七年级下册期中测试题

合集下载

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

【初中必刷题】历史七年级下册期中测试(二)

【初中必刷题】历史七年级下册期中测试(二)

【初中必刷题】历史七年级下册期中测试(二)一、选择题(每小题2分,共32分)1.(2024七下·期中)[2023 安徽池州期中]制作历史知识小卡片是学好历史的一种方法,在下面知识卡片的空白处填写的正确内容应是()隋朝建立时间:581年人物:杨坚都城:长安阶段特征:____A.四分五裂,战乱不断B.北击匈奴,无为而治C.国家统一,社会稳定D.开辟丝路,沟通中外2.(2024七下·期中)[2023 山东青岛期末]唐太宗统治时期出现了“贞观之治”,唐玄宗统治时期形成了“开元盛世”。

下列材料说明这两个盛世局面出现的共同原因之一是统治者()A.重视农业生产B.善于虚怀纳谏C.重视选贤任能D.重视整顿吏治3.(2024七下·期中)[2022广东梅州期中]诗歌是现实生活的反映。

杜甫在“接缕垂芳饵,连筒灌小园”的诗句中描述的工具是()A .秧马B .曲辕犁C.筒车D.楼车4.(2024七下·期中)[2023 四川泸州中考]据史书记载,唐玄宗时期“贵族及士民好为胡服、胡帽”“贵人御馔,尽供胡食”,在京师长安还有胡姬所开酒店,专卖胡酒,成为文人雅游饮宴之所。

这些现象()A.推动了中央集权的强化B.得益于民族交往与交融C.反映了长安城布局严整D.凸显手工制作水平高超5.(2024七下·期中)新考向跨学科自然界中鸟可以扮演传播植物种子的使者,从而推动生物圈的物种交流。

下面是模拟这一原理制作的示意图,该图可被纳入的历史学习主题是()A.唐与吐蕃的民族交融B.古代中日两国的交往C.唐代的中外文化交流D.佛教文化的传播历程6.(2024七下·期中)[2023 黑龙江齐齐哈尔三模]张家港黄泗浦遗址(2018年度全国十大考古新发现之一)发现的唐代寺庙建筑基址,其布局与日本唐招提寺极为相似,这最有可能为下列哪一事件提供佐证()A.张骞通西域B.鉴真东渡C.玄奘西行D.郑和下西洋7.(2024七下·期中)[2023 福建南平期末]历史典故往往来源于真实的历史故事,并可作为研究历史的依据。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

人教版数学七年级下册《期中检测试卷》含答案解析

人教版数学七年级下册《期中检测试卷》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】

人教版七年级下册数学期中测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 有理数的乘法法则中,两数相乘,同号得什么?A. 正数B. 负数C. 0D. 无法确定3. 在直角坐标系中,点(3, -2)位于哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 下列哪个式子是整式?A. 3x + 2yB. 2/xC. √xD. 1/(x+1)5. 若a > b,则下列哪个不等式成立?A. a 3 > b 3B. a/2 > b/2C. -a < -bD. a + b < 0二、判断题(每题1分,共5分)1. 任何一个正整数都可以分解为几个质数的乘积。

()2. 负数的平方根是正数。

()3. 两条直线平行,则它们的斜率相等。

()4. 任何两个有理数都可以进行加、减、乘、除运算。

()5. 一元二次方程的解可以是两个相同的实数。

()三、填空题(每题1分,共5分)1. 2的平方根是______。

2. 若a > 0,b < 0,则a与b的乘积是______。

3. 一元二次方程ax^2 + bx + c = 0的判别式是______。

4. 两条平行线的斜率分别是2和-2,则它们的距离是______。

5. 在直角坐标系中,点(0, 0)到点(3, 4)的距离是______。

四、简答题(每题2分,共10分)1. 简述质数的定义。

2. 解释有理数的乘法法则。

3. 什么是一元二次方程?给出一个例子。

4. 简述两点之间的距离公式。

5. 解释直线的斜率是什么。

五、应用题(每题2分,共10分)1. 解方程:2x + 3 = 15。

2. 计算下列表达式的值:(-3) (-2) + 4/2。

3. 若直线的斜率为2,且经过点(1, 3),求该直线的方程。

4. 计算点(2, -1)到直线y = 2x + 3的距离。

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试题及答案

人教版七年级下册数学期中考试试卷一、单选题1.下列图形中,1∠与2∠互为邻补角的是()A .B .C .D .2.下列各数中22,,0.27π,有理数有()A .2个B .3个C .4个D .5个3.如图所示,因为AB ⊥l ,BC ⊥l ,B 为垂足,所以AB 和BC 重合,其理由是()A .两点确定一条直线B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .过一点能作一条垂线D .垂线段最短4.在平面坐标系中,线段CF 是由线段AB 平移得到的;点(1,4)A -的对应点为(4,1)C ,则点(,)B a b 的对应点F 的坐标为()A .()3,3a b +-B .()5,3a b +-C .()5,3a b --D .()3,5a b ++5.已知点P 的坐标为()2,32a a ++,且点P 在y 轴上,则点P 坐标为()A .(0,4)P -B .(0,4)P C .(0,2)P -D .(0,6)P -6.已知下列命题:①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两个角的角平分线互相垂直.其中,是真命题的有()A .0个B .1个C .2个D .3个7.若平面直角坐标系内的点M 在第二象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为()A .()2,1B .()2,1-C .()2,1-D .()1,2-8)A .3±B .3C .3-D .9.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A .45°B .60°C .75°D .82.5°10.如图,AB ⊥BC ,AE 平分∠BAD 交BC 于点E ,AE ⊥DE ,∠1+∠2=90°,M 、N 分别是BA 、CD 延长线上的点,∠EAM 和∠EDN 的平分线交于点F ,∠F 的度数为()A .120°B .135°C .150°D .不能确定11.实数,a b||a b +)A .2a -B .2b -C .2a b +D .2a b-12.如图,动点P 在平面直角坐标系中按图中箭头所示的方向运动,第1次从原点运动到点()1,1;第二次接着运动到点()2,0;第三次接着运动到点()3,2,按这样的运动规律,经过2019次运动后,动点P 的坐标为()A .()2019,0B .()2019,1C .()2019,2D .()2020,0二、填空题13.将命题“两直线平行,同位角相等”写成“如果…,那么…”的形式是________14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是()()--,那么“帅”的坐标是__________3,1,3,115.若一个数的立方根就是它本身,则这个数是________.16.若a ba b的值为____________<,且,a b17.如图,把一张平行四边形纸片ABCD沿BD对折,使点C落在点E处,BE与AD相交于点O,若∠DBC=15°,则∠BOD=______________.==,现对72进行如下操18.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]3作:72第一次8]=;第二次[8]2=;第三次[2]1=;这样对72只需进行3次操作后变为1,在进行这样3次操作后变为1的所有正整数中,最大的是___19.如图,直线a和b被直线c所截,∠1=110°,当∠2=_____时,直线a b成立三、解答题20.(1-2|x-=-(2)解方程:()3112521.(1)如图这是某市部分简图,为了确定各建筑物的位置:①请你以火车站为原点建立平面直角坐标系②写出体育场、宾馆的坐标;③图书馆的坐标为()-4,-3,请在图中标出图书馆的位置;(2)已知M=是3m +的算术平方根,N=n-2的立方根,试求M-N 的值;22.如图在平面直角坐标系中,已知(1,1)P ,过点P 分别向,x y 轴作垂线,垂足分别是,A B ;(1)点Q 在直线AP 上且与点P 的距离为2,则点Q 的坐标为__________(2)平移三角形ABP ,若顶点P 平移后的对应点(4,3)P ',画出平移后的三角形'''A B P .23.如图,//,AB CD EFG ∆的顶点,F G 分别落在直线,AB CD 上,CE 交AB 于点,H GE 平分FGD ∠,若90,20EFG EFH ︒︒∠=∠=,求EHB ∠的度数.24.如图,在平面直角坐标系中,,A B 坐标分别是(0,),(,)A a B b a ,且,a b 满足()23|5|0a b -+-=,现同时将点,A B 分别向下平移3个单位,再向左平移1个单位,分别得到点,A B 的对应点,C D ,连接,,AC BD AB .(1)求点,C D 的坐标及四边形ACDB 的面积ACDB S ;(2)在y 轴上是否存在一点M ,连接,MC MD ,使13MCD ACDB S S ∆=?若存在这样的点,求出点M 的坐标,若不存在,试说明理由.25.学着说理由:如图∠B =∠C ,AB ∥EF ,试说明:∠BGF =∠C证明:∵∠B =∠C ()∴AB ∥CD ()又∵AB ∥EF ()∴EF ∥CD ()∴∠BGF =∠C ()26.如图,EF ⊥BC 于点F ,∠1=∠2,DG ∥BA ,若∠2=40°,则∠BDG 是多少度?参考答案1.D2.C3.B4.B5.A6.C7.B8.D9.C10.B11.A【详解】解:0,,a b a b <<>0,a b ∴+<||a b a a b b+=+++()a a b b=--++a a b b=---+2.a =-故选A .12.C【详解】解:从图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3,当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2),故选:C .13.如果两条直线是平行线,那么同位角相等.【解析】一个命题都能写成“如果…那么…”的形式,如果后面是题设,那么后面是结论.【详解】“两直线平行,同位角相等”的条件是:“两直线平行”,结论为:“同位角相等”,∴写成“如果…,那么…”的形式为:“如果两条直线是平行线,那么同位角相等”,故答案为如果两条直线是平行线,那么同位角相等.14.()1,3--【解析】首先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“帅”的坐标.【详解】解:建立平面直角坐标系,如图,“帅”的坐标为(-1,-3),故答案为:(-1,-3).15.±1,0【详解】∵13=1,(-1)3=-1,03=0,∴1的立方根是1,-1的立方根是-1,0的立方根是0,∴一个数的立方根就是它本身,则这个数是±1,0.故答案为±1,0.16.-1【详解】解:364049,<<67,∴6,7,a b ∴==1,a b ∴-=-故答案为: 1.-17.150︒【详解】如图,∵在平行四边形ABCD 中,AD ∥BC ,∴∠ODB=∠DBC=15°.又由折叠的性质知,∠EBD=∠CBD=15°,即∠OBD=15°,∴在△OBD 中,∠BOD=180°−∠OBD−∠ODB=150°,18.255【详解】解:9,3,1,⎡===⎣13,3,1,⎡===⎣15,3,1,===16,4,2,1,⎡⎡====⎣⎣需要进行4次操作后变为1,即只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为255.19.70°【分析】根据平行的判定,要使直线a b 成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a b 成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.20.(1)10(2)4x =-【详解】(1)原式=9(3)22+-++-10=(2)解:15x -=-4x =-21.(1)①见解析;②体育馆()4,3-;宾馆()2,2;③见解析;(2)2【详解】(1)①平面直角坐标系如图;②体育馆()4,3-;宾馆()2,2,③图书馆的位置见上图.(2)422433m m n -=⎧⎨-+=⎩ 63m n =⎧∴⎨=⎩3,1M N ∴==2M N ∴-=22.(1)12(1,1),(1,3)Q Q -;(2)见解析【详解】解:(1)∵点Q 在直线AP 上且与点P 的距离为2,AP ⊥x 轴,P (1,1),∴点Q 的坐标为(1,-1)或(1,3),故答案为:(1,-1)或(1,3);(2)如图所示,'(1,1),(4,3).P P ∴平移方式为先向右平移3个单位长度,再向上平移2个单位长度,按相同方式把,A B 作同样的平移得到''.A B ,顺次连接''',,A B P 得到三角形A′B′P′即为所求.【点睛】本题主要考查了利用平移变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.55︒【详解】解:90,20EFG EFH ︒︒∠=∠= 70BFG ︒∴∠=//AB CD ,70FGC BFG ︒∴∠=∠=,110FGD ︒∴∠=因为GE 平分FGD ∠,55FGH ︒∴∠=,180705555FHG ︒︒︒∴∠=--=︒55EHB FHG ︒∴∠=∠=24.(1)(1,0),(4,0),C D -15.ACDB S =(2)在y 轴上存在点(0,2)M ,或(0,2)M -使13MCD ABDC S S ∆=【详解】解:(1)依题意得:3050a b -=⎧⎨-=⎩解得:35a b =⎧⎨=⎩(0,3),(5,3)A B ∴,将点,A B 分别向下平移3个单位,再向左平移1个单位,(1,0),(4,0),C D ∴-5315.ACDB S CD OA =∙=⨯=(2)假设在y 轴上存在点(0,)M y ,使13MCD ABDCS S ∆=11553MCD S ∆∴==,1552y ∴⨯⨯=,2y ∴=±,(0,2)M ∴或(0,2)-所以在y 轴上存在点(0,)M y ,使13MCD ABDC S S ∆=.25.【详解】证明:∵∠B =∠C (已知),∴AB ∥CD (内错角相等,两直线平行),又∵AB ∥EF (已知),∴EF ∥CD (平行于同一直线的两直线平行),∴∠BGF =∠C (两直线平行,同位角相等).26.130°【详解】解:∵∠1=∠2,∴EF∥AD,∵EF⊥BC,∴AD⊥BC,即∠ADB=90°,又∵DG∥BA,∠2=40°,∴∠ADG=∠2=40°,∴∠BDG=∠ADG+∠ADB=130°.。

华师大版七年级下册数学期中考试试卷附答案

华师大版七年级下册数学期中考试试题一、单选题1.下列方程中,是一元一次方程的是()A .243x x -=B .0x =C .21x y +=D .11x x-=2.方程12x +﹣23x-=1去分母后正确的是()A .3(x+1)﹣2(2﹣x )=1B .2(x+1)﹣3(2﹣x )=6C .3(x+1)﹣2(2﹣x )=6D .3(x+4)﹣4﹣2x =13.下列方程组中是二元一次方程组的是()A .1325ax y x y -=⎧⎨-+=⎩B .21x y x y -=⎧⎨+=⎩C .32231x y x y -=⎧⎪⎨+=⎪⎩D .3137x y x z -=⎧⎨+=⎩4.已知325x y -=,用含y 的代数式表示x ,则正确的是().A .523y x -=B .352x y -=C .523y x +=D .532x y -=5.若2个单项式23a b x y +与42a b x y -的和仍是单项式,则ab 的值为A .8B .3C .-3D .26.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是()A .11岁B .12岁C .13岁D .14岁7.解方程组272a b a b +=⎧⎨-=⎩①②的最佳方法是()A .代入法消去,a 由②得2ab =+B .代入法消去b ,由①得72b a =-C .加减法消去,a ①-②×2得33b =D .加减法消去b ,①+②得39a =8.10位同学利用“五一国际劳动节”放假时间,为了响应国家“绿化河山,美丽中国”的号召,共植树36棵,其中男生每人植树4棵,女生每人植树3棵.设男生有x 人,女生有y 人,根据题意,列方程正确的是()A .364310x y x y +=⎧⎨+=⎩B .103436x y x y +=⎧⎨+=⎩C .363410x y x y +=⎧⎨+=⎩D .104336x y x y +=⎧⎨+=⎩9.已知2a x =+,1b x =-,且3a b >>,则x 的取值范围是()A .1x >B .4x <C .1x >或4x <D .14x <<10.不等式组2x x m >-⎧⎨≤⎩有4个不同的整数解,则m 的取值范围()A .23m ≤<B .23m <≤C .3m <D .2m<11.下列不等式的变形中,正确的结论有();①若a >b ,则a-3>b-3;②若a >b ,则-3a >-3b ;③若a >b ,则(m 2+1)a >(m 2+1)b ;④若a >b 且m≠0,则-ma <-mb A .1个B .2个C .3个D .4个12.在数轴上表示不等式x -1<0的解集,正确的是()A .B .C .D .二、填空题13.若(a ﹣2)x |a |﹣1﹣2=0是关于x 的一元一次方程,则a =_____.14.已知|2x+y ﹣6|+(x ﹣y+3)2=0,则x =_____,y =_____.15.若关于x 的不等式组13x x m >⎧⎨+>⎩的解集是x>1,则m 的取值范围是_____.16.已知方程组2728x y x y +=⎧⎨+=⎩,则x y +=_______________________.17.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x 两,y 两,可得方程组是_____________.18.若定义f (x )=3x-2,如f (-2)=3×(-2)-2=-8.下列说法中:①当f (x )=1时,x=1;②对于正数x ,f (x )>f (-x )均成立;③f (x-1)+f (1-x )=0;④当且仅当a=2时,f (a-x )=a-f (x ).其中正确的是______.(填序号)三、解答题19.解下列方程(组)或不等式(组).(1)4(2x+5)﹣(3x ﹣2)=20(2)5(a ﹣2)+10>3a+12(3)()()6232 4.x y x yx y x y +-⎧+=⎪⎨⎪+--=-⎩,①②20.已知满足方程组35123x y a x y a +=+⎧⎨+=⎩①②的x ,y 值之和为4,求a 的值.21.若不等式5(x ﹣2)+8<6(x ﹣1)+7的最小整数解是方程2x ﹣ax =4的解,求a+1a的值.22.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,求m 的取值范围.23.工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?24.某市电力公司对全市用户采用分段计费的方式计算电费,收费标准如下表所示:月用电量不超过180度的部分超过180度但不超过280度的部分超过280度的部分收费标准0.5元/度0.6元/度0.9元/度若某用户7月份的电费是139.2元,则该用户7月份用电为多少度?25.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?26.已知关于x,y的方程满足方程组321 21 x y mx y m+=+⎧⎨+=-⎩.(1)若x﹣y=2,求m的值;(2)若x,y,m均为非负数,求m的取值范围,并化简式子|m﹣3|+|m﹣4|;(3)在(2)的条件下求s=2x﹣3y+m的最小值及最大值.27.学校篮球比赛,初一(1)班和初一(2)班到自选超市去买某种品牌的纯净水,自选超市对某种品牌的纯净水按以下方式销售:购买不超过30瓶,按零售价每瓶3元计算;购买超过30瓶但不超过50瓶,享受零售价的八折优惠;购买超过50瓶,享受零售价的六折优惠,一班一次性购买了纯净水70瓶,二班分两天共购买了纯净水70瓶(第一天购买数量多于第二天)两班共付出了309元.(1)一班比二班少付多少元?(2)二班第一天、第二天分别购买了纯净水多少瓶?参考答案1.B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】解:A、最高项的次数是2,故不是一元一次方程,选项不符合题意;B、正确,符合题意;C、含有2个未知数,故不是一元一次方程,选项不符合题意;D、不是整式方程,故不是一元一次方程,选项不符合题意;故选:B.2.C【分析】方程两边同时乘以6去分母得到结果,即可作出判断.【详解】解:方程12123x x+--=去分母后正确的是3(1)2(2)6x x+--=,故选:C.【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.3.B【分析】分别根据二元一次方程组的定义对四个选项进行逐一分析即可.【详解】解:A、当a不是常数时,此方程组是三元二次方程组,故A错误;B、符合二元一次方程组的定义,故B正确;C、是分式方程组,故C错误;D、是三元一次方程组,故D错误.故选:B.4.C【分析】把等式3x-2y=5,用含y的代数式来表示x,首先要移项,然后化x的系数为1即可.【详解】解:由原方程移项,得:3x=2y+5,化x的系数为1,得:523y x+=.故选C.【点睛】本题考查了解二元一次方程.解方程的基本运算技能:移项、合并同类项、系数化为1等,表示谁就该把谁放到等号的一边,其它的项移到另一边,然后合并同类项、系数化1即可.5.B【分析】根据同类项的定义列方程组求出a,b的值,再代入式子计算即可.【详解】解:依题意得:42a ba b+=⎧⎨-=⎩解得:31ab=⎧⎨=⎩∴ab=31⨯=3.故选:B.【点睛】本题考查了合并同类项的知识,解答本题的关键是熟练掌握合并同类项的法则及同类项的定义.6.B【分析】设现在孙子的年龄是x,则爷爷现在的年龄是5x.12年后爷爷的年龄是5x+12,孙子的年龄是12+x,根据题目中的相等关系列出方程求解.【详解】解:设现在孙子的年龄是x岁,根据题意得5x+12=3(12+x),解得x=12,即现在孙子的年龄是12岁.故选B.【点睛】本题考查一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.D 【分析】先观察两方程的特点,因为b 的系数互为相反数,故用加减消元法比较简单.【详解】∵两方程中b 的系数互为相反数,∴用加减消元法比较简单,由①+②得:39a =.故选D .【点睛】本题考查的是解二元一次方程的加减消元法和代入消元法,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.8.D 【解析】设男生有x 人,女生有y 人,根据共植树36棵,其中男生每人植树4棵,女生每人植树3棵以及共计10名同学,分别列出方程组成方程组即可.【详解】解:设男生有x 人,女生有y 人,根据题意得:104336x y x y +=⎧⎨+=⎩.故选:D .【点睛】本题考查实际问题抽出二元一次方程组,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.9.D 【解析】【分析】根据题意可得不等式组2313x x +>⎧⎨-<⎩,再解不等式组即可.【详解】解:∵2a x =+,1b x =-,且3a b >>,∴2313x x +>⎧⎨-<⎩,解得:14x <<,故选:D.【点睛】此题主要考查了一元一次不等式组的应用,关键是根据题意列出不等式组,再正确确定不等式组的解集.10.A 【解析】【分析】根据不等式组的整数解个数得出关于m 的不等式组,解之可得.【详解】解:∵不等式组2x x m -⎧⎨≤⎩>有4个整数解,∴整数解为:-1,0,1,2,∴2≤m <3.故选A .【点睛】本题考查的是一元一次不等式组的整数解,根据不等式组的整数解的个数得出关于m 的不等式组是解题的关键.11.B 【解析】【分析】直接利用不等式的基本性质分别分析得出答案.【详解】解:①若a >b ,则a-3>b-3,正确;②若a >b ,则-3a<-3b ,错误;③若a >b ,则(m 2+1)a >(m 2+1)b ,正确;④若a >b 且m≠0,若m<0,则-ma>-mb ,错误.故选B .【点睛】此题主要考查了不等式的性质,正确把握不等式基本性质是解题关键.12.B 【解析】【详解】x -1<0的解集为x <1,它在数轴上表示如图所示,故选B .13.-2【解析】【分析】依据一元一次方程的次数为1,系数不等于零进行判断即可.【详解】解:(a ﹣2)x |a |﹣1﹣2=0是关于x 的一元一次方程,∴a ﹣2≠0,|a|﹣1=1,解得a =﹣2.故答案为:﹣2.【点睛】本题主要考查的是一元一次方程的定义,熟练掌握一元一次方程的概念是解题的关键.14.14【解析】【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值即可.【详解】解:2|26|(3)0x y x y +-+-+= ,∴263x y x y +=⎧⎨-=-⎩①②,①+②得:33x =,解得:1x =,把1x =代入①得:4y =,则1x =,4y =,故答案为:1;4.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.m≥2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+m>3,得:x>3﹣m ,∵不等式组的解集为x>1,∴3﹣m≤1,解得:m≥2,故答案为:m≥2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.5【解析】【分析】两方程相加即可求出x+y 的值.【详解】解:2728x y x y +=⎧⎨+=⎩①②①+②得:3x+3y=15,解得x+y=5,故答案为:5.【点睛】此题考查了解二元一次方程组,解题关键是将方程组中两方程相加即可求出答案.17.5616 45x yx y y x+=⎧⎨+=+⎩【解析】【分析】根据题意可得等量关系:五只雀的重量+六只燕的重量=16两;4只雀的重量+1只燕的重量=5只燕的重量+1只雀的重量,根据等量关系列出方程组即可.【详解】设每只雀、燕的重量分别为x两,y两,由题意得:561645x yx y y x+=⎧⎨+=+⎩,故答案为:561645x yx y y x+=⎧⎨+=+⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.18.①②④【解析】【分析】根据新定义,逐个判断即可.【详解】解:①f(x)=3x-2=1,解得:x=1,故①正确;②对于正数x,f(x)=3x-2,f(-x)=-3x-2.∵x>0,∴3x-2>-3x-2,故②正确;③f(x-1)+f(1-x)=3(x-1)-2+3(1-x)-2=-4≠0,故③错误;④f(a-x)=3(a-x)-2=a-(3x-2),解得:a=2.故④正确.故答案为①②④.【点睛】本题是阅读理解题.考查了代数式求值,解一元一次方程等等.解题的关键是理解新定义.19.(1)x=﹣25;(2)a>6;(3)84xy=⎧⎨=-⎩【解析】【分析】(1)根据解一元一次方程的步骤求解即可;(2)根据解不等式的步骤求解即可;(3)用加减消元法解方程组即可;【详解】解:(1)去括号得,8x+20﹣3x+2=20,移项合并同类项得,5x=﹣2,系数化为1得,x=﹣2 5;(2)去括号得,5a﹣10+10>3a+12,移项合并同类项得,2a>12,系数化为1得,a>6;(3)整理得536,3 4. x yx y+=⎧⎨+=-⎩①②①﹣②×5,得﹣14y=56,解得y=﹣4,把y=﹣4代入②,得x﹣12=﹣4,解得x=8.原方程组的解为8,4. xy=⎧⎨=-⎩【点睛】本题考查的是解一元一次方程、二元一次方程组以及一元一次不等式,熟练掌握解题方法和步骤是解题的关键.20.a的值为5【解析】【分析】把a看做已知数表示出方程组的解,代入x+y=4求出a的值即可.【详解】解:①×3﹣②×5得:﹣x=3﹣2a,解得:x=2a﹣3,把x=2a﹣3代入②得:y=2﹣a,代入x+y=4得:2a﹣3+2﹣a=4,解得:a=5,则a的值为5.【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.21.4.25【解析】【分析】求出不等式的解集确定出最小整数解,代入已知方程计算求出a的值,即可求出所求.【详解】解:去括号得:5x﹣10+8<6x﹣6+7,移项合并得:﹣x<3,解得:x>﹣3,∴不等式的最小整数解为x=﹣2,把x=﹣2代入方程得:﹣4+2a=4,解得:a=4,则原式=4+14=4.25.【点睛】本题考查了一元一次不等式的整数解,以及一元一次方程的解,熟练掌握不等式及方程的解法是解本题的关键.22.m>﹣2【解析】【分析】两方程相加可得x+y=m+2,根据题意得出关于m的方程,解之可得.【详解】解:将两个方程相加即可得2x+2y=2m+4,则x+y=m+2,根据题意,得:m+2>0,解得m>﹣2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.16名工人加工大齿轮,32人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由1个大齿轮与3个小齿轮配成一套可知小齿轮的个数是大齿轮个数的3倍,从而得出等量关系,就可以列出方程求出即可.【详解】解:设需安排x名工人加工大齿轮,则(48﹣x)人加工小齿轮,由题意得10x×3=15(48﹣x),解得:x=16.所以48﹣x=32.答:需安排16名工人加工大齿轮,32人加工小齿轮.【点睛】本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.24.262度【解析】【分析】先判断出是否超过120度,然后列方程计算即可.【详解】解:因为180×0.5=90,(280﹣180)×0.6=60,90+60=150,而150>139.2,所以7月份用电是“超过180度但不超过280度”.故设7月份用电x度,由题意,得180×0.5+(x﹣180)×0.6=139.2解得x=262答:该用户7月份用电为262度.【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,根据等量关系得出方程,难度一般.25.25人加工大齿轮,60人加工小齿轮【解析】【分析】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据加工大齿轮人数+加工小齿轮人数=85和加工的大齿轮总数:加工的小齿轮总数=2:3列出方程组求解即可.【详解】解:设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,根据题意得:8516:102:3 x yx y+=⎧⎨=⎩,解得:2560 xy=⎧⎨=⎩.答:需安排25名工人加工大齿轮,安排60名工人加工小齿轮.【点睛】本题考查了二元一次方程组的实际应用—产品配套问题,解题的关键是能根据2个大齿轮和3个小齿轮配成一套找出相等关系,据此正确列出方程.26.(1)m=5;(2)1或2m﹣7;(3)s的最小值为﹣3,最大值为9.【解析】【分析】(1)把m看做已知数表示出方程组的解,得到x与y,代入x-y=2求出m的值即可;(2)根据x,y为非负数求出m的范围,判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果;(3)把表示出的x与y代入s,利用一次函数性质求出最大值与最小值即可.【详解】(1)32121x y mx y m+=+⎧⎨+=-⎩①②,①﹣②×2得:﹣x=﹣m+3,即x=m﹣3,把x=m﹣3代入②得:2m﹣6+y=m﹣1,即y=﹣m+5,把x=m﹣3,y=﹣m+5代入x﹣y=2中,得:m﹣3+m﹣5=2,即m=5;(2)由题意得:3050 mm-≥⎧⎨-+≥⎩,解得:3≤m≤5,当3≤m≤4时,m﹣3≥0,m﹣4≤0,则原式=m﹣3+4﹣m=1;当4<m≤5m﹣3≥0,m﹣4≥0,则原式=m﹣3+m﹣4=2m﹣7;(3)根据题意得:s=2m﹣6+3m﹣15+m=6m﹣21,∵3≤m≤5,∴当m=3时,s=﹣3;m=5时,s=9,则s的最小值为﹣3,最大值为9.【点睛】此题考查了二元一次方程组的解,解一元一次不等式组及一次函数的性质,熟练掌握运算法则是解本题的关键.27.(1)57元;(2)第一天买了45瓶,第二天买了25瓶【解析】【分析】(1)由题意知道一班享受六折优惠,根据总价=单价×数量,可以求出一班的花费,由两个班的总花费,则可以求出二班的花费,两者相减即可得出结论.(2)先设第一天购买了x瓶,则得出第二天购买(70-x)瓶,由第一天多于第二天,有三种可能:①两天均是超过30瓶但不超过50瓶,享受八折优惠;②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠;③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠.根据三种情况,总价=单价×数量,列出方程求解即可.【详解】解:(1)∵一班一次性购买了纯净水70瓶,∴享受六折优惠,即一班付出:70×3×60%=126元,∵两班共付出了309元,∴二班付出了:309-126=183元,∴一班比二班少付多:183-126=57元.答:一班比二班少付57元.(2)设第一天购买了x瓶,则得出第二天购买(70-x)瓶,①两天均是超过30瓶但不超过50瓶,享受八折优惠,列出方程得:[x+(70-x)]×3×80%=183元,此方程无解.②第一天超过50瓶,享受六折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×60%+(70-x)×3=183,求解得出x=22.5,不是整数,不符合题意,故舍去.③第一天超过30瓶但不超过50瓶,享受八折优惠,第二天不超过30瓶,不享受优惠,列出方程得:x×3×80%+(70-x)×3=183,解得:x=45,即70-45=25.答:第一天购买45瓶,第二天购买25瓶.【点睛】本题考查了一元一次方程的运用.要注意此题中的情况不止一种,分情况讨论.。

人教版数学七年级下册期中测试卷及答案

人教版数学七年级下册期中测试题一、填空题(每题3分,共30分)l、已知∠a的对顶角是81°,则∠a=______.2、把“等角的补角相等”写成“如果…,那么…”的形式_________________________________.3、在平面直角坐标系中,点P(-4,5)到x轴的距离为______,到y轴的距离为________.4、若等腰三角形的边长分别为3和6,则它的周长为________.5、如果P(m+3,2m+4)在y轴上,那么点P的坐标是________.6、如果一个等腰三角形的外角为100°,则它的底角为________..7、一个长方形的三个顶点坐标为(―1,―1),(―1,2)(3,―1),则第四个顶点的坐标是______________.8、将点P(-3,4)先向下平移3个单位,再向左平移2个单位后得到点Q,则点Q的坐标是_____________.9、武夷中学运动场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.10、观察下列球的排列规律(其中●是实心球,○是空心球):●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○●……从第1个球起到第2010个球止,共有实心球_____________个。

”二、选择题(每题3分,共30分)11、在同一平面内,两直线可能的位置关系是()A.相交B.平行C.相交或平行D.相交、平行或垂直12、如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().(A)120°(B)130°(C)140°(D)150°13、在△ABC中,已知∠A:∠B:∠C=1:2:3则△ABC是().A、锐角三角形B、直角三角形C、钝角三角形D以上都不对54D3E21CBA14、如果∠A 和∠B 的两边分别平行,那么∠A 和∠B 的关系是().A.相等B.互余或互补C.互补D.相等或互补15、如右图,下列能判定AB ∥CD 的条件有()个.(1)︒=∠+∠180BCD B ;(2)21∠=∠;(3)43∠=∠;(4)5∠=∠B .A.1B.2C.3D.4第15题图16、下列说法:①三角形的高、中线、角平分线都是线段;②内错角相等;③坐标平面内的点与有序数对是一一对应;④因为∠1=∠2,∠2=∠3,所以∠1=∠3。

2024 英语七年级下册 期中测试 真题(含答案)

2023——2024学年度下学期期中测试七年级英语试卷命题学校:注意事项:1.全卷共八大题,满分120分,考试时间为120分钟。

2.答卷前,考生务必将自己的姓名、准考证号等信息填写在答题卡上。

3.请将答案涂写在答题卡上,写在本试卷上无效。

一、情景交际:共两节,满分 15 分。

第一节情景对话(共 10 小题;每小题 1 分,满分 10 分)根据上下文所表达的意思,从 A、B、C 和 D 四个选项中,选出最佳答案。

()1.—Thanks for inviting me to your birthday party.—__________!A.That’s right B.I’m fine C.You’re welcome D.Great idea( )2. —Hello, boys and girls! I’m your new teacher. ___________—Nice to meet you, too.A.Nice to meet you. B.What’s your name? C.Good morning. D.How are you? ( )3. —Welcome to Miller’s. __________, sir?—Yes, I want a sports shirt for my son.A.What do you want to buy B.Can I help youC.What happened D.What’s the matter( )4. –Ga Ma, Your English is so good. ---_____________.A. OKB. ThanksC. Don’t say thatD. Thanks you( )5. —Would you like to visit the Potala palace with me tomorrow, Amy?—____________.A.Thank you B.Sounds nice C.Excuse me D.I hope not( )6. —Happy birthday to you, Da Wa.—____________A.Have a nice day. B.See you. C.The same to you. D.Thank you.( )7. — Must I do my homework at once?— No, you__________. You can do it tomorrow.A.Mustn’t B.don’t C.don’t have to D.don’t must( )8. -- How was your trip to Xi’an, Zha Xi?-- ____________! I took a lot of pictures and I will go there again with my family.A. I ’m fineB. Thank youC. It was greatD. I don ’t like it( )9. -- There was an earthquake(地震)in Taiwan last Wednesday.-- _________________.A. Bad luckB. GreatC. I hope notD. I ’m sorry to hear that( )10. Which sign (标志) means“No talking ”?第二节 补全对话(共 5 小题;每小题 1 分,满分 5 分)A:Hi, Lucy! Can I ask you some questions?B:Sure, please. A: 11 ? B:Well, I live near my school, so I get up at a quarter to seven. I never go to school late.A:Do you have breakfast at home?B:Yes, 12 .A:When do you go to school?B: 13 , so I go to school at seven forty-five.We have four classes in the morning and three inthe afternoon. And we play sports at about four inthe afternoon.A: 14 ?B:I leave school at five past five and 15 .11._________ 12. _________ 13. _________ 14. _________ 15. _________二、单项选择: 本题共 20 小题,每小题 1 分,共 20 分。

人教版七年级下册数学期中考试试题含答案

人教版七年级下册数学期中考试试卷一、单选题1.下列各组图形可以通过平移互相得到的是()A .B .C .D .2.实数4的算术平方根是()A B .2C .2±D .163.下列数据能确定物体具体位置的是()A .息州大道北侧B .好运花园2号楼C .东经103︒,北纬30°D .南偏西55︒4.如图,90ACB ∠=︒,CD AB ⊥,垂足为D ,则点B 到直线CD 的距离是指()A .线段BC 的长度B .线段CD 的长度C .线段BE 的长度D .线段BD 的长度5.如图,1234//,//l l l l ,若170∠=︒,则2∠的度数为()A .100︒B .110︒C .120︒D .130︒6.点()3,5A -在平面直角坐标系中所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限7.如图,在下列给出的条件中,能判定//DF AB 的是()A .∠4=∠3B .∠1=∠AC .∠1=∠4D .∠4+∠2=180°8.在平面直角坐标系中,点M 在第四象限,且点M 到x 轴、y 轴的距离分别为6,4,则点M 的坐标为()A .()4,6-B .()4,6-C .()6,4-D .()6,4-9.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为x 尺,绳子长为y 尺,则下列符合题意的方程组是()A . 4.5112y x y x =+⎧⎪⎨=+⎪⎩B . 4.5112y x y x =+⎧⎪⎨=-⎪⎩C . 4.5112y xy x =-⎧⎪⎨=+⎪⎩D . 4.5112y x y x =-⎧⎪⎨=-⎪⎩10.如图,在平面直角坐标系上有点()1,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A …依照此规律跳动下去,点A 第124次跳动至124A 的坐标为()A .()63,62B .()62,63C .()62,62-D .()124,123二、填空题11.请写出一个大于1且小于2的无理数:___.12.请把“36的平方根是正负6”翻译成数学式子表示出来:____________________________.13.已知方程2x ﹣3y =6,用含x 的式子表示x ,则y =_____.14.如图,已知//AB DE ,75ABC ∠=︒,160CDE ∠=︒,则BCD ∠的度数为______________.15.定义“在四边形ABCD 中,若AB ∥CD ,且AD ∥BC ,则四边形ABCD 叫做平行四边形.”若一个平行四边形的三个顶点的坐标分别是(0,0),(3,0),(1,3),则第四个顶点的坐标是__.三、解答题16.如图,直线AB 与CD 相交于点O ,EO CD ⊥于点O ,OF 平分AOD ∠,且50BOE ∠=︒,求DOF ∠的度数.17.如图,直线CD 与直线AB 相交于点C ,点P为两直线外一点.(1)根据下列要求画图:①过点P 作//PQ CD ,交AB 于点Q ;②过点P 作PR CD ⊥,垂足为R .(2)若120DCB ∠=︒,则PQC ∠是多少度?请说明理由.(3)连接PC ,比较PC 和PR 的大小,并说明理由.18.解方程组:(1)1{322x y x y =+-=;(2)()()5962{1243x y x y -=-+-=19.如果一个正数a 的两个不相同的平方根是22x -和63x -.求:(1)x 和这个正数a 的值;(2)173a +的立方根.20.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个整数的立方是59319,求这个整数.华罗庚脱口而出:39.邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?请按照下面的问题试一试:(1)由3101000=,31001000000=(2)由59319的个位上的数是9(3)如果划去59319后面的三位319得到数59,而3327=,3464=,的十位上的数是几吗?(4)已知19683,110592都是整数的立方,请你按照上述方法确定它们的立方根.21.如图,在每个小正方形边长均为1的方格纸中,ABC ∆的顶点都在方格纸格点上,点A 的坐标是()2,1-,点B 的坐标是()6,1-.(1)请你在方格中建立直角坐标系,并写出C 点的坐标;(2)将ABC ∆向左平移2格,再向上平移3格,请在图中画出平移后的A B C ∆''';(3)在图中能使PBC ABC S S ∆∆=的格点P 有多少个(点P 异于点A ),写出符合条件的P 点坐标.22.完成下面推理过程.如图,已知://AB EF ,EQ 交CD 于点Q ,EP 交AB 于点P ,且EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD .证明:∵//AB EF ,(已知)∴APE PEF ∠=∠.(_________________________________)∵EP EQ ⊥,∴PEQ ∠=_________︒,(垂直的定义)即90QEF PEF ∠+∠=︒.∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴EQC ∠=___________,(同角的余角相等)∴//EF CD ,(______________________)又∵//AB EF ,∴//AB CD .(______________________)23.如图,在平面直角坐标系中,(),0A a ,(),3B b ,()4,0C ,满足()260a b a b ++-+=,线段AB 交y 轴于点F .(1)分别求出A ,B 两点的坐标;(2)求点F 的坐标;(3)在坐标轴上是否存在点P ,使ABP ∆的面积和ABC ∆的面积相等,若存在,求出点P 的坐标,若不存在,请说明理由.参考答案1.C 【详解】试题解析:观察图形可知图案C 通过平移后可以得到.故选C .点睛:图形的平移只改变图形的位置,而不改变图形的形状和大小,易混淆图形的平移与旋转或翻转,而误选A 、B 、D .2.B 【分析】根据算术平方根的定义,求一个非负数a 的算术平方根,也就是求一个非负数x ,使得x 2=a ,则x 就是a 的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.3.C【分析】在平面中,要用两个数据才能表示一个点的位置.【详解】解:东经103o,北纬30o能确定物体的具体位置,故选:C.【点睛】此题主要考查了确定物体具体位置,要明确,一个有序数对才能确定一个点的位置.4.D【分析】直线外一点到直线的垂线段的长度,叫做点到直线的距离,根据点到直线的距离的定义解答即可.【详解】解:∵BD⊥CD于D,∴点B到直线CD的距离是指线段BD的长度.故选:D.【点睛】本题考查了点到直线的距离的定义,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.5.B【分析】利用平行线的性质即可求解.【详解】如图,∵34//l l ,∴∠1+∠3=180º,∵∠1=70º,∴∴∠3=180º-70º=110º,∵12l l //,∴∠2=∠3=110º,故选:B .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解答的关键.6.B 【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.7.C 【分析】可以从直线DF 、AB 的截线所组成的“三线八角”图形入手进行判断.【详解】解:A 、∵∠4=∠3,∴DE ∥AC ,不符合题意;B 、∵∠1=∠A ,∴DE ∥AC ,不符合题意;C 、∵∠1=∠3,∴DF ∥AB ,符合题意;D 、∵∠4+∠2=180°,∴DE ∥AC ,不符合题意;故选:C.【点睛】此题考查平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.A【分析】已知点M在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断坐标.【详解】解:因为点M在第四象限,所以其横、纵坐标分别为正数、负数,又因为点M到x轴的距离为6,到y轴的距离为4,所以点M的坐标为(4,6)-.故选:A.【点睛】本题主要考查了点在第四象限时点的坐标的符号,解题的关键是点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.9.B【分析】根据题意可以列出相应的二元一次方程组,从而本题得以解决.【详解】用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x=+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 11 2y xy x=+⎧⎪⎨=-⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.10.A【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第124次跳动至点的坐标是(63,62).故选:A.【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.11.【分析】由于所求无理数大于1且小于2,两数平方得大于2小于4,所以可选其中的任意一个数开平方即可.【详解】π-等,大于1且小于2 2(答案不唯一).考点:1.开放型;2.估算无理数的大小.12.=±6【分析】根据平方根的定义即可得到答案.【详解】解:“36的平方根是正负6”用数学式子表示为:6±故答案为:6±.【点睛】本题主要考查了平方根的定义,解决本题的关键是熟记平方根的定义.13.263x-【分析】将x看做已知数求出y即可.【详解】解:2x﹣3y=6,得到y=263x-.故答案为:26 3 x-【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.55︒【分析】延长ED与BC相交于点F,根据两直线平行,内错角相等可得∠BFD=∠ABC,再根据邻补角的定义分别求出∠CDF和∠CFD,然后根据三角形的内角和定理列式计算即可得解.【详解】解:如图,延长ED与BC相交于点F,∵AB∥DE,∴∠BFD=∠ABC=75°,∴∠CFD=180°﹣75°=105°,∴∠CDF=180°﹣∠CDE=180°﹣160°=20°,在△CDF中,∠BCD=180°﹣∠CDF﹣∠CFD=180°﹣20°﹣105°=55°.故答案为:55°.【点睛】本题考查了平行线的性质,邻补角的定义,是基础题,熟记性质并准确识图是解题的关键.15.(4,3)或(-2,3)或(2,-3).【分析】根据题意画出平面直角坐标系,然后描出(0,0)、(3,0)、(1,3)的位置,再找第四个顶点坐标.【详解】解:如图所示,∴第4个顶点的坐标为(4,3)或(-2,3)或(2,-3).故答案为:(4,3)或(-2,3)或(2,-3).【点睛】此题主要考查了平行四边形的性质及坐标与图形的性质,解题关键是要分情况讨论,难易程度适中.16.70【分析】利用垂直定义可得∠COE=90°,进而可得∠COB的度数,再利用对顶角相等可得∠AOD,再利用角平分线定义可得答案.【详解】解:∵EO⊥CD于点O,∵∠BOE =50°,∴∠COB =90°+50°=140°,∴∠AOD =140°,∵OF 平分∠AOD ,∴∠FOD =12∠AOD =70°,【点睛】此题主要考查了垂直的性质和角平分线的性质,关键是理清图中角之间的和差关系.17.(1)见解析;(2)60PQC ∠=︒,见解析;(3)PR 小于PC ,见解析【分析】(1)①根据同位角相等两直线平行作点P 作PQ ∥CD ;②再利用直角三角板,一条直角边与CD 重合,沿CD 平移,是另一直角边过P ,再画垂线即可;(2)根据两直线平行内角互补可得答案.(3)根据垂线段最短可比较PC 和PR 的大小.【详解】(1)如图所示.(2)60PQC ∠=︒.理由如下:∵CD ∥PQ ,∴∠DCQ +∠PQC =180°,∵∠DCB =120°,∴∠PQC =60°.(3)PR 小于PC ,理由:垂线段最短.【点睛】此题主要考查了复杂作图,平行线的性质和判定以及垂线线段最短等知识,关键是掌握同位角相等两直线平行,据两直线平行内角互补.18.(1)01x y =⎧⎨=-⎩;(2)18{412x y =-=-【详解】试题分析:(1)把第二个方程代入第一个方程,利用代入消元法其解即可;(2)方程组整理后,利用加减消元法求出解即可.试题解析:(1)1322x y x y =+⎧⎨-=⎩①②;把①代入②得,3(y+1)-2y=2,解得y=−1,把y=−1代入①得,x=−1+1=0,所以,原方程组的解是01x y =⎧⎨=-⎩;(2)方程组整理得:56333428x y x y -=⎧⎨-=⎩①②,①×2−②×3得:x=−18,把x=−18代入②得:y=1236-,则方程组的解为181236x y =-⎧⎪⎨=-⎪⎩.19.(1)4x =,36a =;(2)5.【分析】(1)根据平方根的性质列出算式22630x x -+-=,解方程后求出x 的值,再代入22x -即可求出a 的值;(2)求出173a +的值,根据立方根的概念求出答案.【详解】解:(1)∵一个正数a 的两个不相同的平方根是22x -和63x -,∴22630x x -+-=.∴4x =.∴222426x -=⨯-=.∴36a =.(2)∵36a =,∴173********a +=+⨯=.∵125的立方根为5,∴173a +的立方根为5.【点睛】本题考查了平方根和立方根的概念,熟练掌握平方根的性质和立方根的概念是解题的关键.20.(1)两位数;(2)9;(3)3;(4)27,48【分析】(1)根据59319大于1000而小于1000000,即可确定59319的立方根是2位数;(2)根据一个数的立方的个位数就是这个数的个位数的立方的个位数,据此即可确定;(3)根据数的立方的计算方法即可确定;(4)根据(1)(2)(3)即可得到答案.【详解】解:(1)∵1000<59319<1000000,∴10100,(2)只有个位数是9的立方数的个位数依然是9,9;(3)∵27<59<64,∴34,3.(4)经过分析可得,19683的立方根是两位数,19683的立方根的个位数字是7,十位数字是2,故19683的立方根是27;同理可得,110592的立方根是48.【点睛】本题主要考查了立方根以及数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键.21.(1)画图见解析,()8,3;(2)见解析;(3)4个;()3,1,()4,3,()5,5,()6,7【分析】(1)根据点A 、点B 的坐标解答;(2)找出点A 、点B 、点C 的对应点,然后用线段连接;(3)根据两平行线间的距离相等求解.【详解】(1)建直角坐标系如图,C 点坐标()8,3.(2)如图所示,A B C ''' 即为所求;(3)如图所示,有4个,坐标分别为()3,1,()4,3,()5,5,()6,7.【点睛】本题考查作图-平移变换,平面直角坐标系,坐标与图形的性质,三角形的面积,以及两平行线间的距离等知识,解题的关键是理解题意,灵活运用所学知识解决问题.22.两直线平行,内错角相等;90;QEF ∠;内错角相等,两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行【分析】根据平行线的性质得到∠APE =∠PEF ,根据余角的性质得到∠EQC =∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE =∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ =90°(垂直的定义)即∠QEF +∠PEF =90°∴90QEF APE ∠+∠=︒.∵90EQC APE ∠+∠=︒,∴∠EQC =∠QEF∴EF ∥CD (内错角相等,两直线平行)又∵//AB EF ,∴AB ∥CD (如果两条直线都与第三条直线平行,那么这两条直线也互相平行),【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.23.(1)()30A -,,()3,3B ;(2)30,2⎛⎫ ⎪⎝⎭;(3)存在,()0,5或()0,2-或()10,0-或()4,0【分析】(1)根据()260a b a b ++-+=结合平方和绝对值的非负性即可计算得到答案;(2)连接OB ,设F 的坐标为(0,t )根据AOF 的面积BOF +△的面积AOB =△的面积进行计算求解即可;(3)先根据前面的已知条件求出ABC 的面积,再根据ABP △的面积APF =△的面积BPF +△的面积进行计算求解即可.【详解】(1)∵()260a b a b ++-+=,()20a b +≥,06a b -+≥∴060a b a b +=⎧⎨-+=⎩∴解得33a b =-⎧⎨=⎩.∴A 的坐标为(-3,0),B 的坐标为(3,3)(2)连接OB ,设F 的坐标为(0,t )∵AOF BOF AOBS S += S ∴1113333222t t ⋅⋅+⋅⋅=⋅⋅.解得32t =.∴点F 的坐标为(0,32).(3)存在.ABC 的面积1217322=⨯⨯=.当P 点在y 轴上时,设P 点的坐标为(0,y ),∵ABP APF BPFS S S =+△△△∴1313213322222y y ⋅-⋅+⋅-⋅=.解得5y =或2y =-.∴此时点P 的坐标为(0,5)或(0,-2)当P 点在x 轴上时,设P 点坐标为(x ,0),则1213322x ⋅+⋅=.解得10x =-或4x =.∴此时点P 的坐标为(-10,0)或(4,0).综上所述,满足条件的点P 的坐标为(0,5)或(0,-2)或(-10,0)或(4,0).【点睛】本题主要考查了坐标系与几何相结合的综合应用,解题的关键在于能够找到几个三角形面积之间的关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二.非选择题55分 16. 隋朝时,并没有像今天这样的现代化开凿工具,可是古人怎 么就能在较短的时间内,开通全长2000多千米的大运河呢?原来, 我们祖先充分利用了他们的聪明才智,大运河的绝大多数河段都是 在已有的天然河道和古运河的基础上,有计划加以疏浚、改建和扩 张的,新开凿的河段只是其中的一部分。 (1)请写出运河两端城市的现今名称:(2分) A.涿郡指今 B.余杭指今 (2)请写出运河四段的名称:(4分) C. D. E. F. (3)除大运河外,请写出2个古代著名工程(2分)。 (4)从材料二大运河开凿情况的描述中,谈谈你的体会(2分) 。大运河的开通有何作用(2分)? (5)大运河申报世界遗产,百姓关注,国家重视。申报世界重 要遗产的重要条件之一是遗产本身必须具有极高的历史价值,请从 历史角度说出大运河申报世界遗产的理由(4分)。
18.材料一: “贞观十五年,太宗以文成公主妻之,会礼部尚书、江夏郡王( 李)道宗珠婚。持节送公主入蕃。弄赞率其兵次柏海,亲迎于河源 。” ——《旧唐书》 材料二: 元朝,中央设“中书省”,作为全国最高的行政机构;地方设“ 行中书省”,派遣官吏,征收赋税,进行有效地统治,西藏等边陲 地区都处在中央政府管辖之下 ——北师大版《历史》七年级下册 材料三: 2008年3月中旬,拉萨极少数人进行打、砸、抢、烧破坏活动, 扰乱社会秩序,危害人民群众生命财产安全。有足够证据证明这是 达赖集团有组织、有预谋、精心策划的,已引起西藏各族群众的强 烈愤慨和严厉谴责。 (1)材料一发生了什么历史事件?(1分)产生了什么影响?( 2分) (2)据上述材料和所学知识回答,你如何看待达赖集团的这种 分裂行为?(1)你认为西藏地区今后继续繁荣进步的保证是什么
22.台湾自古就是中国领土不可分割的一部分。请你填写以下时期 发生的历史事件,证明上述论断: 三国时期: 隋朝: 元朝:
三国孙权派卫温率万人船队到夷洲。 隋朝隋炀帝三次派人去流求 元朝元政府设有澎湖巡检司,管理澎湖和琉球
2014----2015学年期中检测试题
一、单项选择题:(本大题15小题,每个3分,共45分) 1、隋唐时期,青年李进赶赴洛阳参加科举考试,并且参加了殿试, 这可能发生在什么时期。 ( ) A、隋文帝 B、隋炀帝 C、唐太宗 D、武则天 2、回纥是今天的什么民族的祖先。 ( ) A、维吾尔民族 B、藏族 C、蒙古族 D、满载 3、“朝为田舍朗,暮登天子堂;满朝朱紫贵,尽为读书人。”该 诗反映的现象与那种制度的推行有关? ( ) A、分封制 B、科举制 C、郡县制 D、宗法制 4、1038年,建立政权,定都兴庆(今银川)的党项民族首领是。 ( ) A、耶律阿保机 B、耶律德光 C、元昊 D、完颜阿骨打 5、毛泽东在《沁园春.雪》中写到,“一代天骄,成吉思汗只识 弯弓射大雕。”“一代天骄指的是 ( ) A、成吉思汗打了许多胜仗 B、成吉思汗灭了南宋 C、成吉思汗统一了蒙古各部,建立了强大的蒙古汗国 D、成吉思汗统一中国,建立了元朝
(1)开始:唐朝中后期。完成:南宋.。原因:北方长 期处于战乱,经济发展受到严重影响。中原军民英勇抗击 契丹、女真等少数民族南侵,南方地区长期处于相对稳定 的环境。 (2)交子、四川、为商业的发展提供了便利条件。 (3)防伪:同色纸印造,隐秘题号,朱墨间错。 措施:加大法律宣传的力度,提高人们的警惕性,完 善相应的法律等。
(1).A 北京 B杭州 (2) C 永济渠 D 通济渠 E 邗沟 F 江南河 (3)长城、金字塔 (4)体会:中国古代劳动人民的智慧和创造力(言之有 理即可)。 作用:大运河的开通,对加强我国南北经济、文化交 流和巩固国家统一都起了巨大作用。 (5)大运河是古代世界最长的运河,它的开凿,促进了 我国南北的交流,影响深远。大运河是人类利用自然、造 福人类的杰作,是人类共同的财富。
加强中央集权:三省六部增加宰相精简机构(6分)统一思想文化:完善科举大兴教育(4分)贞观之治开皇之治开元盛世相精简机构(2分)统 一思想文化:完善科举大兴教育(2分)贞观之治开皇之治 开元盛世(1分)( 2)北宋皇帝。(1分)(3)不是,是他的孙子忽必烈(1 分)
21.某同学在阅读《沁园春· 雪》的下半阙有“江山如此多娇,引无 数英雄竞折腰。惜秦皇汉武,略输文采;唐宗宋祖,稍逊风骚。一 代天骄,成吉思汗,只识弯弓射大雕。俱往矣,数风流人物,还看 今朝”的词句,有些疑问,你能帮他解释一下吗? (1)唐太宗在位时期加强中央集权和统一思想文化,出现了政治 清明,经济发展,文化繁荣,国家稳固的政治局面。你能列举出唐 太宗在加强中央集权和统一思想文化方面的具体措施吗?你知道后 人称他的统治叫什么吗?隋唐时期还有哪些盛世?(5分) (2)词中的“宋祖”是南宋还是北宋的皇帝,你知道了吗?(1分 (3)是“一代天骄”成吉思汗建立元朝吗?”(1分)
12.唐朝中后期,扬州成为全国最繁华的工商业城市之一,其主要原因有 ( ) A ①地处大运河和长江交汇点,南北交通便利 ②中外客商云集,是对外贸易 的重要商埠 ③受益于经济重心的南移,各业繁盛 ④政治、经济地位超过长安、洛 阳 A.①②③ B.①③④ C.①②④ D.②③④ 13.现今,国家公务员招考一般采用笔试和面试相结合的方式。下列皇帝中 亲自出题面试,首开殿试之举的是( ) C A.隋文帝 B. 唐太宗 C. 武则天 D.唐玄宗 14.唐《陇西行》写道:“自从贵主和亲后,一半胡风似汉家。”这里的“胡” 是指( ) A.西夏 C.金 D.吐蕃 D B.辽 15.七年级一班小奇同学进行研究性学习,他搜集了“贞观之治”、“开元 盛世”、“玄奘西游”、“鉴真东渡”的相关资料,由此推断他研究的课 题是( ) D A.政权分立与民族融合 B.中华文明的起源 C.统一国家的建立 D.繁 荣与开放的社会
(1)科举制 隋朝 皇帝(3分) (2)唐太宗、武则天、唐玄宗(3 分) (3)改善了用人制度;促进了教 育事业的发展;促进了文学艺术的 发展
20.材料一: 朝代 南方 北方 人口(户)占全国人口数比例人口(户)占全国人口数比例 唐代3 920 41543.2%5 148 52956.8% 北宋11 224 76062.9%6 624 29637.1% 材料二 “苏湖熟,天下足。” (1)材料一反映了我国从唐代到北宋期间,南北方人口数量发生了 怎样的变化?(1分) (2)材料一和材料二反映了我国古代经济重心发生了什么变化? 变化的原因有哪 些?(4分) (1)从唐代到北宋,南方的人口逐渐超过北方(1分) (2)经济重心南移 (1分) 原因:南方自然条件优越;南 方社会安定;北方人南迁带去了劳动力和先进的生产技术 (3分)
6“人以铜为镜,可以正衣冠,以人为镜可知得失”中的第 二个“人”指的是( ) A.魏征 B.房玄龄A C.杜如晦 D.姚崇 7.科举制度是在_________逐渐完善的( B) A.隋朝 B.唐朝 C.宋朝 D.元朝
8.唐太宗时最著名的谏臣是 ( ) A、房玄龄 B、魏征 C、张玄素B D、杜如晦 9.“开元盛世”是指谁统治时期的局面 (C ) A、唐太宗 B、武则天 C、唐玄宗 D、李渊 10.瓦子在宋代城市的盛行,主要原因 ( ) B A、士大夫的提倡 B、市民阶层不断壮大 C、农民的需要 D、达官贵人的需要 11.我国省级行政区的设立,始于( ) C A.隋朝 B.宋朝 C.元朝 D.清朝
、(1)唐太宗把文成公主嫁给松赞干布。对加强汉藏两 族的联系,发展藏族经济做出和很大的贡献。 。(2)认识:是一种分裂国家的恐怖行径,必定不得人 心,是注定要失败的。 保证:只有在中国共产党领导下,只有在社会主义祖 国大家庭里,通过民族区域自治政策,行使民族自治权, 抓住机遇,大力发展本地经济。(2分)
19. 材料一 “太宗皇帝真长策,赚得英雄尽白头。” 材料二 “天下英雄,入吾彀中矣。”(入彀:被收罗笼络的意思 。) ――唐太宗 材料三 缙绅虽位极人臣,不由进士者,终不为美。 ――《唐摭言》 材料一中的“长策”指的是什么制度?这种制度创立于什么朝代? 这种制度 的最大获益者是谁?(3分) (2)对这种制度起着发展和完善作用的关键人物有哪些 ?(3分 ) (3)这种制度有什么影响?(3分)
17.材料一: 宋代的社会经济、文化、科学技术得到了高度发展,使 得我国古代的经济重心完成了从黄河流域向长江流域的转 移。 材料二: 这些货币用同色织印造,印文用屋木人物,铺户押字, 各自隐秘题号,朱墨间错,以为私记。 (1)我国古代经济重心何时开始南移,何时完成(2分 )?经济重心出现南移的主要原因是什么(3分)? (2)材料二中这些货币当时的名称是什么(1分)?最 早出现在我国什么地区(1分)?这些货币的出现有何重 要意义(1分)? (3)从材料二中你知道早期的货币是如何防伪的吗? 今天伪币盛行,你有什么好的措施来防止伪钞吗?(4分 )
相关文档
最新文档