锂电池基本学习知识讲解
锂电池入门知识

锂电池入门知识点锂电池的定义:由锂金属或锂合金作为负极材料,使用非水电解质溶液的电池。
1.锂电池的分类:锂电池大致可以分为锂金属电池和锂离子电池。
锂离子电池不含有金属态的锂,并且是可以充电的。
锂离子电池的电化学原理:以采用钴酸锂为正极材料,石墨为负极材料为例。
在充电过程中,锂离子从正极中脱出(脱嵌),然后经过电解质嵌入(插入)负极石墨材料中,形成锂离子的石墨嵌入化合物;而在放电过程中锂离子的运动方式相反。
锂离子电池充放电,正负极材料在常温常压下发生以下氧化还原反应Li1−x Co O2+Li x C6LiCoO2+6C放电过程中的电极反应为:正极(还原反应,得电子)Li1-x CoO2+xLi+e-→LiCoO2负极(氧化反应,失电子)Li x C6→6C+xLi++xe-充放电过程中的电极反应与上述式(1-2)、式(1-3)反应过程相反。
因此,当采用钴酸锂为正极材料和石墨为负极材料时,由于上述氧化还原反应具有良好的可逆性,锂离子电池循环性能优异;由于石墨嵌锂化合物密度低,锂离子电池质量比能量高;由于氧化还原对Li+/Li的电位在金属电对中最负,Li+电池的工作电压比能量高。
2.电池结构及分类锂离子电池通常包含正极、负极、隔膜、电解液和壳体等几个部分。
正负极通常采用一定空隙的多孔电极,由集流体和粉体涂覆层构成。
负极极片由铜箔和负极粉体涂覆层构成,正极极片由铝箔和正极粉体涂覆层构成,正负极粉体涂覆层由活性物质粉体、导电剂、粘结剂及其他助剂构成。
活性物质粉体间和粉体颗粒内部存在的孔隙可以增加电极的有效面积,降低电化学极化。
同时由于电极反应发生在固-液两相界面上,多孔电极有助于减少锂离子电池充电过程中枝晶的生成,有效防止短路。
3.常见的锂离子电池按照外形分为扣式电池、方形电池和圆柱形电池。
锂离子电池的分类方法:外形法分类:扣式电池、圆柱形电池和方形电池电解液法分类:凝胶电解质电池和聚合物电解质电池,正负极材料分类法:磷酸铁锂电池、三元材料电池和钛酸锂电池等壳体分类法:钢壳电池、铝壳电池和软包电池等用途分类法;3C电池和动力电池等方形电池型号:通常用厚度+宽度+长度来表示圆形柱电池:通常用直径+长度+0来表示2.锂离子电池原材料1、正极材料通常为微米级粉体材料。
《锂电池基础知识》课件

负极材料的选用也需要根据具 体的应用场景和电池需求进行
选择。
电解液
电解液是锂电池中传输锂离子的介质,对电池的充放电 性能和安全性具有重要影响。
常用的电解液包括有机溶剂、锂盐和其他添加剂等。
电解液的成分和性质决定了锂离子的传输速率和稳定性 。
电解液的选用应根据电池的具体需求进行选择,以确保 电池的安全性和性能。
循环寿命长
总结词
锂电池经过多次充放电循环后,性能衰减较低,寿命较长。
详细描述
锂电池的循环寿命通常在数百次以上,甚至可以达到上千次 ,远高于普通铅酸电池的循环寿命。
环境友好
总结词
锂电池不含铅、汞等有害物质,对环境友好。
详细描述
锂电池在生产、使用和废弃处理过程中对环境的影响较小,符合绿色环保的理 念。
《锂电池基础知识》 ppt课件
xx年xx月xx日
• 锂电池简介 • 锂电池的组成 • 锂电池的特性 • 锂电池的应用 • 锂电池的安全使用
目录
01
锂电池简介
锂电池定义
01
锂电池是一种由锂金属或锂合金 为负极材料、使用非水电解质溶 液的电池。
02
锂电池的锂含量较高,具有高能 量密度、高电压、自放电率低等 优点。
进行电池更换。
维护与保养
定期检查
应定期检查锂电池的外观、充电 口和电池连接线是否正常,是否
有损坏或松动。
正确充电
应使用正确的充电器为锂电池充电 ,并按照充电器的指示进行充电。 在充电过程中,应注意观察电池的 温度变化,避免过热。
避免深度放电
深度放电可能会对锂电池造成不可 逆的损害。因此,在使用过程中, 应尽量避免深度放电的情况发生。
总结词
锂电培训资料

锂电培训资料一、锂电概述锂电是指利用锂离子在正负极之间的迁移,实现电池储能和放电的一种电池技术。
近年来,由于电动汽车、可穿戴设备等的普及,锂电池行业迅速发展并成为新兴的热门领域。
为了更好地理解和应用锂电技术,以下将为大家提供详细的锂电培训资料。
二、锂电基础知识1. 锂离子电池的原理锂离子电池是通过锂离子在正负极之间的迁移,完成电池的充放电过程。
利用锂离子在充放电过程中的嵌脱出现现象,实现电能的转化和储存。
2. 锂电池的组成锂电池主要由正极、负极、电解液和隔膜组成。
正极材料通常采用氧化物,如氧化钴、氧化镍等。
负极多采用石墨材料。
电解液是锂离子在正负极之间传递的介质,常见的电解液为有机溶液。
隔膜则起到阻止正负极短路的作用。
3. 锂电池的分类锂电池可以分为锂离子电池(Li-ion)、锂聚合物电池(Li-polymer)和锂金属电池(Li-metal)等几种类型。
其中,锂离子电池在各个领域中应用最为广泛。
三、锂电安全性1. 电池过充锂电池过充会导致电池内部压力升高,从而可能引发电池破裂、燃烧等安全问题。
为了避免过充,应该采取适当的充电控制措施,如使用电池管理系统(BMS)进行电池管理。
2. 电池过放锂电池过放会引起电池的反应性增加,甚至会导致电池内部结构的破坏,进而降低电池的性能。
因此,在使用锂电池时应该注意避免过度放电。
3. 温度控制温度是影响锂电池安全性的重要因素。
过高的温度可能引起电池热失控,甚至引发火灾。
因此,在使用锂电池时应注意及时散热,避免过高温度的出现。
四、锂电充放电管理与保护1. 充电管理在锂电池的充电过程中,应根据电池的特性和需要,合理控制充电电流和电压,避免过充现象的发生。
另外,应对充电过程进行监控和控制,以确保充电过程的安全性和高效性。
2. 放电管理在锂电池的放电过程中,应合理控制放电电流和电压,避免过放现象的发生。
同时,应对放电过程进行监控和控制,以确保放电过程的安全性和电池寿命。
锂电池基础知识讲解

锂电池基础知识讲解理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。
实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。
实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。
一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。
⑴正极材料的溶解尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。
氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应:2Mn3+(固) Mn4+(固)+Mn2+(液)歧化反应生成的二价锰离子溶于电解液。
离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4。
Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。
⑵正极材料的相变化[15]锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。
对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。
第二类相变是Jahn-Teller效应。
Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。
由于Jahn-Teller效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。
在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。
锂电池百科知识

锂电池百科知识
锂电池是一种充电电池,使用锂离子在正负两极之间移动来存储和释放电能。
它是目前最常见的可充电电池之一,广泛应用于电动汽车、手机、笔记本电脑、无人机和其他便携式电子设备中。
以下是有关锂电池的一些基本知识:
1. 成分:锂电池由正极、负极、电解质和隔膜组成。
正极通常使用氧化钴、磷酸铁锂等材料,负极通常使用石墨或锂钛酸锂等材料。
2. 工作原理:锂电池的工作原理是在充电时,锂离子通过电解液中的电解质移动从正极向负极,负极材料将锂离子插入其晶格中进行储存。
在放电时,锂离子从负极移动到正极,通过外部电路释放电能。
3. 优点:锂电池具有高能量密度、长循环寿命、轻便和无记忆效应的优点。
它们还具有较低的自放电速度和较少的环境污染。
4. 缺点:锂电池的缺点包括较高的成本、安全性问题(例如过充、过放、过热可能导致爆炸或火灾)以及对稀有资源的依赖(锂)。
5. 类型:常见的锂电池类型包括锂离子电池(Li-ion)、锂聚
合物电池(Li-polymer)和锂铁磷酸电池(LiFePO4)。
Li-ion
电池是最常见的一种,具有良好的能量密度和循环寿命。
Li-
polymer电池具有更高的安全性和柔性设计能力。
LiFePO4电池具有更高的安全性和较长的循环寿命,但能量密度较低。
6. 充电和保养:为了延长锂电池的寿命,需要遵循正确的充电和使用方法,如避免过充和过放、避免长时间存储在高温环境中、使用合适的充电器等。
总之,锂电池是一种常见的充电电池,具有广泛的应用前景,并且随着技术的不断进步,它的能量密度和循环寿命还将继续改善。
高三锂电池知识点总结

高三锂电池知识点总结锂电池作为一种重要的充电式电池,应用广泛且具有巨大的潜力。
在高三化学学习中,了解锂电池的原理和特点是非常重要的。
下面将对锂电池的知识点进行总结,帮助大家更好地学习和理解。
1. 锂电池的基本结构锂电池由正极、负极、电解液和隔膜组成。
其中,正极由氧化物材料构成,负极由石墨或锂合金构成,电解液通常是有机溶液,而隔膜则用于阻止正负极直接接触。
2. 锂电池的工作原理锂电池通过锂离子在正负极之间的迁移来实现电荷的转移和储存。
当充电时,锂离子从正极解出并嵌入负极,此过程称为锂离子的嵌入/脱嵌反应。
当放电时,锂离子从负极脱嵌并嵌入正极,电荷通过外部电路释放。
3. 锂电池的优点锂电池具有以下优点:- 高能量密度:相比其他充电式电池,锂电池具有更高的能量储存能力,可以提供更长的使用时间。
- 高电压平台:锂电池的标准电压为3.6V,比其他电池更适合许多电子设备的使用。
- 长循环寿命:相对于镍镉电池,锂电池具有更长的循环寿命和更少的记忆效应。
4. 锂电池的缺点锂电池也存在一些缺点:- 安全性:由于锂电池的电解液是有机溶液,其中含有易燃的成分,因此在使用和储存过程中需要注意防火和防爆措施。
- 循环寿命:锂电池的循环寿命受到充放电次数的限制,随着使用时间的增加,其容量和性能会逐渐减弱。
5. 锂电池的分类锂电池可以分为以下几种类型:- 锂离子电池(Li-ion):最常见且应用最广泛的一种锂电池,适合大多数便携式电子设备的使用。
- 聚合物锂离子电池(Li-polymer):具有更高的能量密度和更薄的外壳,适合薄型电子设备的应用。
- 锂钴酸锂离子电池(LiCoO2):具有较高的电压平台和较大的能量密度,适用于高耗电量设备。
6. 锂电池的应用领域锂电池广泛应用于各个领域,包括:- 通信设备:智能手机、平板电脑、无线耳机等。
- 电动工具:电动车、无人机、电动摩托车等。
- 家用电器:手提吸尘器、无线键盘鼠标等。
- 新能源汽车:纯电动车、混合动力车等。
锂电池基础知识培训

锂电池基础知识培训锂电池是一种常见的电池类型,广泛应用于移动设备、电动车辆和可再生能源存储等领域。
本文将为大家介绍锂电池的基础知识,包括锂电池的结构、工作原理、充放电特性、安全性等方面。
一、锂电池结构锂电池通常由正极、负极、电解质和隔膜组成。
正极材料一般使用氧化物,如钴酸锂(LiCoO2)、磷酸铁锂(LiFePO4)等。
这些正极材料能够释放或吸收锂离子,实现电池的充放电过程。
负极材料通常采用石墨,能够嵌著锂离子形成锂插层化合物。
电解质是锂离子的传导介质,一般采用液态或聚合物电解质。
液态电解质具有高离子传导性和低内阻,而聚合物电解质则具有良好的安全性能。
隔膜用于隔离正负极,防止短路。
二、锂电池工作原理锂电池的工作原理是基于锂离子在正负极材料之间的嵌脱插过程。
充电时,外部电源提供电流,使得正极材料氧化,负极材料脱锂。
锂离子在电解液中移动,通过隔膜到达负极,嵌入到负极材料中。
放电时,锂离子从负极材料脱出,通过隔膜到达正极,嵌入到正极材料中。
同时,电子通过外部电路流动,产生电流,为外部设备供电。
锂电池的充放电过程是可逆的,可以循环多次使用。
三、锂电池充放电特性锂电池的充放电特性与其正负极材料有关。
充电时,锂电池通常采取恒流充电和恒压充电两个阶段。
恒流充电阶段中,电流保持不变,直到电池电压达到设定的峰值电压;恒压充电阶段中,电流逐渐减小,直到电池容量充满,电压保持恒定。
放电时,锂电池的电压会随着放电过程逐渐下降,当电压达到一定程度时需要停止放电,以避免过放。
锂电池的容量可以通过充放电循环实验来测试,常用的容量单位是安时(Ah)。
四、锂电池的安全性锂电池具有较高的能量密度,因此在不正确使用或存储时存在一定的安全风险。
首先,要注意避免过充和过放。
过充会造成电池内部压力过高,甚至发生爆炸;而过放会导致电池无法再次充电,损坏电池。
其次,在存储和携带锂电池时,应注意避免与金属物品短路,避免受到外力撞击。
此外,锂电池在高温环境下的使用会降低其寿命和安全性能,因此要避免长时间暴露在高温环境中。
锂电池基础知识科普

外壳 2
2
电池基础知识
储能装置
物理储能
化学储能
飞轮储能
压缩空气 储能etc...
铅酸电池
钠流电池
锂离子电 池etc...
电容器
储能装置分类
电磁储能
超导电磁 储能etc...
所有电池都是可以提供动力的, 只是大与小的关系(较大规模 的储能装置可以超过GWh,而 应用与蓝牙耳机或者手机电池 上的电池仅为0.1-5Wh),因此 只要是可以称之为能量储存的 载体都可以被称为动力电池;
21
隔膜
结构 生产方法 优点
缺点 应用范围
不同材质和结构隔膜的特点
PP
单层、双层
干法
机械强度高 耐热性好 透过性好 安全关断性能不如PE (闭孔温度>150℃)
一次电池、二次电池、 大功率电池
PE 单层、双层 干法、湿法 均匀性好 安全性好(闭孔温度约 130℃) 耐高温性能不如PP
二次电池
PP/PE/PP 三层 干法 综合了PP、PE膜优点, 机械强度好,安全性更 高
➢ 按制造方法分 干法、湿法
➢ 按结构分 单层PP、PE 双层PP、PE 三层PP/PE/PP
制造方法 代表厂家
单向拉伸法
日本宇部 深圳星源 台湾高银
干法 吹膜法 美国Celgard
双向拉伸法
新乡格瑞恩 桂林新时
湿法
日本:Asahi,Tonen, Nitto,三井 美国:Entek 韩国:Wide、W-Able、 SK、W-scope 中国:佛山金辉
两种不同的极板在均相或者 异相的介质中,由于存在并 产生的电势差,在外加负载 的驱动下,发生氧化还原反 应,内部电流的移动产生电 流。如果电化学反应可以逆
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂电池基本知识讲解
电池基本知识
1.电池
电池是将化学反应产生的能量直接转化为电能的一种电化学装置。
2.原电池
原电池是指经过放电后,不能用一般的充电方法使其复原而继续使用的电池,也叫一次电池。
3.蓄电池
指可以通过充电方法使两极活性物质复原而可以再次放电的电池,也叫二次电池。
4.干电池
干电池是指电解液不流动的电池,通常是指锌、锰干电池。
5.电解池
电解池是一种将电能转化为化学能的电化学装置,电池充电时相当于电解池。
6.电子导体
是指依靠物质内部的自由电子在外加电场作用下做定向运动而导电的导体,也叫第一类导体。
各种金属通常为第一类。
7.离子导体
是依靠物质内部的可移动离子在外加电场作用在做定向移动而导电的导体,也叫第二类导体。
各种电解液通常为第二类导体。
如氢氧化钾水溶液。
8.电解质
一定条件下具有离子导电性的物质称为电解质。
9.电极
是指由两类导体即电子导体和离子导体串联组成的导电体系,也叫半电池,通常为了方便把构成电极的金属导体部分称为电极。
10.正/负极
在一个电化学装置中,电极电位较高的电极称为正极;电极电位较低的电极为负极。
11.电池充电
借助于外直流电源,将电能输入电池迫使其内部发生电化学反应的过程叫电池充电。
12.电池放电
电池内部发生电化学反应产生电能并向外电路输出电能的过程叫电池放电。
13.活性物质
是指在电池中将化学能转变为电能的过程中参加电极反应的物质。
14.为什么电池放电时不需要外接电源而电池充电时需要外接电源?
电池放电时的电化学反应是一种自发的过程,电池向外电路供电是可以自发进行的过程,而充电时的电池相当于电解池,电解池中消耗电能的化学反应是一种不可以自发进行的过程,所以要借助于外接电源强迫化学反应逆方向进行。
15.电池电动势
电池正极平衡电极电位与负极平衡电极电位之差称为电池电动势,又叫理论电压。
16.开路电压
电池开路时,正负极之间的电位差叫开路电压,开路电压在数值上等于正负极稳定电极电位之差,是一个实测值。
17.标称电压
一般被认为是电池工作在标准条件下可具有的电压值。
18.放电电压
电池放电时正负极间的电位差叫放电电压,也叫工作电压或负载电压或端电压。
19.充电终止电压
电池充电所允许的最高电压叫充电终止电压。
20.放电终止电压
电池放电时,电压下降到不宜再继续放电的最低工作电压
称为放电终止电压。
21.电池的内阻
电流通过电池内部所受到的阻力叫电池内阻。
22.电池内阻包括
欧姆电阻和极化电阻。
23.电池的欧姆电阻包括
电极电阻、电解液电阻、隔膜电阻、接触电阻等。
24.极化电阻
电池极化引起的电压变化所对应的阻值称为极化电阻。
25.极化电阻包括
电化学极化和浓差极化引起的内阻。
26.隔膜电阻
是指导电离子通过隔膜微孔时受到的一定程度的阻碍。
27.电化学反应
在电极两类导体界面上发生得电子或失电子的化学反应称为电化学反应或电极反应。
28.电池按工作性质可分为
原电池、蓄电池、储备电池和燃料电池。
29.电池按电解质可分为
碱性电池、酸性电池、中性电池、有机电解质电池和固体电解质电池。
30.电池按电极材料可分为
锌-锰系列、铅酸系列、镍-镉系列、镍-氢系列、锂电池系列。
31.活性物质利用率
电池的实际放电容量与理论容量的比值称为活性物质利用率。
32.活性物质利用率与那些因素有关
与电池结构、电极的状态、电池的放电制度及电池的制造工艺有着密切关系。
33.电池的容量
是指在一定的放电制度下,电池所能放出的电量,其单位为安培小时,简称安时,亦可用毫安时表示。
34.电池的容量可分为
理论容量、标称容量、设计容量、额定容量和实际容量。
35.理论容量
是指在正极、负极和电池等容量条件下,根据参加成流反应的活性物质的量按照法拉第定律计算应获得饿容量。
36.额定容量
是指在规定条件下,电池应能提供的容量,是法定容量值。
37.实际容量
指电池在实际负载条件下所放出的电量。
38.理论容量、额定容量、设计容量、实际容量按照数值大
小关系顺序为
理论容量>实际容量>设计容量>额定容量
39.电池电动势、充电电压、放电电压、开路电压的大小顺序
充电电压>电池电动势≥开路电压>放电电压
40.电化容量
指单位活性物质的质量可给出的理论容量。
41.电池的组成
由电极、电解质、隔膜和外壳四个主要部分组成。
42.电极(正负极)在电池中起的作用
电极是由活性物质和导电骨架组成,电极在电池中的基本作用是参加成流反应及导电,电池的主要性能取决于电极的基本特性。
43.电解质在电池中的作用
电解质与电极骨架构成电极体系,保证内部电极的离子导电作用,有时电解质中的离子也参加电极反应。
44.隔膜在电池中起的作用
隔膜防止电池中正负极之间直接接触产生导电现象而在电池内部形成短路,因此隔膜具有离子的良导体和电子的绝缘体的双重特性。
44.电化学中隔膜电阻就是隔膜本身的电阻吗?
不是,隔膜是电子绝缘体,离子良导体,隔膜电阻是指导
电离子通过隔膜时受到的阻碍,其值等于电解质溶液中有隔膜存在与无隔膜隔离时的电阻值之差。
45.电导与电阻、电导率与电阻率的关系
电导是电阻的倒数、电导率是电阻率的倒数
46.放电制度
电池放电时所规定的放电速度,放电温度和终止电压通常称为放电制度。
47.放电倍率
以放电电流强度在数值上等于该电池额定容量的倍数来表示的放电速率,单位为倍率。
48.放电时率
以电池放出全部额定容量,所需要的时间的长短来表示的放电速率,单位为小时。
49.放电倍率与放电时率的关系
对同一放电速率,放电倍率与放电时率在数值上互为倒数。
50.电池是如何向外界输出电能的
电池向外输出电能时,在外电路是电子导电,依靠电子的定向移动来传递电荷;在电池内部的两极之间是离子导电,依靠离子的定向移动来传送电荷;在电极分界面上,依靠其发生电化学反应来传送电荷,保证电流通过电极的分界面。
51.为什么电池放电时,其输出电压要比理论电压或开路电压低
因为电池内部存在一定的内阻,在有电流通过时,内阻引起内压降,随着放电进行,电池内阻增大,电压将逐渐降低。
52.为什么要规定电池的放电终止电压
由于电池的使用要求不一样,放电条件也会有区别,为了防止电池性能过早恶化,延长电池使用寿命,需要规定不同使用要求和放电条件下的放电终止电压。
另外,为了比较或判别电池的放电性能或检查电池的容量,需要规定放电终止电压。
53.锂离子电池常用的充放电方法
恒流恒压充电,恒流放电。
54.电池短路
电池内部两电极形成的电子导电,称为电池短路或叫电池内部短路,电池内部短路往往导致电池报废。
55.电池外部短路
电池正负极集流端子之间的负载电阻与电池内阻相比可忽略不计,这种情况叫电池外部短路。
56.电池自放电
电池在荷电存放期间,在开路状态下,由于电池内部自发反应引起的容量损失,叫电池自放电。
57.能否避免电池自放电
不能。
从理论上讲,电池中的电极都处在热力学不稳定的状态,不可避免的要发生自放电,但如果采取的措施得当,可将自放电减少到最低程度。
58.化成
通过充放电方法来提高电极原始物质的电化学活性的过程叫化成。
59.为什么要进行容量分类
电池通常以串联组合形式使用,为了保持串联电池容量的一致性,需要对单体电池的实际容量进行检查和分类,以保证电池串联后的使用效果。