2019-2020年七年级数学竞赛试题(不含答案)

合集下载

人教版七年级数学竞赛试题含答案

人教版七年级数学竞赛试题含答案

七年级数学竞赛(时间40分钟,满分100分)姓名_______班级________分数_________1、(10)已知关于x 的一元一次方程a x 20223x 20211+=+的解为x=1,那么关于y 的一元一次方程a 6y 202236y 20211++=++)()(的解为:________________. 2、(10)定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n+1;②当n 为偶数时,F (n )=n 2k [其中k 是使F (n )为奇数的正整数],两种运算交替重复进行.例如,取n =24,则:若n =13,则第2021次“F ”运算的结果是________________.3、(10)已知多项式-a 12+a 11b -a 10b 2+…+ab 11-b 12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?4、(10)请你将如图所示的两个正方形和两个长方形拼成一个较大的正方形,并列式计算所拼图形的面积.5、(15)材料阅读题阅读材料:求1+2+22+23+24+…+2100的值.解:设S=1+2+22+23+24+…+299+2100.①将等式①两边同时乘2,得2S=2+22+23+24+25+…+2100+2101.②②-①,得2S-S=2101-1,即S=2101-1.所以1+2+22+23+24+…+2100=2101-1.请你仿照此法计算:(1)1+3+32+33+34+…+32019+32020.(2)已知数列:-1,9,-92,93,-94,…. (Ⅰ)它的第100个数是多少?(Ⅰ)求这列数中前100个数的和.6、(15)数学家苏步青先生有一次在德国与另一位数学家同乘一辆电车,这位数学家出了一道题请苏先生解答.甲、乙两人同时从相距10 km的A,B两地出发,相向而行,甲每小时走6 km,乙每小时走4 km,甲带着一只狗和他同时出发,狗以每小时10 km 的速度向乙奔去,遇到乙后立即回头向甲奔去,遇到甲后又回头向乙奔去,直到甲、乙两人相遇时狗才停住.则这只狗共跑了多少千米?7、(15)已知(2x-1)5=a5x5+a4x4+…+a1x+a0,求下列各式的值:(1)a1+a2+a3+a4+a5;(2)a1-a2+a3-a4+a5;(3)a1+a3+a5.8、(15)如图,数轴上两个动点A,B开始时所对应的数分别为-8,4,A,B两点各自以一定的速度在数轴上运动,且点A的运动速度为2个单位长度/秒.(1)A,B两点同时出发相向而行,在原点处相遇,求点B的运动速度;(2)A,B两点按上面的速度同时出发,向数轴正方向运动,几秒时两点相距6个单位长度?(3)A,B两点按上面的速度同时出发,向数轴负方向运动,与此同时,点C从原点出发向同方向运动,且在运动过程中,始终有CB∶CA=1∶2,若干秒后,点C表示的数为-10,求此时点B表示的数.参考答案:1、-52、43、[解析] 观察所给条件,a 的指数逐次减1,b 的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a 8b 4,它的系数为-1,次数为12.(2) 十二次十三项式.4、[解析] 根据题意拼出正方形ABCD ,将两个正方形和两个长方形的面积相加即可求出答案.解:如图所示,正方形ABCD 即为所拼图形.正方形ABCD 的面积是a 2+ab +ab +b 2或(a +b)2.5、解:(1)设S =1+3+32+33+34+…+32019+32020.①将等式①两边同时乘3,得3S =3+32+33+34+…+32020+32021.②②-①,得3S -S =32021-1,即S =12(32021-1). 所以1+3+32+33+34+…+32019+32020=12(32021-1). (2)(Ⅰ)第100个数是999.(Ⅰ)设S =-1+9-92+93-94+…-998+999.③将等式③两边同时乘9,得9S =-9+92-93+94-95+…-999+9100.④③+④,得10S =9100-1,即S =110(9100-1). 所以这列数中前100个数的和是110(9100-1). 6、[解析] 本题已知狗的奔跑速度是每小时10 km ,求狗奔跑的路程,它的奔跑时间是解决本题的关键,狗从甲、乙两人出发到甲、乙两人相遇时,一直在两人之间不断地奔跑,因此狗奔跑的时间即甲、乙两人从出发到相遇的时间.解:根据题意,得x 10=106+4.7、解:因为(2x -1)5=a 5x 5+a 4x 4+…+a 1x +a 0,所以令x =0,得(-1)5=a 0,即a 0=-1.①令x =-1,得(-3)5=-a 5+a 4-a 3+a 2-a 1+a 0,即-a 5+a 4-a 3+a 2-a 1+a 0=-243.②令x =1,得15=a 5+a 4+a 3+a 2+a 1+a 0,即a 5+a 4+a 3+a 2+a 1+a 0=1.③(1)③-①,得a 1+a 2+a 3+a 4+a 5=1-(-1)=2.(2)①-②,得a 1-a 2+a 3-a 4+a 5=(-1)-(-243)=242.(3)(③-②)÷2,得a 1+a 3+a 5=(1+243)÷2=122.8、解:(1)设点B 的运动速度为x 个单位长度/秒,列方程为82x =4,解得x =1. 答:点B 的运动速度为1个单位长度/秒.(2)设两点运动t 秒时相距6个单位长度.①若点A 在点B 的左侧,则2t -t =(4+8)-6,解得t =6;②若点A 在点B 的右侧,则2t -t =(4+8)+6,解得t =18.答:当A ,B 两点运动6秒或18秒时相距6个单位长度.(3)设点C 的运动速度为y 个单位长度/秒.由始终有CB ∶CA =1∶2,列方程,得2-y =2(y -1),解得y =43. 当点C 表示的数为-10时,所用的时间为1043=152(秒),此时点B 所表示的数为4-152×1=-72. 答:此时点B 表示的数为-72.。

2019-2020学年山东省济南市七年级下期末考试数学试题(Word无答案)

2019-2020学年山东省济南市七年级下期末考试数学试题(Word无答案)

济南市市中区2019-2020学年度七年级下学期期末考试数学试题2020.07一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意) 1.在下列长度中的三条线段中,能组成三角形的是( )A.2cm,3cm ,4 cmB.2cm,3cm ,5cmC.3 cm ,5cm ,9cmD.8cm ,4cm,4cm 2.疟原虫早期滋养体的直径约为0.00000122米,用科学记数法表示为( )米.A.1.22×10-6B. 0.122×10-6C.12.2×10-6D.1.22×10-5 3.下列事件为必然事件的是( )A.打开电视机,它正在播广告B.投掷一枚普通的正方体骰子,掷得的点数小于7C.某彩票的中奖机会是1%,买1张一定不会中奖D.抛掷枚硬币,一定正面朝上 4.下面四大手机品牌图标中,轴对称图形的是( )A .B .C .D . 5.下列计算正确的是(A.3a 2-a 2=3B.a 2 a 3=a 6C.(a 2)3=a 6D.a 6÷a 2=a 3 6.如图,直线a 、b 被直线c 所截,下列条件不能判定直线a 与b 平行的是( ) A.∠1=∠3 B.∠2+∠4= 180° C.∠1=∠4 D.∠3=∠47.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水)。

在这三个过程中,洗衣机内的水量y (升)与浆洗一遍的时间x (分)之间函数关系的图象大致为( )A .B .C .D . 8.下列能用平方差公式计算的是()A. (-x +y ) (x -y )B.(-x +y )(x +y )C.(x +2)(2+x )D.(2x +3)(3x - 2)9.乐乐观察抖空竹时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°,则∠E 的度数是( A.32° B.28° C.26° D.23°10.尺规作图作∠AOB 的平分线方法如下:以O 为圆心、任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法可得△OCP ≌△ODP ,判定这两个三角形全等的根据是( ) A. SAS B. ASA C. AAS D. SSS11.如图,△ABC 中,AC =BC , ∠C =90°, AD 平分∠BAC , DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ;③DE 平分∠ADB ;④BE +AC =A B .其中正确的有( ) A.1个 B.2个 C.3个 D.4个12.规定log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算.现有如下的运算法则:log a a n =n ,log N M =log n Mlog nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log105log102,则log 1001000=( ) A .2B .3C .23D .32二、填空题(本大题共6个小题,每题4分,共24分.把答案填在题中的横线上) . 13. 25°的余角是__________度.14.如图,一个正六边形转盘被分成 6个全等三角形,任意转动这个转盘1次, 当转盘停止时,指针指向阴影区域的概率是_________.15.已知△ABC 是等腰三角形,它的周长为20cm ,条边长 6cm,那么腰长是_________ cm. 16.如果多项式x 2+mx +9是一个完全平方式,则m 的值是_________.17.小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S (米)与时间t (分钟)之间的关系如图象所示,那么从家到火车站路程是_________米.18.如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC交CF 的延长线于D ,则下列结论:①若BD =4,则AC =8;②AB =CD ;③∠DBA =∠ABC ;④S △ABE =S △ACE ;⑤∠D =∠AEC ;⑥连接AD ,则AD =C D .其中正确的是_______________.(填写序号)三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.) 19. (本小题满分6分) 计算: (-3) 2+ (π-3.14)°× (-1)2020- (13)-220.(本小题满分6分)化简: 4m (m -n ) + (5m -n )(m +n )21. (本小题渊分6分)如图,已知线段AC 、BD 相交于点E ,连接AB 、DC 、BC , AE =DE ,∠A =∠D. 求证:△ABE ≌△DCE ;22. (本小题满分 8分)如图,正方形网格中每个小正方形边长都是1,并且△ABC 的三个顶点都在格点上. (1)画出△ABC 关于直线l 对称的图形△A 1B 1C 1;(2)在直线l 上找一点P ,使PB =PC ; (要求在直线l 上标出点P 的位置);(3)在直线l 上找点Q ,使点Q 到点B 与点C 的距离之和最小(保留作图痕迹) . 23. (本小题满分8分)如图,AD ∥BE ,∠1=∠2, 求证:∠A =∠E .请完成解答过程 解:∵AD ∥BE (已知),∴∠A =∠___ (_______________________________) 又∴∠1=∠2 (已知),∴AC ∥___ (_______________________________) ∴∠3=∠___ (_______________________________) ∴∠A =___ (_______________________________) 24. (本小题满分10分)在一个不透明的袋中装有红、黄、白种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同,已知从袋中随机摸出一个球,摸到的球是白球的概率为310. (1)求原来袋中白球的个数;(2)现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率. 25. (本小题满分10分)(1)先化简,再求值: [(a +b )2-(a -b )(a +b )]÷(2b ),其中a =-12,b =-1.(2)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一个有趣现象:即鞋子的码数y (码)与鞋子的长x (cm)之间存在着某种联系.经过收集数据,得到如表:鞋长x (cm) … 22 23 24 25 26 … 码数y (码)…3436384042…请你替小明解决下列问题:①当鞋长为28cm 时,鞋子的码数是多少? ②写出y 与x 之间的关系式;③已知姚明的鞋子穿52码时,则他穿的鞋长是多长? 26.(本小题满分12分) 问题再现:数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义证明完全平方公式.证明:将一个边长为a 的正方形的边长增加b ,形成两个矩形和两个正方形,如图1: 这个图形的面积可以表示成: (a +b )2或 a 2+2ab +b 2 ∴(a +b )2=a 2+2ab +b 2这就验证了两数和的完全平方公式.类比解决:(1)请你类比上述方法,利用图形的几何意义证明平方差公式.(要求画出图形并写出推理过程)问题提出:如何利用图形几何意义的方法证明:13+23=32?如图2,A表示1个1×1的正方形,即:1×1×1=13B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形.由此可得:13+23=(1+2)2=32尝试解决:(2)请你类比上述推导过程,利用图形的几何意义确定:13+23+33=.(要求写出结论并构造图形写出推证过程).(3)问题拓广:请用上面的表示几何图形面积的方法探究:13+23+33+…+n3=.(直接写出结论即可,不必写出解题过程)27. (本小题满分12分)如图,∠BAD=∠CAE=90°,AB=AD, AE=AC, AF⊥CB, 垂足为F.(1)求证:△ABC≌△ADE;(2)求∠F AE的度数;(3)求证:CD=2BF+DE.。

七年级数学竞赛班入学考试试题(含答案)

七年级数学竞赛班入学考试试题(含答案)

七年级数学竞赛班入学考试试卷考试时间:50分钟 总分:100分学校姓名 联系方式 得分基础巩固模块一、填空题。

(1-8题每空5分,共40分)1、甲数的43等于乙数的53,(甲数不等于0)甲数____乙数。

(用>,<号填空) 2、61<()5<32,( )里可以填写的最大整数是( )。

3、在自然数中,( )既是偶数又是质数;4、已知4x +8=10,那么2x +4=( )。

5、在括号里填入>、<或=。

1小时30分( )1.3小时6、在含盐率30%的盐水中,加入3克盐和7克水,这时盐水中盐和水的比是( )。

二、计算题。

(每小题5分)7、 25×1.25×328、列式计算:一个数的43比30的25%多1.5,求这个数。

竞赛之窗(9-16题每小题5分,共40分)9、(2004,江苏省竞赛)有3堆硬币,每枚硬币的面值相同,小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放入第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放入第1堆,这样每堆有16枚硬币,则原来第1堆有硬币 枚,第2堆有硬币 枚,第3堆有硬币 枚.10、有100个运动员,穿白色和黄色两种服装,带的帽子为红、绿两色。

若已知红帽白衣的队员有28人,绿帽的队员有62人,穿黄衣服的有36人,则绿帽黄衣的队员共有 人。

11、(2004,四川省联赛)有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支、练习本7本、圆珠笔1支共需6.3元,若购铅笔4支、练习本10本、圆珠笔1支共需8.4元。

现购铅笔、圆珠笔各1支,练习本1本,共需( )元。

A 、2.4B 、2.1C 、1.9D 、1.812、有4人对话如下:甲:我们当中只有1人说假话乙:我们当中只有2人说假话丙:我们当中只有3人说假话丁:我们都说假话则说假话的有 个人。

13、(2001,江苏省中考)用●表示实圆,用表示空心圆,现有若干实圆与空心圆按一定规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○…,则前2001个圆中,有个空心圆。

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

七年级数学试卷+答题卡+答案(2019-2020)第一学期期末试卷上册惠州惠城区

惠城区2019-2020学年度第一学期期末教学质量检测七年级数学试题说明:1、答卷前,考生必须将自己的学校、班级、学号按要求填写在左边密封线内的空格内. 2.答题可用黑色或蓝色钢笔、圆珠笔按各题要求答在试卷(或答题卡)上,但不能用铅笔或红笔.(注:画图用铅笔)3.本试卷共五大题,25小题,满分120分,100分钟内完成,相信你一定会有出色的表现!一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选择项中,只有一个是正确的,请将正确选择项前的字母填在下面表格中相应的位置. 1.2-等于( )A .-2B .12-C .2D .122.如图是由几个正方体组成的立体图形,则这个立体图形从左看到的平面图形是( )A .B .C .D .3.地球上的海洋面积约为36100000km 2,用科学记数法可表示为( )km 2A .3.61×106B .3.61×107C .0.361×108D .3.61×109 4.下面运算正确的是( )A .3ab +3ac =6abcB . 4a 2b -4b 2a =0C .2x 2+7x 2=9x 4D .3y 2-2y 2=y 2 5.多项式xy 2+xy +1是( )A .二次二项式B .二次三项式C .三次二项式D .三次三项式6.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2x D .21=+y y7.在解方程123123x x -+-=时,去分母正确的是( ) A .3(x ﹣1)﹣2(2+3x )=1B .3(x ﹣1)+2(2x +3)=1C .3(x ﹣1)+2(2+3x )=6D .3(x ﹣1)﹣2(2x +3)=68.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店请你帮助他选择一条最近的路线是( ) A .A →C →D →B B .A →C →F →B C .A →C →E →F →BD .A →C →M →B第8题图 第9题图9.如图,把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120°10. 下表中,填在各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是( )A .58B .66C .74D .112二、填空题:(本大题共6小题,每小题4分,共24分)请把答案直接填写在相应位置上,不需写出解答过程.11.13-______-0.3 ( 用“<”,“>”,“=”填空 ). 12.若212n ab +与3222n a b --是同类项,则=n .13.小红在计算3+2a 的值时,误将“+”号看成“-”号,结果得13,那么3+2a 的值应为 .14.一个角的5倍等于71°4′30″,这个角的余角是 .15.因为∠1+∠2=180°,∠2+∠3=180°,所以∠1=∠3,根据是 . 16.若25x xy -=,426xy y +=-,则23x xy y -+= .B2 8424 62246 844m 6三、解答题:(每小题6分,共18分) 17.计算:2321353752⎛⎫⎛⎫-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:()()222321231x y x y xy ---+,其中,12x =-,2y =-19.如图,小雅家(图中点O 处)门前有一条东西走向的公路,测得学校(图中点A 处)在距她家北偏西60°方向的500米处,文具商店在距她家正东方向的1500米处,请你在图中标出文具商店的位置(保留画图痕迹).四、解答题:(每小题7分,共21分) 20.已知方程23101124x x -+-=与关于x 的方程23xax -=的解相同,求a 的值.21.如图,点M 为AB 中点,BN =12AN ,MB =3 cm ,求AB 和MN 的长.22.100cm )年数(n )高度(cm ) 1 100+12 2 100+24 3 100+36 4 100+48 …………假设以后各年树苗高度的变化与年数的关系保持上述关系,回答下列问题:⑴ 生长了10年的树高是 cm ,用式子表示生长了n 年的树高是 cm ⑵ 种植该种树多少年后,树高才能达到2.8m ?五、解答题:(每小题9分,共27分)23.某电器商场以150元/台的价格购进某款电风扇若干台,很快售完.商场用相同的货款再次购进这款电风扇,因价格提高30元,故进货量减少了10台. ⑴ 商场第二次购进这款电风扇时,进货价为 元; ⑵ 这两次各购进电风扇多少台?⑶ 商场以210元/台的售价卖完这两批电风扇,商场获利多少元?24. 如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、 ∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数;⑶ 求∠AOB 与∠AOC 的度数.25.阅读下面材料并回答问题.Ⅰ 阅读:数轴上表示-2和-5的两点之间的距离等于(-2)-(-5)=3 数轴上表示1和-3的两点之间的距离等于1-(-3)=4一般地,数轴上两点之间的距离等于右边点对应的数减去左边点对应的数. Ⅱ 问题:如图,O 为数轴原点,A 、B 、C 是数轴上的三点,A 、C 两点对应的数互为相反数,且A 点对应的数为-6,B 点对应的数是最大负整数. ⑴ 点B 对应的数是 ,并请在数轴上标出点B 位置;⑵ 已知点P 在线段BC 上,且PB =25PC ,求线段AP 中点对应的数; ⑶ 若数轴上一动点Q 表示的数为x ,当QB =2时,求22100a c x bx +⋅-+的值(a,b,c 是点A 、B 、C 在数轴上对应的数).密封线内不要答题2019~2020学年度第一学期期末教学质量检查七年级数学试题答卷说明:1.答卷共4页.考试时间为100分钟,满分120分.2.答卷前必须将自己的姓名、座号等信息按要求填写在密封线左边的空格内一、选择题(本题共10小题,每小题3分,共30分.)二、填空题(本题共6小题,每小题4分,共24分.11.12.13.14.15. 16.三、解答题(一)(本题共3小题,每小题6分,共18分)19.解:四、解答题(二)(本题共3小题,每小题7分,共21分)20.解:21.解:22.解:五、解答题(三)(本题共3小题,每小题9分,共27分)23.解:五、解答题(三)(本题共3小题,每小题9分,共27分)24.解:25.解:密封线内不要答题惠城区2019-2020学年度第一学期期末教学质量检测七年级数学答案与评分标准一、选择题:(本大题共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案CABDDADBDC二、填空题:(本大题共6小题,每小题4分,共24分)11. < 12.3 13.-714. 75°47′6″ 15.同角的补角相等 (或等量减等量差相等)16.12三、解答题:(每小题6分,共18分) 17.解:原式=()118-+-……4分 =19=-……6分18.解:原式=22263622x y x y xy --+- =225xy -……4分当12x =-,2y =-时, 原式=()2122592⎛⎫⨯-⨯--=- ⎪⎝⎭……6分19.解:……5分如图点B 为文具商店的位置……6分四、解答题:(每小题7分,共21分)20.解:解方程23101124x x -+-=,得3x =-……4分 将3x =-代入方程23xax -=,得231a +=- 解得:1a =-……7分21.解:∵点M 为AB 中点∴ AB =2MB =6……3分 ∴ AN +NB =6∵ BN =12AN ∴ 2BN +NB =6 ∴ NB =2……6分∴ MN =MB -NB =1……7分22解.⑴ 220 cm ,(100+12 n ) cm ……4分⑵ 设种植该种树n 年后,树高达到2.8m 由100+12 n =280,得 n =15答:种植该种树15年后,树高才能达到2.8m ……7分五、解答题:(每小题9分,共27分)23.解:⑴ 180元……1分⑵ 设第一次购进了x 台,根据题意得:150x =(150+30)(x -10) ……4分化简得 30x =1800, 解得 x =60.所以 x -10=60-10=50.答:第一次购进了60台,第二次购进了50台. ……5分 ⑶(210-150)×60+(210-180)×50=3600+1500=5100(元). ……7分24.解:⑴ ∠COD =∠AOB .理由如下: 如图 ∵点O 在直线AD 上∴∠AOC +∠COD =180°又∵∠AOC 与∠AOB 互补 ∴∠AOC +∠AOB =180° ∴∠COD =∠AOB⑵ ∵ OM 、ON 分别是∠AOC 、∠AOB 的平分线 ∴∠AOM =∠COM ,∠AON =∠BON∴∠BOC =∠BOM +∠COM11 =∠BOM +∠AOM=(∠MON -∠BON )+(∠MON +∠AON ) =2 ∠MON=112°⑶由⑴得:∠COD =∠AOB∵ ∠AOB +∠BOC + +∠COD =180°∴ ∠AOB =12(180°-∠B OC )=12(180°-112°)=34° ∴ ∠AOC =180°-∠AOB =180°-34°=146°.25.解:⑴点B 对应的数是 -1 ……1分点B 位置如图:……2分⑵ 设点P 对应的数为p∵ 点P 在线段BC 上∴ PB =p -(-1)=p +1PC =6-p ∵ PB =25PC ∴ p +1=25(6-p ) ∴p =1设AP 中点对应的数为t则t -(-6)=1-t∴ t =-2.5∴AP 中点对应的数为-2.5……5分⑶ 由题意:a +c =0,b =-1当点Q 在点B 左侧时,-1 - x =2,x =-3∴ 22100a c x bx +⋅-+=0-(-1)×(-3)+2=-1……7分 当点Q 在点B 右侧时,x -(-1)=2,x =1∴ 22100a c x bx +⋅-+=0-(-1)×1+2=3……9分。

2020-2021学年全国初中数学竞赛试题(含答案)

2020-2021学年全国初中数学竞赛试题(含答案)

2020年全国初中数学竞赛试题(含答案)考试时间 2020年4月2日上午 9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。

以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里。

不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21 m ,21 n ,且)763)(147(22 n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y 上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2(D )h >24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2020 (B )2020 (C )2020 (D )20205.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC的值为( )(A )132 (B )32(C )23 (D )23 二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2020,c -a =2020.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则b ca 的值等于 .8.正五边形广场ABCDE 的周长为2020米.甲、乙两人分别从A 、C 两点同时出发,沿A !’B !’C !’D !’E !’A !’…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301 a a a ,则 a 10的值等于 .( x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11.已知a bx,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312 x .试写出一个满足条件的x ;(1)(第7题图)ABCDGFE求所有满足条件的x .(2)12.设a ,b ,c 为互不相等的实数,且满足关系式14162222 a a c b ①542 a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE·AC=CE·KB .A14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案

初一奥林匹克数学竞赛训练试题集(01)word版含答案初一奥林匹克数学竞赛训练试题集(01)一、选择题(共8小题,每小题4分,满分32分)1.设a、b为正整数(a>b),p是a、b的最大公约数,q 是a、b的最小公倍数,则p,q,a,b的大小关系是()A.p≥q≥a>bB.q≥a>b≥pC.q≥p≥a>bD.p≥a>b≥q2.下列四个等式:ab=0,a=0,a+b=0中,可以断定a必等于的式子共有()A.3个B.2个C.1个3.a为有理数,下列说法中,正确的是()A.B.22(a+)是正数a+是正数C.D.22﹣(a﹣)是﹣a+的值不负数4.a,b,c均为有理数.在下列:甲:若a>b,则ac>bc.乙:若ac>bc,则a>b.两个结论中()A.甲、乙都真B.甲真,乙不真C.甲不真,___D.甲、乙都不真5.若a+b=3,ab=﹣1,则a+b的值是()A.24B.36C.27D.36.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A.互为相反数B.互为倒数C.相等D.无法确定7.两个10次多项式的和是()A.2次多项式B.1次多项式C.100次多项式D.不高于10次的多项式8.在1992个自然数1,2,3,…,1991,1992的每一个数前面添加“+”或“﹣”号,则其代数和一定是()A.奇数B.偶数C.负整数D.非负整数二、填空题(共8小题,每小题5分,满分40分)9.现在弟弟的年龄恰好是哥哥年龄的,而九年前弟弟的年龄,只是哥哥年龄的,则哥哥现在的年龄是_________岁.3310.1.2345+0.7655+2.469×0.7655=_________.3.21011.已知方程组abc=_________.1212.若,则=_________.1/413.已知多项式2x﹣3x+ax+7x+b能被x+x﹣2整除,则的值是_________.214.满足的值中,绝对值不超过11的哪些整数之和等于_________.15.若三个连续偶数的和等于1992,则这三个偶数中最大的一个与最小的一个的平方差等于_________.642.(4分)下列四个等式:$a^2+b^2=0$,$ab=0$,$a=0$,$a+b=0$中,可以断定$a$必等于的式子共有()A.3个。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题一、选择题(本大题共5小题,每小题4分,共20分)1.下面四个所给的选项中,能折成如图给定的图形的是( )A .B .C .D . 2.若定义“⊙”:a ⊙b=b a ,如3⊙2=23=8,则3⊙等于( )A .B .8C .D .3.已知x+y=7,xy=10,则3x 2+3y 2=( )A .207B .147C .117D .874.一天有个年轻人来到李老板的店里买了一件礼物,这件礼物成本是18元,标价是21元.结果是这个年轻人掏出100元要买这件礼物.李老板当时没有零钱,用那100元向街坊换了100元的零钱,找给年轻人79元.但是街坊后来发现那100元是假钞,李老板无奈还了街坊100元.现在问题是:李老板在这次交易中到底损失( )A .179元B .97C .100元D .118元5.如图,直线a ∥b ,那么∠x 的度数是( )A .72°B .78°C .108°D .90°二、填空题(本大题共8小题,每小题4分,共32分) 6.若()()1532-+=++mx x n x x ,则m 的值为___________。

7.已知4433553,5,2===c b a ,则a ,b ,c 的大小关系(从小到大排列,用“<”连接)__________________。

8.如果代数式535-++cx bx ax ,当x=﹣2时该式的值是7,那么当x=2时该式的值是__________。

9.若()0862=+++-y y x ,则xy=__________。

10. 如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于__________。

11. 已知多项式162++px x 是完全平方式,则p 的值为___________。

12.己如,△ABC 的面积为1,分别延长AB 、BC 、CA 到D 、E 、F ,使AB=BD ,BC=CE ,CA=AF ,连DE 、EF 、FD ,则△DEF 的面积为___________。

广东省江门市第二中学2019-2020学年七年级入学竞赛数学试题

广东省江门市第二中学2019-2020学年七年级入学竞赛数学试题

2022届七年级入学竞赛数学试题时间:80分钟 满分:100一、选择。

(每题3分,共30分)1.小雪、小军、小美、小明四个好朋友站成一排拍毕业纪念照,要求男女间隔排列,共有( )种站法。

A. 4B. 6C. 8 C. 102. 某同学完成数学作业后,因不小心将墨水泼在作业纸上(如图)。

请你根据提供的条件算一算,良好的人数是()人 条件:(1)这个班数学期末考试的及格率为95%。

(2)成绩优秀的人数占全班的35%。

(3)成绩“良好”的人数比“优秀”的人数多72。

A .14 B .18 C .6 D .16 3.=-+÷+⨯%)101(9114.41096.4( ) A.0.9 B.9 C.1 D.104.某市高校12支足球代表队进行比赛,如果采用单循环赛制,一共要赛( ) A. 11场 B. 12场 C. 66场 D. 72场5.供水公司为鼓励居民节约用水,规定每人每月用水不超过2立方米时,按每立方米 1.6元收费,超过2立方米的部分按每立方米5元收费,小红家3口人,上月共交水费29.6元,请你算一算她家上月用水( )立方米? A.8 B. 9 C. 10 D.126.A 、B 两地相距72千米,甲每小时行7千米,乙每小时行5.5千米,丙每小时行3.5千米。

甲、乙两人从A 地到B 地,丙从B 地到A 地,三人同时出发,经过一定时间后,甲走到途中C 地时,离乙和丙的距离恰好相等,此时甲走了( ) 千米? A .36 B .38 C .40 D .427.一个长方体,高为5厘米,如果长和宽各增加2厘米,则体积增加200立方厘米。

问原长方体的周长是( )厘米?A.30B.40C.38D.368.右图中∠1=∠2=∠3,如果图中所有锐角的和等于180度,那么∠AOB是()度A.54B.50C.64D.609.下图△ABC为等腰直角三角形,直角边长20厘米。

以一条腰AB为直径作半圆,则阴影部分②的面积比阴影部分①大()平方厘米(π取3.14)A.42B.43C.44D.4510..自然数按一定的规律如下排列,从排列规律可知,99排在()第1列第2列第3列第4列第5列…第1行 1 4 9 16 25 …第2行 2 3 8 15 24 …第3行 5 6 7 14 23 …第4行 10 11 12 13 22 …第5行 17 18 19 20 21 ……………………A. 第2行第7列B. 第2行第8列C. 第2行第9列D. 第2行第10列二、填空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年七年级数学竞赛试题(不含答案)
一、仔细选一选(本题共10个小题,每小题4分,共40分)
1
n 为( ) A .2 B. 3 C. 4 D. 5 2.已知a+b=0,a ≠b,则化简
b a (a+1)+a
b
(b+1)得( ) A.2a B. -2 C. 2b D. +2
3.若m+n=3,则代数式62422
2
-++n mn m 的值为( ) A .12
B. 3
C. 4
D. 0
4.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方 体,得到一个如图所示的零件,则这个零件的表面积是( ) A .26 B .24 C . 22 D . 20
5.设△ABC 的三边长分别为a ,b ,c , 其中a ,b 满足0)4(|6|2
=+-+-+b a b a 则第三边c 的长度取值范围是( )
A .3<c<5 B. 2<c<4 C. 4<c<6 D. 5<c<6
6. 如图,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B ,C ,若∠A =35°,则∠ABX +∠ACX 的度数是 ( )
A. 25°
B. 35°
C. 45°
D. 55
°
7过100元但不超过200元一律打九折;③一次性购书超过200元一律打八折。

如果王明一次性购书付款162元,那么他所购书的原价为( )
A .180元 B.202.5元 C. 180元或202.5 D. 180元或200元 8. 从长度分别为1cm 、3cm 、5cm 、7cm 、9cm 的5条线段中任取3条作边,能组成三角形的概率是( )
第4题图
第6题图
20cm
30cm
12cm
A .
51 B. 52 C. 21 D. 10
3 9.如图,数轴上A 、B 两点表示的数分别为1-
B 关于点A 的对称点为
C ,则点C 所表示的数为( ) A
.2- B
.1-- C
.2-
D
.1+10. 已知a=2
555
,b=3444,c=5333,d=6222 ,那么下列式子中正确的是( )
A. a <b <c <d
B. a <b <d <c
C. b <a <c <d
D. a <d <b <c
二、细心填一填(本题共8个小题,每小题5分,共40分)
11.若5
23m x
y +与3n x y 的和是单项式,则m n = .
12.对任意四个有理数a ,b ,c ,d 定义新运算:
a b c d
=ad-bc ,已知
241
x x
-=18,则x= .
13.已知x 为实数,则13x x -++的最小值为 .
14.如图,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,
将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长为 cm .
15.如图,一个啤酒瓶的高度为30cm ,瓶中装有高度12cm 的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm, 则瓶中水的体积和瓶子的容积之比为 . (瓶底的厚度不计) 16.方程
+⨯+⨯+⨯+⨯54433221x x x x … +
2010
2009⨯x
=2009的解是 .
17.下列是有规律排列的一列数:3253
14385
,,,,……其中从左至右第100个数是_______. 18.如图,在△ABC 中,∠A =α,∠ABC 的平分线与∠ACD 的平分线交于点A 1 得∠A 1 ,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2 , 得∠A 2 , ……,∠A 2009BC 的平分线与∠A 2009CD 的平分线交于点
(第9题图)
第14题图
第15题图
A 2010 ,得∠A 2010 ,则∠A 2010= .
三、耐心做一做(本题4个小题,共40分)
19.(本题8分)小王觉得代数式n 2—8n+7的值不是正数,因为当他用n=1,2,3代入时,n 2—8n+7
的值都是非正数,继续用n=4,5,6代入时,n 2—8n+7的值还是非正数,于是小王判断:当n 为任意正整数时,n 2—8n+7的值都是非正数.小王的猜想正确吗?请简要说明你的理由.
20.(本题10分)计算:2
2
2
2
2
2
122007200820092010-++-+-
21.(本题10分)上海世博会于2010年5月1日至2010年10月31日在上海举行. 下表为世博会官方票务网站的几种门票价格.李老师家用1600元作为购买门票的资金.
(1)李老师若用全部资金购买“指定日普通票”和“夜票”共10张,
则“指定日普通票”和“夜票”各买多少张?
(2)李老师若用全部资金购买“指定日普通票”、“平日普通票”和“夜票”共10张(每种至少一张),他的想法能实现吗?请说明理由.
22.(本题12分) 如图,五边形ABCDE 中,AB = AE ,BC + DE = CD ,180.ABC AED ∠+∠=连结AD.
(1)同学们学习了图形的变换后知道旋转是研究几何问题的常用方法,请你在图中作出 ⊿ABC 绕着点A 按逆时针旋转“∠BAE 的度数”后的像; (2)试判断 AD 是否平分CDE ∠,并说明理由.
B
E
第22题图。

相关文档
最新文档