液晶显示器设计理论
液晶显示器基础知识-

液晶显示器基础知识-液晶显示器基础知识☆解析度目前市面上LCD monitor可以买得到的, 大概有以下几种解析度XGA: 1024*768 SXGA: 1280*1024 SXGA+: 1400*1050 UXGA: 1600*1200另外还有一些解析度更高的面板 (通常是有特殊用途的), 以及在台湾大概还没有人在用的宽萤幕16:9 or 16:10, 在此先不讨论 .液晶显示器的解析度, 表示它可以显示的点的数目. 这是一个固定值, 没有办法调整的. 同样的尺寸之下, 解析度越高则可以显示的画面越细致. 假设你买了一个XGA的monitor, 则你的显示卡千万不要设定成其他解析度, 比如说800*600 . 因为在这种情况之下, 电脑实际上是把一个800*600的画面, scale成1024*768在显示, 结果就是看到一个比较模糊的画面.正确的做法就是, 买了什麽解析度的monitor, 显示卡就设定成那个解析度.☆ DVI (Digital Visual Interface)电脑处理的是数位信号, 处理完之後送出来的也是数位信号, 但是传统的CRT monitor使用的是类比信号. 为了与CRT沟通, 送到CRT 的信号, 必须先转换成类比的才能使用. 因此一般显示卡的输出 (D-sub, 就是有15 pin的那个小插槽), 送的是类比信号.LCD monitor使用的也是数位信号, 但是为了与一般显示卡相容, 所以会设计成可以接收D-sub接头送出来的类比信号, 然後再把这个类比信号, 转换成数位信号去处理与显示. 这里就产生一个问题了, 不论是数位转类比, 或类比转数位, 一定都会有信号的遗失.因此为了与CRT相容的这个愚蠢理由, LCD monitor进行了两次本来不必要的信号损失. 造成的结果就是, 看到的画面会有一点点模糊. 而其实LCD原本的能力, 可以显示得更清楚.由於这两年液晶显示器开始热卖, 显示卡厂商也开始推出可以直接输出数位视讯的显示卡, 也就是多了一个叫作DVI的插槽. 如果你买一个有DVI插槽的显示卡, 再买一个有DVI插槽的LCD monitor, 这时LCD monitor所显示的清晰程度, 才是该LCD原本所设计出来的能力.当然, 这样的组合现在好像有比较贵, 如果你不是对画质非常挑剔, 可以用就好的话, 可以考虑省这笔钱 .☆坏点(dot defect)所谓坏点, 是指液晶显示器上无法控制的恒亮或恒暗的点 . 坏点的造成是液晶面板生产时因各种因素造成的瑕疵, 可能是particle落在面板里面, 可能是静电伤害破坏面板, 可能是制程式控制制不良等等.坏点分为两种:亮点与暗点. 亮点就是在任何画面下恒亮的点, 切换到黑色画面就可以发现. 暗点就是在任何画面下恒暗的点, 切换到白色画面就可以发现.一般来说, 亮点会比暗点更令人无法接受, 所以很多monitor厂商会保证无亮点, 但好像比较少保证无暗点的. 有些面板厂商会在出货前把亮点修成暗点. 另外某些种类的面板只可能有暗点不可能有亮点.例如MVA, IPS的液晶面板, 面板厂商会把有坏点的面板降价卖出. 通常是无坏点算A grade, 三点以内算B grade, 六点以内算C grade. 一般来说这都是可以正常出货的, 至於更低等级的面板, 在景气好面板缺货的时候 (例如2000年时), 还是会有人来买.今年的话, 大家眼睛最好也睁大一点 , 坏点没有办法修. 如果你买的monitor有保固坏点, 你拿去退给他, 他就是换一台给你.☆ muramura本来是一个日本字, 随着日本的液晶显示器在世界各地发扬光大, 这个字在显示器界就变成一个全世界都可以通的文字. mura是指显示器亮度不均匀, 造成各种痕迹的现象.最简单的判断方法就是, 在暗室中切换到黑色画面, 以及其他低灰阶画面. 然後从各种不同的角度用力去看, 随着各式各样的制程瑕疵, 液晶显示器就有各式各样的mura. 可能是横向条纹或四十五度角条纹, 可能是切得很直的方块, 可能是某个角落出现一块, 可能是花花的完全没有规则可言, 东一块西一块的痕迹.mura不会对使用上造成什麽影响, 这属於品味问题. 面板厂商会把有mura的面板, 打成次级品用较低价格卖出. 但是我没有听说, monitor厂商有那种保证无mura的. 这个通常也不会写进monitor规格, 所以买之前眼睛睁大一点, 买到了只好自认倒楣.☆对比显示器的对比是这样定义的, 在暗室之中, 白色画面下的亮度除以黑色画面下的亮度. 因此白色越亮, 黑色越暗, 则对比值越高. 一般LCD monitor的规格书上都会写出它的对比值, 但是这个值通常只能参考. 因为面板厂商为了保护自己, 有一些规格值会写得很保守, 对比就是其中一项.比如说, 某机种的对比值明明可以做到三百, 但是规格书写的是typical 200, minimum 150 , 这是为了量产的时候, 万一出了什麽问题, 导致黑色漏光对比下降, 该批货还是可以正常出货.如果你想比较的两款LCD monitor, 对比值分别是写350, 400, 不要以为四百的那个真的有比较好, 那只是这一家他敢写而已. 事实上, 两款分别写300, 400的, 我都还会怀疑那可能是差不多的. 实际上运气好的话, 都有可能是做到五六百.如果你会很care这个, 可以把想比较的两台显示器白色亮度调到一样, 然後切换到黑色画面, 在暗室下看谁比较黑. 如果不是对画质非常挑剔, 在一般使用情况下, 我认为对比三百应该是够用的.☆色饱和度 (color gamut)色饱和度是指显示器色彩鲜艳的程度. 显示器是由红色绿色蓝色三种颜色光, 来组合成任意颜色光. 如果RGB三原色越鲜艳, 则该显示器可以表示的颜色范围就更广. 这是因为无法显示比三原色更鲜艳的颜色, 所以某显示器三原色本来就不鲜艳, 那个该显示器所能显示的颜色范围就比较窄了.色饱和度是面板厂商的重要规格, 但是我到现在好像还没看过有monitor厂商把色饱和度写进规格的. 他们都是写可以组合出来的颜色数目. 比如说, 某显示器的RGB三种颜色光都可以分成64灰阶 (6 bit), 则该显示器的颜色种类总共有64*64*64=262,144种组合. 如果该显示器的RGB三种颜色光, 都可以分成256灰阶(8 bit). 则该显示器的颜色种类总共有256*256*256=16,777,216种组合.当然灰阶数越多颜色层次看起来会越细致, 但不表示颜色会比较鲜艳. 色饱和度的表示是以NTSC所规定的三原色色域面积为分母, 显示器三原色色域面积为分子去求百分比. 比如某显示器色饱和度为71% NTSC, 表示该显示器可以显示的颜色范围为NTSC规定的百分之七十一.71% NTSC大约为为目前CRT电视机的标准, LCD显示器目前作到这个程度的,在色彩上就算高阶了. 目前笔记型电脑用的萤幕色饱和度大约40~50% NTSC. 桌上型液晶萤幕大多作到60%~65% NTSC.当然各大厂都有持续开发高色饱和度显示器的计划, 或已有量产, 请不要拿来和我擡杠. 我说的是"目前"和"大多" . 选购的时候, 把喜欢的两台monitor摆在一起, 点相同的画面, 通常就可以看出谁的色饱和度比较好.☆亮度亮度是指显示器在白色画面之下明亮的程度, 单位是cd/m^2, 或是nit . 亮度是直接影响画面品质的重要因素. 在实验室里面我们常讲一句话: 「一亮遮三丑」. 一个明亮的显示器即使色饱和度比较差, 或颜色偏黄等其他不利因素, 还是有可能看起来画面会比较漂亮.目前市售的monitor, 一般亮度规格大约是250nits. Notebook亮度规格大约是150nits. 当然更亮规格的产品, 各厂都有在开发当中或已量产. 如果是液晶电视, 亮度通常会有400nits, 这是因为看电视时不像使用监视器时距离那麽近, 并且会考虑摆电视的环境会比较明亮.液晶显示器会发光, 是因为它的背光模组藏有灯管. 就像你现在擡头可以看到的照明用萤光灯管是很像的东西, 只不过小了一点. Notebook里面会摆一支, Monitor会摆上两到六支或以上.目前灯管厂商都会保证灯管寿命, 在三万小时或五万小时以上. 也就是使用三五万小时之後, 亮度会掉到一半. 所以其实液晶显示器还算蛮长寿的. 没有其他破坏性动作造成故障的话, 应该可以活到你想淘汰它的时候.显示器的亮度是使用者可以调整的, 调到你觉得舒服的亮度就可以, 调得太亮除了可能不舒服外, 也会损耗灯管寿命.☆视角(一)液晶显示器由於天生的物理特性, 使得使用者从不同角度去看时, 画面品质会有所变化. 与正看时相比, 斜看的时候, 转到当画面品质已经变化到无法接受的临界角度时, 称之为该显示器之视角. 视角的定义有三种1. 对比从斜的方向去看液晶显示器, 与正看时相比, 白色部分会变暗, 黑色部分会变亮, 因此对比会下降. 一般定义当对比下降到10的时候的角度为该显示器的视角. 也就是定义大於此视角的时候, 黑白已经不易分辨. 一般面板厂商与监视器厂商规格书上, 对於视角的定义最常使用这一条.2. 灰阶反转理论上显示器从零灰阶 (黑色) 到二五五灰阶 (白色), 应该是灰阶数越高则越亮. 但是液晶显示器在某个大角度的时候, 有可能看到低灰阶反而比高灰阶还亮, 也就是看到类似黑白反转的现象, 这种现象称之为灰阶反转.定义不会产生灰阶反转现象的最大角度为视角, 也就是超过这个角度就有可能看到灰阶反转, 而灰阶反转是无法接受的影像品质. 这个定义和第一个定义的差别在於, 用对比定义只考虑零灰阶和二五五灰阶, 而灰阶反转是考虑所有的灰阶.3. 色差从不同角度去看液晶显示器, 会发现颜色会随着角度而变化, 比如说本来是白色画面变得比较黄或比较蓝, 或是颜色变得比较淡等等. 随着角度变大, 当颜色的变化已经大到无法接受的临界点时, 定义该角度为视角.关於色差, 我说过颜色可以量化, 所以颜色的差异可以用数字表示, 但什麽叫做无法接受的色差, 目前并没有一定标准, 所以写规格的时候没有人用这个定义, 但是在实验室里面, 我们在比较两种显示器的时候还是会care相同角度时谁的色差比较大, 这是使用者会直接感觉到的品味问题.最早的TFT-LCD所使用的是一种叫做TN的液晶模式, 这种技术最大的缺点就是视角很小, 以对比来定义, 目前大概都是作到左右视角各45~50度, 上视角 15~20度, 下视角35~40度.为了解决视角的问题, 有几种广视角技术就发展出来, 目前市面上的主流广视角技术有三种: TN+film, MVA, IPS. 目前市售的notebook LCD, 通常不会应用广视角技术, 因为考量notebook是个人使用, 广视角效益不大, 而monitor通常会使用广视角, 考量使用monitor时, 可能会秀一些资料或画面给在旁边的人看.☆视角(二)1. TN+film所谓TN+film就是在原来的TN型TFT-LCD上贴上一种广视角补偿膜. 这种广视角补偿膜是Fuji Film (没错, 就是作底片的那一家) 的独家专利技术, 称为Fuji Wide View Film. 一旦贴上这种补偿膜, 以对比为定义, 原本大约左右视角100度, 上下视角60度, 立刻增加到左右140度, 上下120度. 但是TN+film, 还是没有解决灰阶反转的问题2. MVAMVA是Fujitsu所开发出来的独家专利技术. 除Fujitsu之外, 台湾尚有奇美电子与友达光电获得授权生产. MVA可以做到上下视角与左右视角都超过160度, (但不是每个方位都有这样的视角), 并且解决了大部分灰阶反转的问题. 除非是从很特殊的方位, 并且很大的角度去看, 才有可能看到灰阶反转3. IPSIPS最早由Hitachi所发展, 另外IBM Japan, NEC, Toshiba等也拥有IPS技术. 国内则有瀚宇彩晶获得Hitachi的授权生产. IPS上下视角与左右视角号称到170度, (但不是每个方位都有这样的视角), 并解决大部分灰阶反转问题.160度与170度的差异其实没有意义, 有兴趣的话拿起量角器来看看80度是多大的视角. 基本上超过这个视角, 一个平面已经快变成一条缝了, 根本没有办法进行量测. 他敢写170度(两边各85度), 是在80度的时候可能量到对比二三十, 所以有把握85度时对比仍可以超过十. 其实MVA也可以 .除了以上三项广视角技术, 比较有名的广视角技术, 另有Sharp拥有独家专利ASV. 韩国的Samsung有一种MVA的变形叫做PVA的. 韩国的Hydis (原Hyundai的TFT-LCD部门)则拥有IPS的变形FFS等.☆视角(三)Notebook的液晶萤幕, 不使用广视角技术有几个理由. 除了之前说过的notebook是个人使用的之外, 最主要的原因是notebook讲求轻薄省电, 所以背光板只能摆一根灯管, 而且必须做很薄(也就是天生作不亮).为了得到比较好的光使用效率, 所以采用穿透率最高的TN型设计, 而比较少使用MVA, IPS, ASV等等技术. 而TN+film技术, 除了穿透率有比TN低一些之外, 多了两张广视角补偿膜, 也会增加厚度与重量. 而notebook用面板对厚度重量的要求, 一向是机构工程师的恶梦 .判断monitor是不是使用TN+film最简单的方法, 就是去看灰阶反转. 下视角是最容易看到灰阶反转的角度. 把monitor随便切到一个有不同颜色与亮度的图案, 把脸贴到monitor下方, 然後眼睛往上看. 如果看到灰阶反转的现象(就是亮的地方变暗, 暗的地方变亮), 就可以肯定这是TN+film型monitor了. 如果是notebook液晶萤幕,连左右视角都很容易看到TN+film的左右视角, 依设计可能有120度或140~150度(以对比为定义). 这是因为Fuji Film又有推出新一代的广视角补偿膜. 不过有件令我印象非常深刻的事, 有一次拿到某社的TN+film面板, 规格写左右typical各75度, 但是没有写minimun值, 实际一量发现只有60度. 这才发现敝公司在写视角规格时, 实在稍嫌老实了一点, 不但都typical value老实写, 而且还保证minimum value. 人家大笔一挥, 技术立刻日进千里, 难怪卖得那麽好.MVA和IPS的判断, 像我们靠这一行吃饭的, 其实就是把显微镜拿起来去看面板的画素设计, 一般使用者则可以从规格书看出一点端倪. 除了视角规格>160与170的差别之外, MVA的响应时间规格是25ms,IPS的响应时间大约是40ms. 如果是Sharp的面板规格, 又写上下左右视角超过160度, 那一定就是ASV.MVA和IPS各有优缺点, 比如说MVA的响应速度比IPS快, 但色差也比IPS大等等. 针对各自的缺点, 厂商都有持续开发改进的研究, 甚至已经量产. 而TN+film也不会有消失的一天, 因为它容易作得亮, 而且对面板厂商而言, 不须要特别的制程, 是低价monitor非常适合的选择 .☆响应时间(一)响应时间的定义就是在面板的同一点上面, 从黑色变到白色所需时间, 加上从白色变到黑色所需时间. LCD有响应时间的问题, 是因为 LCD 是以液晶分子的旋转角度, 来控制光线的灰阶亮暗, 而液晶分子旋转时需要时间.一般monitor使用的目的是文书处理与网页浏览 . 一般情况之下就是monitor会持续显示同一个画面很久一段时间, 然後才切换到另一个不同的画面. 这样的使用状况下, 其实反应时间多快多慢对使用者而言是没有影响的. 但是如果要使用monitor来看动画或影片, 因为画面会持续变化没有停止, 这时候响应时间就会影响画面品质.响应时间分为rise time和fall time, 对TN型面板来说, 驱动电压从低电压变成高电压时, 画面会从白色变成黑色 (电压rise). 因此白色变成黑色所需时间就是rise time. 而驱动电压从高电压变成低电压时, 画面会从黑色变成白色 (电压fall), 因此黑色变成白色就是fall time.MVA和IPS则刚好相反, 黑变成白是rise time, 白变成黑是fall time. 目前市面上量产面板的规格, TN型rise time大约15ms, fall time大约35ms. 实际上作到10ms + 20ms也不算难. 这里其实有一个陷阱.对LCD面板来说, 从全黑变到全白, 以及从全白变到全黑的响应时间, 其实是最快的. 但是中间灰阶的切换, 就不能保证这个速度. 比如说从128灰阶切换到140灰阶, 响应时间都会比规格值大上很多, 大於七八十毫秒都是可能的, 而你使用monitor时, 不可能只使用黑色和白色两种颜色.☆反应时间(二)一般LCD面板的画面更新频率是60Hz, 也就是每秒钟要换60次画面. 不管目前显示的图片是否有在变动, 都会以这种频率重新显示, 因此每个画面持续时间是1/60 = 16.67ms. 如果响应时间远大於这个值, 画面在动时, 就可能看到模糊的影像. 注意是模糊的影像, 不是残影. 残影是另外一个问题, 你可以这样测试:在MS Windows所附的萤幕保护当中有一个"留言显示", 设定值里面可以更改背景颜色和留言内容. 把背景选成灰色, 留言打入++++++, 字型选大一点, 然後让它跑. 仔细看, 可以看到加号背後拖着一个模糊的尾巴, 这就是响应时间不够快造成的.CRT没有这样的问题. 这就是说目前的LCD monitor, 其实不是很适合用来看影片. 不过我实际测试的结果, 普通使用者如果是观看一般影片(比如说ㄟ片), 其实影响不大, 要看那种画面闪来闪去的动作片, 很用力去盯着看某些, 其实平常不会去注意的背景, 才会发现品质下降. 玩game的话也没有什麽太大的问题.市售的LCD monitor对於响应时间的规格, 还有另一个陷阱. 有些厂商响应时间只写rise time, 所以如果买monitor时, 看到响应时间只有15ms甚至更低, 最好问清楚. 通常就是这种情况 , 真正小於15ms的产品, 大概还要过好些时间, 才有可能在市面上看到.另外有一些高阶LCD的响应时间的规格, 可能是写全灰阶切换小於16.67ms. 这是指不管是多少灰阶切换到多少灰阶, 都保证在16.67ms 之内完成动作. 注意不是rise + fall time 16.67ms, 这是在驱动电压上面, 动了一些手脚达到的. 目前还不多见, 但不是没有. 这种面板用来看影片, 画质比起传统的LCD就有相当程度的改善.☆保护玻璃有些人在购买液晶显示器的时候, 会要求装上保护玻璃. 这个动作好不好见仁见智, 我个人就很反对. 但我有一个同事就买一个有装玻璃的, CRT的表面是玻璃, 最大的问题就是会反光. 尤其如果背後有窗户或灯光就非常的讨厌, 常常会看不到画面.LCD的表面最外一层是一片偏光片, 这一片偏光片通常作过一些特殊表面处理, 硬度比较高 (一般规格是3H), 并且具有防炫光与抗反射的功能, 所以LCD不会有像CRT那样有反光的问题. 可是一旦装上保护玻璃, 这一切就毁了, 你背後的光源对你的CRT萤幕, 造成什麽样的困扰, 都会在LCD的保护玻璃上重现.浪费了表面偏光片原本的设计, 破坏影像品质. 那为什麽有人要装玻璃? 因为使用monitor时手指常常会在上面指来指去, 而偏光片印上指纹印之後会很难消除, 光用布是擦不掉的, 如果装上保护玻璃就很容易清理.另外就像我同事的情形, 他一买回家放, 他两个还没念幼稚园的儿子就来用力压, 当场让他觉得玻璃买对了. 其实LCD没有那麽脆弱, 若不是很用力去压或是撞击是不会破的, 坏点也不是摸出来的.除非摆LCD的地方, 常常有很没斩节的小朋友出没, 否则不建议装保护玻璃. 要擦掉偏光片上的指纹, 可以用水加一点点洗碗精, 用布沾湿後去擦, 再用布沾清水去擦即可. 轻压液晶萤幕不会使液晶流出来, 那是密封在面板里面的. 万一打破液晶萤幕的话(破裂处会黑掉), 要尽快处理掉, 并用肥皂洗手, 因为液晶是有毒的, 不要摸一摸然後不小心吃下去.☆残影残影是指画面切换之後, 前一个画面不会立刻消失, 而是慢慢不见的现象. 残影与反应时间不算同一件事, 残影可能要两三秒後才会完全消失, 而液晶的反应时间是十几到几十毫秒. 一个设计得好的液晶显示器, 就算反应时间是15+35ms, 也不可能让使用者看到残影.残影发生机制有些复杂, 通常是同一画面显示太久的情况下, 液晶内的带电离子吸附在上下玻璃两端形成内建电场, 画面切换之後这些离子没有立刻释放出来, 使得液晶分子没有立刻转到应转的角度所造成.另外一种可能情况则是因为画素电极设计不良, 使得液晶分子在状态切换时排列错乱, 这种情况之下也有可能看到残影, 所以以为反应时间快就不会看到残影, 这种观念是错误的.面板厂商测试残影的方法是, 常温下点西洋棋棋盘黑白方格画面十二小时, 然後切换到128灰阶去看, 标准是在5秒(?)内残影必须消失.一般使用者选购monitor时, 可以用power point画一些白底黑格的图, 以及一张128灰阶图去切换. 如果嫌麻烦, 也可以把萤幕背景设成128灰阶, 然後叫出踩地雷点到暴掉(所有黑色地雷会显示出来), 摆个几十秒或几分钟, 然後关闭.如可以看到残影 (不是五秒喔, 看得到就算), 那就不要买. 注意一点, 不要一直盯着测试画面看, 切换後才去看, 不然可能看到的是人眼的视觉残留.☆色温 (color temperature)色温是用来形容显示器的白色的颜色, 不限於LCD, 所有的显示器都通用. 当显示器的颜色与黑体的温度高到某一绝对温度时, 所发出来的光一样时, 称为该显示器的色温等於该温度.比如说, 当显示器的白色, 设计成接近黑体在温度6500K的时候, 所发出来的光颜色(接近晴天时上午的太阳光), 称为该显示器的色温为6500K.上面听不懂没关系, 下面三句记起来就好. 色温越低颜色会越偏黄色, 色温越高颜色会越偏蓝色, 一个色温偏高的显示器在秀图片的时候, 整个画面看起来色调就会偏蓝.据说亚洲人比较喜欢偏蓝色的白色, 欧洲人比较喜欢偏黄色的白色 , 所以在日本卖的CRT电视机色温内定值, 可以高到9300K甚至12000K. 在欧洲卖的色温就内定在6500K左右, 台湾则是follow日本. 你不喜欢偏蓝的白色也没有关系, CRT的色温可以让使用者很容易地去调整, 但LCD就有困难.目前LCD面板的白色通常设计在6500K左右(电视用的面板要求色温会更高), 但也有故意设计成更偏黄的, 因为灯管越偏黄亮度会越高, 偏蓝亮度就低. 如果偏蓝又要维持一样的亮度, 就要在其他部份花更多成本把亮度补回来 .色温高低没有好坏标准, 有人喜欢偏蓝有人喜欢偏黄, 选购的时候把几台中意的monitor摆在一起点同一个画面, 挑你喜欢的色调即可.☆ Gamma CurveGamma curve是指不同灰阶与亮度的关系曲线. 把零到二五五灰阶当x轴, 亮度当y轴, 画出来的曲线就叫做gamma curve. Gammacurve通常不会是一条直线, 因为人眼对不同亮度有不同辨识的效果, 比如说低亮度的辨识能力较高(一点点亮度变化就有感觉), 高亮度的辨识能力较低.Gamma curve会直接影响到显示器画面的渐层效果. 比如说一个显示器的gamma curve, 如果在高亮度的地方切得太细, 最高灰阶的那几阶亮度都差不多亮, 那麽在显示亮画面的图片时, 就会觉得很多地方都泛白太亮, 看不见渐层. 那麽使用者就会觉得影像不自然, 有些比较高阶的显示卡, 会提供调整gamma curve的功能不过若不是比较专业的使用者, 通常不会去动到那边, 而是直接使用监视器厂商的原始设定值. 测试的时候, 多带几张不同种类的图片. 整体而言, 比较亮的, 比较暗的, 或比较中间灰阶的都准备. 最好准备几张有大大的人像的, 因为肤色对人眼来说, 是很容易辨识的印象, 仔细看看图片的渐层效果, 会不会让你觉得很自然.☆ CrosstalkLCD的crosstalk是指萤幕中某区域的画面, 影响到邻近区域亮度的现象. 一般crosstalk测试画面如附档. 在底色一二八灰阶的状态下, 画一个有萤幕四分之一大的黑色方块摆在正中央, 理论上周围还是都要维持一二八灰阶, 但若发现上下左右四块区域变暗, 就作叫crosstalk.也可以把黑色方块换成白色, 有crosstalk的话上下左右就会变亮. 一般面板厂商的规格是, 有黑色方块时与没有黑色方块时, 上下左右区域的亮度差别不可以超过4%. 不过其实这是蛮宽松的规格, 通常达到2%时人眼就可以看得很清楚了, 所以有些客户会要求小於1%, 而这通常也是面板厂设计标准. 选购的时候, 就点上面讲的那个画面, 看得见crosstalk就不要买. 另外通常商家都经挑选最完美的机子展示, 以上的标准看看,展示机非常值得考虑.TFT LCD液晶显示器常见的广视角架构良好光学补偿膜抵消TN型液晶的相位延迟现在大尺寸的液晶显示器大多是利用TN(Twisted Nematic)型液晶来制作的。
基于Proteus的LCD显示系统设计

基于Proteus的LCD显示系统设计文章利用Proteus软件和keil软件完成了LCD显示系统设计,该系统主要有单片机最小系统和LCD1602组成,并在Proteus软件里进行仿真,结果表明,本系统能够正确显示需要显示的信息。
因此基于Proteus软件仿真系统设计能够让单片机初学者理解晦涩难懂的部分,省钱并且能加快单片机学习和设计的进程。
标签:Proteus;单片机;仿真;液晶显示器引言单片机这门课程是自动化、机械电子等专业的一门专业技术必修课程,更是他们找工作就业的一个主要特长和技能,但是很多同学反应这门课程学习起来晦涩难懂,主要原因就是单片机是一门实践性很强的专业技术课,光是理论上课再加上有限的几次硬件实验是不好掌握这门技能的。
Proteus是由Labcenter Electronics开发的功能强大的单片机仿真软件,它包括原理图布图、混合模式仿真及PCB板制作等功能,它提供了丰富的外围硬件,可以仿真模拟电路、数字电路、数模混合电路,其最大的亮点在于能够对微控制器进行实物级的仿真,便于操作,效果逼真[1]。
将Proteus软件引入到单片机教学过程,每节课都能见证单片机实物仿真,能够帮助学生理解很多难懂的概念和程序,让单片机不再那么抽象和难接近,使学习效率大大提高。
LCD的显示控制一直是单片机学习中比较难理解和掌握的知识,用Proteus软件让学生仿真LCD的硬件和软件的实现过程,可以加深学生对LCD的硬件控制和软件编制的理解,由此来更好地掌握LCD 显示技术。
本文设计案例是让LCD滚动显示两行内容:Welcome to jd305和Good study MCU!1 LCD1602介绍及设置液晶显示器(Liquid Crystal Display),简称LCD,由于LCD具有功耗低、体积小、超薄型、显示高品质等特点,而广泛应用在便携式电子产品中。
目前我们所使用的LCD是由LCD面板、驱动与控制电路组合而成的,大部分LCD都使用HD44780集成电路作为控制器,它是集驱动器与控制器于一体的专用于字符显示的LCD显示控制驱动集成电路。
显示器设计PPT课件

17
a
刻度标数进级和递增方向
递增方向:刻度值的递增方向应与人的视线运动的适宜
方向一致,即从左到右、从下到上,或顺时针旋转方向。
18
a
刻度标值示例
a)
b)
适宜与不适宜的刻度标值示例
19
a)适宜 b)不适宜
应用:图文电视屏幕、计算机高分辨率显示器、示波器、 彩超及雷达。
36
a
荧光屏显示
目标状态对显示的影响
1.亮度
2.呈现时间
3.目标的运动速度
4.目标的颜色
5.目标与背景的关系
37
a
荧光屏显示
亮度
目标的亮度愈高,愈易觉察,但是当目标亮度超 过34.3cd/m2时,视敏度不再继续有较大的改善,所 以目标亮度不宜超过34.3cd/m2。为了在屏面上突出 目标,屏面的亮度不宜调节到最亮,而以合适的亮度, 工作效率最优。
才能从背景中分辨出来。在屏面亮度为0.3~34cd/m2时, 亮度对比阈值一般随屏面亮度而线性增加,在屏面亮度
为68.6cd/m2时,亮度对比达到最大阈值的90%;因此
68.6cd/m2被作为屏面亮度的最佳值。
43
a
第二节 视觉显示器的设计
标志符号的设计
标志符号是直接提供信息的视觉显示之一,它广泛地应用
9
a
——
仪 表 形 式 与 误 读 率
a
10
刻度线高度
当视距为L时,刻度线最小长度为: 长刻度线长度=L/90; 中刻度线长度=L/125; 短刻度线长度=L/200;
11
a
液晶显示器模组(LCM)简介精讲

图3.4 MIM液晶显示器件等效电路
• 当扫描电压和信号电压同时作用于像素单 元时,MIM器件处于断态,RMIM很大,且 CMIM<<CLC,电压主要降在CMIM上;
• 当此电压大于MIM器件的阈值电压时,MIM 进入导通状态,RMIM迅速减小,通态电流 对CLC充电;
• 当充电电压均方值Vrms达到源自晶的阈值电 压Vth时,液晶单元显示。
• 他把这种粘稠而混浊的液体放到偏光显微镜下观 察,发现这种液体具有双折射性。
• 于是德国物理学家D·Leimann将其命名为“液 晶”,简称为“LC”。在这以后用它制成的液晶显 示器件被称为LCD。
扫描电镜下的液晶结构
液晶态是物质的一种形态
• 液晶实际上是物质的一种形态,也有人称 其为物质的第四态。
• 当扫描移到下一行时,原单元上的外加电 压消失,MIM转为开路,CLC通过RLC缓慢 放电,以致于可以在一帧时间内维持 Vrms≥Vth,于是该单元不仅在寻址期内,
而且在一帧时间之内保持显示状态,解决
了简单矩阵液晶显示器随着占空比下降其 对比度亦下降的弊病。
图3.5 TN-LCD响应速度
• 80年代初,人们经过理论分析和实验发现, 只要将分子的扭曲角增加到180°~270°时, 就可大大提高电光特性的响应速度。
• 随着扭曲角的增大,曲线的斜率增加,当 扭角达到270°时,斜率达到无究大。
• 曲线斜率的提高可以允许多路驱动,且可 获得敏锐的锐度和宽的视角。
• 三端型以薄膜晶体管(TFT)为主。
(1)MIM
• 在两种导电膜之间夹一 层氧化物绝缘层,其结 构为Ta-Ta2O3-Cr,通 电后两导电膜之间电压 -电流必呈非线性,二 端有源器件相当于一个 双向性二极管,正、反 向都具有开关特性。
《LCD培训教材》课件

确定教学内容
确定培训目标:明确培训的目的和预期效 果
确定培训对象:了解培训对象的背景和需 求
确定培训内容:根据培训目标和对象选择 合适的教学内容
确定培训方式:选择合适的培训方式,如 讲授、讨论、案例分析等
确定培训时间:合理安排培训时间,确保 培训效果
确定培训评估:制定培训评估标准和方法, 确保培训效果得到反馈和改进
改进措施
增加互动环节, 提高学员参与
度
优化课件内容, 确保知识点准
确、全面
采用多种教学 方式,如案例 分析、小组讨
论等
定期收集学员 反馈,及时调 整课件内容和
教学方法
THANK YOU
汇报人:
汇报时间:20XX/01/01
LCD技术发展:包括TFT、OLED、 MicroLED等
LCD生产工艺:包括液晶材料、背光模组、 驱动电路等
LCD测试与维修:包括测试方法、维修技 巧等
LCD市场分析:包括市场规模、竞争格局、 发展趋势等
课件结尾
感谢:感谢参与本次培训的 学员和讲师
总结:回顾本次培训的重点 内容
展望:展望未来,鼓励学员 继续学习和进步
保持语言流畅,避免出现语法 错误和拼写错误
适当使用幽默和比喻,增加听 众的注意力和兴趣
注意语气和语调,保持亲切和 友好,避免过于严肃和刻板
使用多媒体工具
幻灯片制作软件:如PowerPoint、Keynote等 视频编辑软件:如Adobe Premiere、Final Cut Pro等 图片编辑软件:如Photoshop、Illustrator等 音频处理软件:如Audacity、GarageBand等 互动工具:如Quizlet、Kahoot等 演示工具:如Zoom、Skype等
液晶显示器设计理论课件

(1)器件长、宽、厚; (2)封口突缘尺寸(长、高); (3)上、下基板宽; (4)显示区长、宽;
(5)字符高、宽;
(6)左右两侧外引线中心距;
(7)外引线长、宽; (8)上、下玻璃基板厚;
(9)基准面到相邻近处外引线中心线的距离
笔段标注如图所示:
2、电极引线排布方式
(1)段形电极排布方式
静态驱动段形电极排布方式:
五张版:LCD生产工艺中几个比较重要的工序分为 光刻、PI涂覆、摩擦、丝印成盒等几个工序。这 几个工序中都要用到相应的掩模版。
光刻掩模版:光刻工序是在ITO玻璃上刻出电极 图形,其中曝光中所用的掩膜版(称为菲林版) 需要设计,因为LCD盒由上、下两层基板组成, 所以有上基板光刻掩膜版和下基板光刻掩膜版。 需要设计Maskd和Masku两张光刻版。
1.LCD外形长、宽;可视区长、宽;大、小片玻璃的长、宽; 可视区距玻璃边缘尺寸.
2.引线电极的数目;长、宽;间隙;第一根距玻璃边缘的距离. 3.封口的大小、位置.偏光片的外形尺寸. 4.LCD玻璃大片在上还是小片在上;厚度多少. 5.技术条件中几项指标的含义.(Note) 6.显示的段数,即LCD共有多少段需要显示. 7.显示像素的尺寸及位置;引线电极的线宽、线间距(与
图14 标盒
液晶灌注 图15 切割与裂片
图16 液晶灌注
图17 封口
成品检测与包装 图18 贴偏振片
二、设计与制版
1、新样品的制作流程
整个过程涉及多个方面的设计: 性能参数的设计; 外形、电极的设计; LCD结构、材料的设计; 掩膜版的设计
新样品的制作流程
2、外观图的设计内容主要包括
AuToCAD中的区别). 其次,外观图设计好以后,按照图纸的要求还需要有(除了单粒
液晶显示器模组(LCM)简介分析

K ii
• 即阈值电压 Vth ( K ii / )
1 2
(2)液晶的双折射
• 以P型为例,长轴为光轴 n// n • 向列液晶有 ,所以Δn>0,即向列 液晶一般都呈现正单轴晶体的光学性质。 • 胆甾型液晶具有负单轴晶体的光学性质, 1 这是因为: 1 2
nO (n // n ) 2
• 近晶相液晶(Smectic)又称层 状液晶
隧道显微镜下的近晶相 层状液晶
• 近晶相液晶按层状排列,由棒状或条状分 子呈二维有序排列组成。层内分子长轴相 互平行,其方向可以垂直于层面或与层面 成倾斜排列。层与层之间的作用较弱,容 易滑动,因此具有二维的流动特性。近晶 相液晶的粘度与表面张力都较大,用手摸 有似肥皂的滑涩感,对外界的电、磁、温 度变化都不敏感。这种液晶光学上显示正 的双折射性。
图3.6 STN-LCD中中间层分子的倾斜角与约化电压的关系
• 1985年~1990年,LCD销售额年均增长率 达32%。此阶段发展最快的是STN-LCD,它 从发明到批量生产仅用了五年时间。 • 由于STN-LCD具有扫描线多、视角较宽、 对比度好等特点 ,ቤተ መጻሕፍቲ ባይዱ快在大信息容量显示的 膝上型、笔记本型、掌上型微机及中英文 打字机、图形处理机、电子翻译机及其它 办公和通信设备(手机)中获得广泛应用, 并成为该时代的主流产品。 • 1990年销售额15亿美元,占整个LCD市场的 83%。
• 当入射光通过偏振片后成为线偏振光,在外电场 作用时,由线偏光经过扭曲向列液晶的旋光特性 决定,在出射处,检偏片与起偏片相互垂直,旋 转了90°的偏振光可以通过。因此呈透光态。 • 在有电场作用时,当电场大于阈值场强后,液晶 盒内液晶分子长轴都将沿电场方向排列,即与表 面呈垂直排列,此时入射的线偏振光不能得到旋 转,因而在出射处不能通过检偏片,呈暗态。
液晶显示器屏的设计

3、点矩阵型显示图形旳设计
点矩阵构成旳显示屏经过寻址扫描可显示任意旳图形,文 字,字母等,其基本构成单元是小矩形或倾斜旳小矩形, 进行行列排列形成简朴矩阵屏。
先看一组点矩阵
90放置
倾斜放置
点矩阵
点矩阵旳绘制参数
(3)引脚尺寸 引脚旳长度 3 引脚旳宽度 1 引脚之间旳距离 2 引脚旳数目 10 (两侧各十个) 第一种引脚中心距玻璃左边界旳距离 6
(4)液晶灌注口 灌注口长 3 灌注口高 1 灌注口方向 右侧
(5)阐明 液晶盒大玻璃在上,小玻璃在下 双侧台阶 单位 mm 圆角半径 1 设计主视图和侧视图,并进行尺寸标注
例子:例如要在可视区显示一种半径为5mm旳圆,如图 所示,相应旳上下基板上电极图形应该怎样设计呢?
目的图形
(1)在上板相应位置绘制一 种半径为5mm旳圆(表达需要 保存下来旳ITO膜旳大小)
(2)在下板相应位置处也绘 制半径为5mm旳圆(表达下板 需要保存旳ITO膜图形)
思索:假如上板或是下板中有一种面积增大,会影响显示成果 吗?
(1)例子 笔段型静态驱动
真值表
逻辑走线
PIN S1 S2 S3 S4 S5 S6 S7 8 COM a b c d e f g bp
笔段型动态驱动4x2 s1 s2 s3 s4 b cgf a de
com1 e f a d
com2 g c b
逻辑走线
PIN S1 S2 S3 S4 COM1 a d e f COM2 b c g
(6)最终旳电极图形,即上、 下玻璃基板上旳ITO膜旳图形, 如左图所示。其中一层称为seg层 电极图形,如绿色旳上板电极, 另一层称为com层电极,例如红 色旳下板电极。与逻辑走线表旳 要求要一致。当给两个引脚加电 时,就可显示一种半径为5旳圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液晶显示器设计理论
液晶层—liquid crystal layer 液晶盒—liquid crystal cell 液晶显示器liquid crystal display device 彩色转换—color switching 彩色显示color display 黑白显示—B/W display 多色显示—multicolor display 数字显示 number display 字符显示—character display 基板—substrate
液晶显示器设计理论
五张版:LCD生产工艺中几个比较重要的工序分为 光刻、PI涂覆、摩擦、丝印成盒等几个工序。这 几个工序中都要用到相应的掩模版。
光刻掩模版:光刻工序是在ITO玻璃上刻出电极 图形,其中曝光中所用的掩膜版(称为菲林版) 需要设计,因为LCD盒由上、下两层基板组成, 所以有上基板光刻掩膜版和下基板光刻掩膜版。 需要设计Maskd和Masku两张光刻版。
液晶显示器设计理论(2)
主要内容
1、液晶显示器件制造工艺流程: ITO
2、设计与制版:
液晶显示器设计理论
一、液晶显示器制造具体工艺过程示意
第一阶段: ITO图形刻蚀
图1 ITO玻璃
液晶显示器设计理论
图2 涂光刻胶
液晶显示器设计理论
图3 曝光
液晶显示器设计理论
图4 显影
液晶显示器设计理论
图5 刻蚀 去膜(去光刻胶)
液晶显示器设计理论
图6 ITO电极
液晶显示器设计理论
取向排列 图7 涂取向剂
液晶显示器设计理论
图8 磨擦取向
液晶显示器设计理论
空盒制作 图9 丝印边框及银点
液晶显示器设计理论
图10 俯视图
液晶显示器设计理论
图11 喷衬垫料
液晶显示器设计理论
图12 对位压合
液晶显示器设计理论
图13 固化
性能和测试方面的术语参考国标
液晶显示器设计理论
(2)液晶显示器件型号命名方法 国家于1983年规定了〈液晶显示器件
液晶显示器设计理论
另一种方法是用计算机绘图软件绘制底图, 它是目前最常用的方法。根据这一底图, 在不同的层面设计面(背)电极、边框、 银点、凸版版图,并通过转换软件将数据 转换成光绘数据,由光绘仪直接制成1: 1单体菲林,再通过高精度拼版机拼版成 为生产用菲林.
液晶显示器设计理论
液晶显示器设计理论(3)
取向剂掩模版:PI涂覆方式有几种,但目前较流 行的是选择涂覆。选择涂覆要用一种凸版,制作 凸版需要菲林胶片,这种菲林胶片也需要依LCD 而设计。
丝网版:丝印成盒工序需要丝网印刷,丝网印刷 所用的丝网制作,也需要两张菲林胶片,一张是 印封边框的Seal版,另一张是印导电点的Dot版
液晶显示器设计理论
液晶显示器设计理论
外观主视图、侧视图
液晶显示器设计理论
液晶显示器设计理论
3、掩膜版的设计
掩膜版:在液晶显示器的生产过程中,需要在导 电玻璃的导电层上制成所要求的电极图形,这个 过程目前都是用光刻技术来完成的。光刻中要用 到具有特定图形的光刻掩膜版。光刻掩膜版分铬 板和胶片两种,常用的软性胶片掩膜版,通常称 为菲林,习惯上又叫做掩膜。由于使用正性胶故 设计成正版图,通过制版方法在胶片上制成与电 极图形对应的黑白图案,黑色区域能遮挡光,而 透明区域能让光通过,它类似平常所见的黑白照 相底片。液晶 Nhomakorabea示器设计理论
图14 标盒
液晶显示器设计理论
液晶灌注 图15 切割与裂片
液晶显示器设计理论
图16 液晶灌注
液晶显示器设计理论
图17 封口
液晶显示器设计理论
成品检测与包装 图18 贴偏振片
液晶显示器设计理论
二、设计与制版
1、新样品的制作流程
整个过程涉及多个方面的设计: 性能参数的设计; 外形、电极的设计; LCD结构、材料的设计; 掩膜版的设计
液晶显示器设计理论
新样品的制作流程
液晶显示器设计理论
2、外观图的设计内容主要包括
1.LCD外形长、宽;可视区长、宽;大、小片玻璃的长、宽; 可视区距玻璃边缘尺寸.
2.引线电极的数目;长、宽;间隙;第一根距玻璃边缘的距离.
3.封口的大小、位置.偏光片的外形尺寸.
4.LCD玻璃大片在上还是小片在上;厚度多少.
5.技术条件中几项指标的含义.(Note)
6.显示的段数,即LCD共有多少段需要显示.
7.显示像素的尺寸及位置;引线电极的线宽、线间距(与 AuToCAD中的区别).
其次,外观图设计好以后,按照图纸的要求还需要有(除了单粒 主视图外)侧视图、逻辑走线表、技术要求(文字表述)、 标题栏,这才构成一幅完整的液晶显示器设计图.(这也是本 门课程的重点)
液晶显示器设计理论
•被动显示装置—passive display device •透射型显示—transmissive type display •反射型显示—reflective type display •矩阵显示—matrix display •显示区域—active area •静态驱动—static drive •动态驱动—dynamic drive •多路驱动—multiplex drive •段电极—segment electrode
主要内容: 1、关于液晶显示器设计的标准
关于液晶显示器件名词术语的国家标准; 关于液晶显示器件命名的规则; 关于液晶显示器件外形尺寸标注及引线排布规则 2、电极引线排布方式 段形电极的排布方式; 普通点阵(简单矩阵)的电极排布方式
液晶显示器设计理论
1、关于液晶显示器设计的标准
(1)液晶显示器件名词术语
液晶显示器设计理论
菲林版的制作:
液晶显示器设计理论
版图设计方法
版图设计一般有两种方法: 一种是传统的方法,即“贴红膜 照相 拼版”,先做一组放大的图形(10倍), 在同一底图上设计面背电极、边框、银点、 凸版版图,将他们贴制成红膜图,然后分 一次或两次照相缩版做成与产品尺寸相同 单元菲林,最后单元菲林排版制成生产用 掩模版.