the process of learning through observation.
• What makes decisions hard? • One thing that makes decisions hard is uncertainty.
2020/12/2
5
Why study probability and statistics?
What happens if you ignore uncertainty in decision making?
2020/12/2
8
Examples
• Design of an offshore drilling tower
• How safe is safe enough? • Possibility of hurricane
during useful life
2020/12/2
9
• Design of an off-shore wind turbine
– Thicker – lasts longer – Thicker – more expensive – Relation between
thickness and life is uncertain. – Therefore, the total cost of the project is uncertain.
• References:
– 茆诗松、程依明、濮晓龙,《概率论与数理统计教程》,北 京:高等教育出版社,2004,ISBN 7-040-14365-2
– R. Johnson, Miller & Freund’s Probability and Statistics for Engineers, 7th Ed. Pearson Education, 2005, ISBN 0-131-43745-6 影印改编版:章栋恩改编,《概率论与数理统计》(第7版) ,北京:电子工业出版社,2005,ISBN 7-121-01931-0
• fatigue life is unknown
• must design to tradeoff initial costs with lifetime and reliability
2020/12/2
10
What is probability?
• Uncertainty can be assessed or discussed informally using language such as “it is unlikely” or “probably”.
Probability and Statistics
2020/12/2
1
Textbook and References
• Textbook:
– Jay L. Devore, Probability and statistics for engineering and the sciences (6th ed.), 机械工业出版社, ISBN 7-111-15724-9.
• How do you design a culvert for flood prevention?
– Plan for the “worst case”? – Plan for the “average case?”
2020/12/2
7
Examples
• Planning and design of airport pavement
2020/12/2
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• Probability measures uncertainty formally, quantitatively. It is the mathematical language of uncertainty.
– "It is remarkable that a science which began with the consideration of games of chance should have become the most important object of human knowledge." —— Pierre-Simon Laplace, Théorie Analytique des Probabilités, 1812.
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
2020/12/2
4
Why study probability and statistics?
• The only purposeful impact you will have on your life and in the world will come from decisions you make.
• Statistics is the field that studies how to
• We are able to explicitly include uncertainty
into decision making using probability.
2020/12/2
6
What do we do when faced with uncertainty?
• How do you design a policy for climate change?
2020/12/2
11
What is statistics?
• Statistics provide data about uncertain relationships. They are numbers that summarize the results of a study.
• Statistical inference formalizes the process of learning through observation.
• What makes decisions hard? • One thing that makes decisions hard is uncertainty.
2020/12/2
5
Why study probability and statistics?
What happens if you ignore uncertainty in decision making?
2020/12/2
8
Examples
• Design of an offshore drilling tower
• How safe is safe enough? • Possibility of hurricane
during useful life
2020/12/2
9
• Design of an off-shore wind turbine
– Thicker – lasts longer – Thicker – more expensive – Relation between
thickness and life is uncertain. – Therefore, the total cost of the project is uncertain.
• References:
– 茆诗松、程依明、濮晓龙,《概率论与数理统计教程》,北 京:高等教育出版社,2004,ISBN 7-040-14365-2
– R. Johnson, Miller & Freund’s Probability and Statistics for Engineers, 7th Ed. Pearson Education, 2005, ISBN 0-131-43745-6 影印改编版:章栋恩改编,《概率论与数理统计》(第7版) ,北京:电子工业出版社,2005,ISBN 7-121-01931-0
• fatigue life is unknown
• must design to tradeoff initial costs with lifetime and reliability
2020/12/2
10
What is probability?
• Uncertainty can be assessed or discussed informally using language such as “it is unlikely” or “probably”.
Probability and Statistics
2020/12/2
1
Textbook and References
• Textbook:
– Jay L. Devore, Probability and statistics for engineering and the sciences (6th ed.), 机械工业出版社, ISBN 7-111-15724-9.
• How do you design a culvert for flood prevention?
– Plan for the “worst case”? – Plan for the “average case?”
2020/12/2
7
Examples
• Planning and design of airport pavement