人教版七年级数学下册期中考试试题(含答案)

合集下载

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试题(含答案)

人教版七年级下册数学期中考试试卷一、单选题1.下列各式中正确的是A2=±B 3=-C2=D =2.下列说法正确的是A .3是分数B .227是无理数C .π-3.14是有理数D .3是有理数3.如图,象棋盘上,若“将”位于点(3,﹣2),“车”位于点(﹣1,﹣2),则“马”位于A .(1,3)B .(5,3)C .(6,1)D .(8,2)4.如图,直线12l l //,直角三角板的直角顶点C 在直线1l 上,一锐角顶点B 在直线2l 上,若0135∠=,则2∠的度数是A .65B .55C .45D .355.如图,△ABC 沿BC 方向平移得到△DEF ,已知BC=7,EC=4,那么平移的距离为A .2B .3C .5D .76.下列说法正确的个数有()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④不重合的三条直线a、b、c,若//a b,//b c,则//a c.A.1个B.2个C.3个D.4个7.点P为直线l外一点,点A,B在直线l上,若5cmPA=,7cmPB=,则点P到直线l的距离()A.等于5cm B.小于5cm C.不大于5cm D.等于6cm 8.如图,下列条件中,不能判定//AB CD的是()A.180∠+∠=︒B.BAC ACDD BAD∠=∠C.CAD ACB∠=∠∠=∠D.B DCE9.如图,这是小明学校周边环境的示意图,以学校为参照点,儿童公园,图书市场分别距离学校500m、700m,若以(南偏西30°,500)来表示儿童公园的位置,则图书市场的位置应表示为()A.(700,南偏东45︒)B.(南偏东45︒,700)C.(700,北偏东45︒)D.(北偏东45︒,700)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点1A,第二次移动到点2A……,第n次移动到点n A,A的坐标是()则点2021A .()1010,0B .()1010,1C .()1011,0D .()1011,1二、填空题11325-3-.(填“>”“<”或“=”)12.根据如表回答下列问题:x 23.123.223.323.423.523.623.723.823.92x 533.61538.24542.89547.56552.25556.96561.69566.44571.21满足23.623.7n <<的整数n 有________个.13.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为_____.14.如图,四边形ABCD 各个顶点的坐标分别为()2,8-、()11,6-、()14,0-、()0,0,则四边形ABCD 的面积是_______.15.如图所示,//AB CD ,EC CD ⊥.若28BEC ∠=︒,则ABE ∠的度数为_______.三、解答题16.(12-(2)求下列式子中x 的值:()229x -=17.根据要求,画图并回答问题:(1)如图,点P 在AOC ∠的边OA 上.①过点P 画OA 的垂线交OC 于B ;②过点P 作直线//PM OC ;(2)表示点О到直线PB 的距离的线段是__________;(3)直接写出所作图中与O ∠互余的角(可以表示出来的角).18.在平面直角坐标系xOy 中,点A 的坐标为()0,4,线段MN 的位置如图所示,其中点M 的坐标为()3,1--,点N 的坐标为()3,2-.(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .点M 平移到点A 的过程可以是:先向__________平移______个单位长度,再向__________平移__________个单位长度;②点B 的坐标为___________.(2)在(1)的条件下,若点C 的坐标为()4,1,连接AC ,BC ,求ABC ∆的面积.19.如图,已知∠1=∠2,∠3=∠4,∠5=∠A ,试说明:BE ∥CF .完善下面的解答过程,并填写理由或数学式:解:∵∠3=∠4(已知)∴AE ∥()∴∠EDC=∠5()∵∠5=∠A (已知)∴∠EDC=()∴DC ∥AB ()∴∠5+∠ABC=180°()即∠5+∠2+∠3=180°∵∠1=∠2(已知)∴∠5+∠1+∠3=180°()即∠BCF+∠3=180°∴BE ∥CF ().20.如图,直线AB 、CD 相交于O 点,∠AOC 与∠AOD 的度数比为4:5,OE ⊥AB ,OF 平分∠DOB ,求∠EOF 的度数.21.(1)计算下列各式的值:=____________________;;通过计算上面各式的值,你发现:对于任意有理数a=__________.(2)利用所得结论解决问题:若有理数a、b在数轴上对应的点的位置如图所示,化简:a b-.22.如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.将一副三角板中的两个直角顶点C叠放在一起(如图1),其中30∠=︒,A∠=︒,4560B∠=∠=︒.D E(1)若112∠的度数;BCD∠=︒,求ACE(2)试猜想BCD∠的数量关系,请说明理由;∠与ACE(3)若三角板ABC保持不动,绕顶点C转动三角板DCE,在转动过程中,试探究BCD∠等于多少度时,//CD AB?请你直接写出答案.参考答案1.D 2.D 3.C 4.B 5.B 6.A 7.C 8.C 9.D 10.B 11.>【详解】解:因为-25>-27,3-,故答案为:>.12.5【详解】解:∵23.62=556.96,23.72=561.69,∴556.96561.69n <<∴满足23.623.7<<的整数n 有5个,故答案为:5.13.()5,4-【详解】解:∵点M 在第四象限,∴点M 的横坐标为正,纵坐标为负,∵点M 到x 轴的距离为4,到y 轴的距离为5,∴点M 的坐标为()5,4-,故答案为:()5,4-.14.80【详解】解:(1)如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,则四边形ABCD 的面积=12×(14-11)×6+12×(6+8)×(11-2)+12×2×8,=9+63+8,=80;故答案为:80.15.118︒【详解】解:过点E 作EG ∥AB ,则EG ∥CD ,由平行线的性质可得∠GEC =90°,所以∠GEB =90°-28°=62°,因为EG ∥AB ,所以∠ABE =180°-62°=118°.故答案为:118°.16.(1)63(2)1x =-或5【详解】解:(1()238127232---93232=--+63=-;(2)∵()229x -=,∴23x -=±,∴1x =-或5.【详解】解:(1)如图所示,(2)∵OP ⊥PB∴线段OP 的长为点O 到直线PB 的距离故答案为:OP .(3)∵OP ⊥PB ∴∠OPB =90゜∴∠O +∠PBO =90゜即与O ∠互余的角为PBO ∠∵PM ∥OC ∴∠BPM =∠PBO∴∠O +∠BPM =90゜即与O ∠互余的角为BPM∠∴与O ∠互余的角为PBO ∠,BPM ∠.18.(1)①右,3,上,5(或上,5,右,3均可以);②()6,3;(2)7【分析】(1)①由点M 及其对应点的A 的坐标可得平移的方向和距离,即可;②根据①可得点N 的对应点B 的坐标;(2)割补法求解可得.【详解】解:(1)①∵点A 的坐标为()0,4,点M 的坐标为()3,1--,∴点M 移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;也可以是:先向上平移5个单位长度,再向右平移3个单位长度;②由①得:将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3),∴点B 的坐标为(6,3);(2)如图,过点C 作CF y ⊥于点F ,过点B 作BE CF ⊥交FC 延长线于点E ,过点A 作AD y ⊥轴交EB 的延长线于点D ,则四边形AFED 是矩形,∴3AF =,4CF =,2CE =,2BE =,1BD =,6AD =,∴矩形AFED ABC Rt AFC Rt BCE Rt ABDS S S S S =--- 111634322617222=⨯-⨯⨯-⨯⨯-⨯⨯=.19.答案见解析.【详解】试题分析:根据平行线的判定与性质,灵活判断同位角、内错角、同旁内角,逐步可求解.试题解析:解:∵3=4∠∠(已知)∴AE ∥BC (内错角相等,两直线平行)∴5EDC ∠=∠(两直线平行,内错角相等)∵5=A ∠∠(已知)∴EDC ∠=A ∠(等量代换)∴DC ∥AB (同位角相等,两直线平行)∴05180ABC ∠+∠=(两直线平行,同旁内角互补)即0523180∠+∠+∠=∵1=2∠∠(已知)∴0513180∠+∠+∠=(等量代换)即03180BCF ∠+∠=∴BE ∥CF (同旁内角互补,两直线平行).20.50°.【详解】解:设∠AOC =4x ,则∠AOD =5x ,∵∠AOC +∠AOD =180°,∴4x +5x =180°,解得x =20°,∴∠AOC =4x =80°,∴∠BOD =∠AOC =80°,∵OE ⊥AB ,∴∠BOE =90°,∴∠DOE =∠BOE ﹣∠BOD =10°,又∵OF 平分∠DOB ,∴∠DOF =12∠BOD =40°,∴∠EOF =∠EOD +∠DOF =10°+40°=50°.21.(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩;(2)a b-+【详解】(1)4;13;0;3;5;1;a 或()()00a a a a ⎧≥⎪⎨-<⎪⎩(2)解:由数轴知:21a -<<-,01b <<,∴0a b +<,0a b -<,a b -()()a b a b a b =-++--a b =-+.22.(1)见解析;(2)见解析.【详解】(1)证明:∵AB ∥CD ,∴∠ABC+∠BCD =180°,∵∠ABC =140°,∴∠BCD =40°,∵∠CDF =40°,∴∠BCD =∠CDF ,∴BC ∥EF .(2)解:结论:BD 平分∠ABC .理由:∵AE ∥BD ,∴∠BAE+∠ABD =180°,∵∠BAE =110°,∴∠ABD =70°,∵∠ABC =140°,∴∠ABD =∠DBC =70°,∴BD 平分∠ABC .23.(1)68°;(2)180BCD ACE ∠+∠=︒,理由见解析;(3)当120BCD ∠=︒或60︒时,//CD AB .【详解】解:(1)∵90BCA ECD ∠=∠=︒,112BCD ∠=︒∴1129022DCA BCD BCA ∠=∠-∠=︒-︒=︒.∴902268ACE ECD DCA ∠=∠-∠=-︒=︒.(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒.(3)当120BCD ∠=︒或60︒时,//CD AB .如图2,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,//CD AB ,此时180BCD ∠=︒-18060120B ∠=︒-︒=︒;如图3,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,//CD AB .。

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。

人教版七年级下册数学《期中考试题》(含答案)

人教版七年级下册数学《期中考试题》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列各图中,∠1和∠2是对顶角的是( ) A. B. C. D.2.4的算术平方根是( )A. -2B. 2C. 2±D. 23.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是() A. B.C. D.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数个数有( )A. 2个B. 3个C. 4个D. 5个7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠58.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠E FC =180°二、填空题11.如图直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果∠EOD=38°,则∠COB=_______.12.一个小区大门的栏杆如图所示,BA 垂直地面AE 于,CD 平行于地面AE ,那么ABC BCD ∠+∠=_________.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.15.49的平方根是_______;-125的立方根是_______;81的值是_______. 16.已知 a , b 为两个连续整数,且a<15 <b ,则 a+b 的值为______.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.三、解答题19.计算:(1)(6+3)-3(2)37+2720.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、值;(2)求+a b 的算术平方根.23.如图,AD ⊥BC ,垂足为D ,点E 、F 分别在线段AB 、BC 上,EF ⊥BC ,∠CAD =∠DEF ,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.25.把一张长方形纸片ABCD沿EF折叠后ED与BC交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠() ∴∠3=∠∴AD∥BE()答案与解析一、选择题1.下列各图中,∠1和∠2是对顶角的是()A. B. C. D.[答案]D[解析][分析]根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.[详解]解:根据对顶角的定义可得,D是对顶角,故选D.[点睛]本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.2.4的算术平方根是( )± D. 2A. -2B. 2C. 2[答案]B[解析]试题分析:因224=,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.3.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,能用其中一部分平移得到的是( )A. B.C. D.[答案]D[解析][分析]根据图形平移与翻折变换的性质解答即可.[详解]解:由图可知,A 、B 、C 利用图形的翻折变换得到,D 利用图形的平移得到.故选:D .[点睛]此题考查的是翻折和平移的判断,掌握图形平移与翻折变换的性质是解决此题的关键.4.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段( )的长.A. BCB. BQC. APD. CP[答案]C[解析]分析]根据垂线段最短解答. [详解]解:依据垂线段最短,他的跳远成绩是线段起跳线AP 的长,故选:C .[点睛]本题考查了垂线段最短性质的运用,解答此题的关键是熟练掌握由点到直线的距离的定义. 5.已知1∠与2∠互为补角,1120∠=︒,则2∠的余角的度数为( )A. 30B. 40︒C. 60︒D. 120︒ [答案]A[解析][分析]根据互为邻补角的两个角的和等于180°求出∠2,再根据互为余角的两个角的和等于90°列式计算即可得解.[详解]∵∠1与∠2互为邻补角,∠1=120°,∴∠2=180°-∠1=180°-120°=60°,∴∠2的余角的度数为90°-60°=30°.故选:A .[点睛]此题考查邻补角和余角的定义,是基础题,熟记概念是解题的关键.6.在722,3.33,2π,122-,0.04445555⋯,0.9-1273127,无理数的个数有( ) A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]根据无理数的定义求解即可.[详解]解:2π,0.04445555⋯,0.9-共3个无理数 故选B.[点睛]此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,2,0.8080080008…(每两个8之间依次多1个0)等形式.7.如图,点E 在AD 的延长线上,下列条件中能判断BC ∥AD 的是( )A. ∠3=∠4B. ∠A +∠ADC =180°C. ∠1=∠2D. ∠A =∠5[答案]C[解析]A. ∵∠3=∠4 ,∴ AB ∥CD (内错角相等,两直线平行),故不正确;B. ∵∠A+∠ADC=180°,∴ AB ∥CD (同旁内角互补,两直线平行),故不正确;C. ∵∠1=∠2,∴ AB ∥CD (内错角相等,两直线平行),故正确;D. ∵∠A=∠5,∴ AB ∥CD (同位角相等,两直线平行),故不正确;故选C.8.平面直角坐标系内有一点P(-2020,-2020),则点P 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]C[解析][分析]根据平面直角坐标系内各象限内点的坐标符号特征判定即可.[详解]点P(-2020,-2020)在第三象限内,故选:C .[点睛]本题考查平面直角坐标系内象限及点的坐标符号,熟练掌握各象限内点的坐标符号特征是解答的关键.9.如图,三角板的直角顶点放在直线上,已知a b ∥,128∠=︒,则2∠的度数为( )A. 28︒B. 56︒C. 62︒D. 152︒[答案]C[解析][分析] 根据平行线的性质,可得:∠3=∠1=28°,结合∠4=90°,即可求解.[详解]∵三角板的直角顶点放在直线上,a b ∥,∴∠3=∠1=28°,∵∠4=90°,∴∠5=180°-90°-28°=62°,∴∠2=∠5=62°.故选C .[点睛]本题主要考查平行线的性质定理,掌握两直线平行,同位角相等,是解题的关键.10.如图,E,F 分别是AB,CD 上的点,G 是BC 的延长线上一点,且∠B=∠DCG=∠D ,则下列结论不一定成立的是( )A. ∠AEF=∠EFCB. ∠A=∠BCFC. ∠AEF=∠EBCD. ∠BEF+∠EFC=180° [答案]C[解析][分析]先根据平行线的判定得到AD∥BG,AB∥DC,再利用平行线的性质对各个选项进行判断即可. [详解]解:∵∠B=∠DCG=∠D,∴AB∥DC(同位角相等,两直线平行),AD∥BG(内错角相等,两直线平行),∴∠AEF=∠EFC(两直线平行,内错角相等),∠BEF+∠EFC=180°(两直线平行,同旁内角互补),∠A+∠B=180°,∠B+∠BCF=180°(两直线平行,同旁内角互补),∴∠A=∠BCF(等量代换),∵EF与BC不一定平行,∴无法证明∠AEF=∠EBC.故选C.[点睛]本题主要考查平行线的判定与性质,解此题的关键在于熟练掌握其知识点.二、填空题11.如图直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD=38°,则∠COB=_______.[答案]128°[解析][分析]根据垂直的定义得出∠AOE=90°,最后根据∠COB=∠AOD=∠AOE +∠EOD进行求解.[详解]∵OE⊥AB,∠EOD=38°,∴∠AOE=90°,∴∠COB=∠AOD=∠AOE +∠EOD=90°+38°=128°,故答案为:128°.[点睛]本题考查垂直的定义,对顶角的性质,熟练掌握对顶角相等是解题的关键.12.一个小区大门的栏杆如图所示,BA垂直地面AE于,CD平行于地面AE,那么∠+∠=_________.ABC BCD[答案]270[解析][分析]作CH⊥AE于H,如图,根据平行线的性质得∠ABC+∠BCH=180°,∠DCH+∠CHE=180°,则∠DCH=90°,于是可得到∠ABC+∠BCD=270°.[详解]解:作CH⊥AE于H,如图,∵AB⊥AE,CH⊥AE,∴AB∥CH,∴∠ABC+∠BCH=180°,∵CD∥AE,∴∠DCH+∠CHE=180°,而∠CHE=90°,∴∠DCH=90°,∴∠ABC+∠BCD=180°+90°=270°.故答案为270°.点睛]本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.13.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.14.某宾馆在重新装修后,准备在大厅的楼梯上铺上某种规格的红色地毯,其侧面如图,则至少需要购买地毯____米.[答案]8.4[解析][分析]根据题意,结合图形,先把楼梯的横竖向上向右平移,构成一个长方形,据此计算即可.[详解]解:如图,利用平移把楼梯的横竖向上向右平移,构成一个长、宽分别为5.8米、2.6米的长方形,∴地毯的长度为2.6+5.8=8.4(米).故答案为:8.4.[点睛]本题主要考查了平移的性质,掌握基本性质是解题的关键.15.49的平方根是_______;-125的立方根是_______81_______.[答案](1). 23(2). -5 (3). 9[解析][分析]根据平方根、立方根、算术平方根的定义,即可解答.[详解]49的平方根是23,-125的立方根是-5819,故答案为:23;-5;9.[点睛]本题考查了平方根、立方根、算术平方根,熟练掌握它们的定义及运算方法是解答的关键.16.已知 a , b 为两个连续整数,且<b ,则 a+b 的值为______.[答案]7[解析]<<,由此可确定a 和b 的值,进而可得出a+b 的值.本题解析: 根据a b, a 、b 为两个连续整数,又因为34,得a=3,b=4将a=3,b=4代入a+b,得a+b=7.故答案为7.点睛:此题考查的是如何根据无理数的范围确定两个有理数的值,,可以很容易得到其相邻两个整数,再结合已知条件即可确定a 、b 的值.17.平面直角坐标系内,点P(3,﹣4)到y 轴的距离是_____.[答案]3[解析]根据平面直角坐标系的特点,可知到y 轴的距离为横坐标的绝对值,因此可知P 点到y 轴的距离为3. 故答案为3.18.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______.[答案]±4[解析]试题分析:根据坐标与图形得到三角形OAB 的两边分别为|a|与5,然后根据三角形面积公式有:15102a ⋅⋅=, 解得a=4或a=-4,即a 的值为±4. 考点:1.三角形的面积;2.坐标与图形性质. 三、解答题19.计算:(1(2)[答案](1;(2)[解析][分析](1)先去括号,再根据二次根式的加减运算法则即可解答;(2)直接利用二次根式的加法法则合并即可解答.[详解](1)(6+3)-3=6+3-3=6;(2)37+27=(3+2)7=57.[点睛]本题考查了二次根式的加减法运算,熟练掌握二次根式的加减法运算法则是解答的关键.20.利用平方根(或立方根)的概念解下列方程:(1)9(x-3)2=64;(2)(2x-1)3=-8.[答案](1)x=173或x=13;(2)x=-12. [解析][分析](1)先化简,再根据平方根的概念进行计算(2)根据立方根的概念直接开立方,再计算求值. [详解]解:(1)(x-3)2=649,则x-3=±83. ∴x=±83+3,即x=173,或x=13. (2)2x-1=-2,∴x=-12. [点睛]此题重点考察学生对平方根,立方根的理解,掌握平方根,立方根的计算方法是解题的关键.21.如图,直线CD 与直线AB 相交于C ,根据下列语句画图、解答.(1)过点P 作PQ ∥CD ,交AB 于点Q ;(2)过点P 作PR ⊥CD ,垂足为R ;(3)若∠DCB=120°,猜想∠PQC 是多少度?并说明理由[答案](1)见解析;(2)见解析;(3)∠PQC=60°,理由见解析[解析]详解]解:如图所示:(1)画出如图直线PQ(2)画出如图直线PR(3)∠PQC=60°理由是:因为PQ ∥CD所以∠DCB+∠PQC=180°又因为∠DCB=120°所以∠PQC=180°-120°=60° 22.已知7a -和24a +是某正数的两个平方根,7b -的立方根是1.(1)求a b 、的值;(2)求+a b 算术平方根.[答案](1)a=1,b=8;(2)a+b 的算数平方根为3[解析][分析](1)根据平方根的性质一个正数有两个平方根,它们互为相反数列出算式,求出a 的值,再根据立方根的定义求出b 的值即可;(2)求出a+b 的值,根据算数平方根的概念求出答案即可.[详解]解:(1)∵7a -和24a +是某正数的两个平方根,∴7a -+24a + =0,∴a=1,∵7b -的立方根是1,∴71b -=∴b=8;(2)∵a=1,b=8;∴a+b=9,∴a+b 的算数平方根为3[点睛]本题考查了平方根和立方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.23.如图,AD⊥BC,垂足为D,点E、F分别在线段AB、BC上,EF⊥BC,∠CAD=∠DEF,(1)求证:EF∥AD;(2)判断ED与AC的位置关系,并证明你的猜想.[答案](1)见解析;(2)ED与AC平行,见解析[解析]分析](1)先由AD⊥BC,EF⊥BC证得∠ADB=∠EFB=90°,再根据平行线的判定即可证得结论;(2)由EF∥AD得∠DEF=∠EDA,进而证得∠EDA=∠CAD,即可得出结论.[详解](1)∵ AD⊥BC,EF⊥BC,∴∠ADB=∠EFB=90°,∴ EF∥AD(2)ED与AC平行,理由为:∵EF∥AD,∴∠DEF=∠EDA,∵∠CAD=∠DEF,∴∠EDA=∠CAD,∴ED∥AC.即ED与AC平行.[点睛]本题考查了平行线的判定与性质、垂直定义,掌握平行线的判定与性质并能熟练运用是解答的关键.24.如图是某校的平面示意图,已知图书馆、行政楼的坐标分别为(-3,2),(2,3).完成以下问题:(1)请根据题意在图上建立直角坐标系;(2)写出图上其他四个地点实验楼、校门口、综合楼、信息楼的坐标;(3)在图中用点P表示体育馆(-1,-3)的位置.[答案](1)见解析;(2)实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)见解析[解析][分析](1)根据图书馆、行政楼的坐标信息,建立合适的平面直角坐标系;(2)根据上题中建立的平面直角坐标系可以写出其他四个地点的坐标;(3)根据P点坐标可以直接在平面直角坐标系中表示出来.[详解](1)由图书馆、行政楼的坐标分别为(-3,2),(2,3)可找到O(0,0)点,从而建立平面直角坐标系,如下图;(2)根据(1)中的平面直角坐标系,可得其他四个地点的坐标.故实验楼(-4,0);校门口(1,0);综合楼(-5,-3);信息楼(1,-2);(3)根据平面直角坐标系,P(-1,-3)的位置如下图,[点睛]本题主要考查平面直角坐标系,根据题中所给的坐标信息确认O(0,0)的位置,从而建立平面直角坐标系是解答本题的关键.25.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=55°,求∠1和∠2的度数.[答案]∠1=70°,∠2=110°[解析][分析]由平行线的性质知∠DEF=∠EFG=55°,由折叠的性质知∠DEF=∠GEF=55°,则可求得∠2=∠GED=110°,进而可求得∠1的值.[详解]∵AD∥BC,∴∠DEF=∠EFG=55°.由对称性知∠GEF=∠DEF∠GEF=55°,∴∠GED=110°.∵AD∥BC,∴∠2=∠GED=110°.∴∠1=180°-110°=70°,[点睛]本题考查了翻折的性质及平行线的性质,平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.26.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(即∠=∠()∴∠3=∠∴AD∥BE()[答案]BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.[解析][详解]解:∵AB∥CD(已知),∴∠4=∠BAE(两直线平行,同位角相等);∵∠3=∠4(已知),∴∠3=∠BAE(等量代换);∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAE=∠DAC,∴∠3=∠DAC(等量代换),∴AD∥BE(内错角相等,两直线平行).。

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下册《期中检测试题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x32.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A. B. C. D.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角4.在圆周长C=2πR中,常量与变量分别是( )A. 2是常量,C、π、R是变量B. 2π是常量,C,R是变量C. C、2是常量,R是变量D. 2是常量,C、R是变量5.如图,能判定AB∥CD的条件是()A ∠1=∠3 B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A. 120°B. 125°C. 130°D. 135°8.在△ABC中,AB=AC,∠BAC=45°.若AD平分∠BAC交BC于D,BE⊥AC于E,且交A于O,连接OC.则下列说法中正确的是( )①AD⊥BC;②OC平分BE;③OE=CE;④△ACD≌△BCE;⑤△OCE的周长=AC的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤二.填空题9.用科学记数法表示:0.007398=_____.10.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD=___________° .11.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是_____.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________ .14.已知(9n)2=38,则n=_____.15.若多项式a2+2ka+1是一个完全平方式,则k的值是_____.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.17.如图,已知AB∥CD,则∠A、∠C、∠P关系为_____.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)220.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.21.已知()25a b +=,()23a b -=,求下列式子的值:(1)22a b +;(2)4ab .22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y (千米)与甲出发的时间x (分)之间的关系如图所示(1)甲速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A 后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?24.在△ABC 中,AB =AC ,点D 是射线CB 上一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).答案与解析一.选择题1.下列计算正确的是( )A. x2+x2=x4B. x2•x3=x5C. x6÷x2=x3D. (2x)3=6x3[答案]B[解析][分析]直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.[详解]A、x2+x2=2x2,故此选项错误;B、x2•x3=x5,正确;C、x6÷x2=x4,故此选项错误;D、(2x)3=8x3,故此选项错误;故选B.[点睛]此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2.下列每个网格中均有两个图形,其中一个图形可以由另一个进行轴对称变换得到的是()A B. C. D.[答案]B[解析][分析]根据轴对称的性质求解.[详解]观察选项可知,A中的两个图形可以通过平移,旋转得到,C中可以通过平移得到,D中可以通过放大或缩小得到,只有B可以通过对称得到.故选B.[点睛]本题考查了轴对称的性质,了解轴对称的性质及定义是解题的关键.3.如图,直线a、b被直线c所截,下列说法不正确的是( )A. ∠1与∠5是同位角B. ∠2与∠4是对顶角C. ∠3与∠6是同旁内角D. ∠5与∠6互为余角[答案]D[解析][分析] 根据同位角、对顶角、同旁内角以及余角的定义对各选项作出判断即可.[详解]解:A 、∠1与∠5是同位角,故本选项不符合题意;B 、∠2与∠4对顶角,故本选项不符合题意;C 、∠3与∠6是同旁内角,故本选项不符合题意.D 、∠5与∠6互为补角,故本选项符合题意.故选:D .[点睛]本题主要考查了同位角、对顶角、同旁内角的定义,解答此题的关键是确定三线八角,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.在圆的周长C =2πR 中,常量与变量分别是( )A. 2是常量,C 、π、R 是变量B. 2π是常量,C,R 是变量C. C 、2是常量,R 是变量D. 2是常量,C 、R 是变量[答案]B[解析][分析]根据变量常量的定义在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,可求解.[详解]在圆的周长公式中2R C π=中,C 与r 是改变的,π是不变的;所以变量是C ,R ,常量是2π.故答案选B[点睛]本题考查了变量与常量知识,属于基础题,正确理解变量与常量的概念是解题的关键.5.如图,能判定AB ∥CD 的条件是( )A. ∠1=∠3B. ∠2=∠4C. ∠DCE=∠DD. ∠B+∠BAD=180°[答案]B[解析][分析]在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.[详解]A. ∵∠1=∠3,∴AD∥BC,而不能判定AB∥CD,故A错误;B.∵∠2=∠4,∴AB∥CD,故B正确,C.∵∠DCE=∠D,∴AD∥BC,而不能判定AB∥CD,故C错误;D. ∵∠B+∠BAD=180°,∴AD∥BC,而不能判定AB∥CD,故D错误.故选:B[点睛]本题考查了平行线的判定方法,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.6.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是( )A. ∠A=∠DB. ∠ACB=∠DBCC. AB=DCD. AC=DB[答案]D[解析][分析]由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判定即可.[详解]解:由题意∠ABC=∠DCB,BC=CB∴A. ∠A=∠D,可用AAS定理判定△ABC≌△DCBB. ∠ACB=∠DBC,可用ASA定理判定△ABC≌△DCBC. AB=DC,可用SAS定理判定△ABC≌△DCBD. AC=DB,不一定能够判定两个三角形全等故选:D[点睛]本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.7.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于( )A. 120°B. 125°C. 130°D. 135°[答案]D[解析][分析] 根据全等三角形的判定定理可得出BCA BDE ∆≅∆,从而有3CAB ∠=∠,这样可得1390∠+∠=︒,根据图形可得出245∠=︒,这样即可求出123∠+∠+∠的度数.[详解]解:在ABC ∆与BDE ∆中AC DE C D CB DB =⎧⎪∠=∠⎨⎪=⎩, ()BCA BDE SAS ∴∆≅∆,3CAB ∴∠=∠,由图可知,1=90CAB ∠+∠︒,∴1390∠+∠=︒,由图可知,245∠=︒,1239045135∴∠+∠+∠=︒+︒=︒.故选:.[点睛]此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定BCA BDE ∆≅∆,这是解答本题关键.8.在△ABC 中,AB =AC ,∠BAC =45°.若AD 平分∠BAC 交BC 于D ,BE ⊥AC 于E ,且交A 于O ,连接OC .则下列说法中正确的是( )①AD ⊥BC ;②OC 平分BE ;③OE =CE ;④△ACD ≌△BCE ;⑤△OCE 的周长=AC 的长度A. ①②③B. ②④⑤C. ①③⑤D. ①③④⑤[答案]C[解析][分析]①正确,利用等腰三角形的三线合一即可证明;②错误,证明OB=OC>OE即可判断;③正确,证明∠ECO =∠OBA=45°即可;④错误,缺少全等的条件;⑤正确,只要证明BE=AE,OB=OC,EO=EC即可判断.[详解]解:∵AB=AC,AD平分∠BAC,∴AD⊥BC,BD=CD,即①正确,∴OB=OC,∵BE⊥AC,∵OC>OE,∴OB>OE,即②错误,∵∠ABC=∠ACB,∠OBC=∠OCB,BE⊥AC,∴∠ABE=∠ACO=45°,∴∠ECO=∠EOC=45°,∴OE=CE,即③正确,∵∠AEB=90°,∠ABE=45°,∴AE=EB,∴△OEC的周长=OC+OE+EC=OE+OB+EC=EB+EC=AE+EC=AC,即⑤正确,无法判断△ACD≌△BCE,故④错误,故选:C.[点睛]本题考查等腰三角形的性质,等腰直角三角形的判定和性质,线段垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二.填空题9.用科学记数法表示:0.007398=_____.[答案]3⨯7.39810-绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.007398=7.398×10﹣3.故答案为:37.39810-⨯.[点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD =___________°.[答案]70.[解析][分析]根据线段垂直平分线的性质得到DA=DC ,根据等腰三角形的性质得到∠DAC=∠C ,根据三角形内角和定理求出∠BAC 的度数,计算出结果.[详解]解:∵DE 是AC 的垂直平分线,∴DA=DC ,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故答案为70.[点睛]本题考查线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.11.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是_____.[答案]6cm 或7cm .当腰长=6cm时,底边=20﹣6﹣6=8cm,当底边=6cm时,腰长=2062﹣=7cm,根据三角形的三边关系,即可推出腰长.[详解]解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20﹣6﹣6=8cm,即6+6>8,能构成三角形,∴当底边=6cm时,腰长=2062﹣=7cm,即7+6>7,能构成三角形,∴腰长是6cm或7cm,故答案为6cm或7cm.[点睛]本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.12.如图,长方形是由若干个小长方形和小正方形组成,从面积的角度研究这个图形,可以得到一个数学等式,这个数学等式是_____.(用图中的字母表示出来)[答案](a+2b)(a+3b)=a2+5ab+6b2[解析][分析]根据图形求面积有直接求和间接求两种方法,列出等式即可.[详解]解:根据题意得:整个长方形的面积:S=(a+2b)(a+3b),同时,这个图形是由5个长是a宽是b的小长方形和6个边长是b的小正方形和一个边长是a的正方形组成的,所以面积S=a2+5ab+6b2.∴(a+2b)(a+3b)=a2+5ab+6b2.故答案为:(a+2b)(a+3b)=a2+5ab+6b2.[点睛]这道题主要考查整式的乘法的推导,难度较低,利用数形结合的方法是解题的关键.13.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在△ABC 外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么α,β,γ 三个角的数量关系是__________.[答案]γ=2α+β.[解析][分析]根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.[详解]由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为γ=2α+β.[点睛]此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.14.已知(9n)2=38,则n=_____.[答案]2[解析][分析]先把9n化为32n,再根据幂的乘方的运算法则,底数不变,指数相乘,即可得出4n=8,即可求得n的值.[详解](9n)2=(32n)2=34n=38,∴4n=8,解得n =2.[点睛]此题考查幂的乘方,解题关键在于掌握运算法则.15.若多项式a 2+2ka+1是一个完全平方式,则k 的值是_____.[答案]±1[解析]分析:完全平方式有两个:222a ab b ++和222a ab b -+,根据以上内容得出221ka a =±⋅,求出即可. 详解:∵221a ka ++ 是一个完全平方式,∴2ka =±2a ⋅1, 解得:k =±1, 故答案是:±1. 点睛:考查完全平方公式,熟记公式是解题的关键.16.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=50°,则∠2=_________.[答案]50°或130°;[解析][分析]根据平行线的性质:两直线平行,同位角相等即可解答此题.[详解]解:如图:当α=∠2时,∠2=∠1=50°,当β=∠2时,∠β=180°−50°=130°,故答案为:50°或130°;[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.17.如图,已知AB ∥CD ,则∠A 、∠C 、∠P 的关系为_____.[答案]∠A+∠C﹣∠P=180°[解析][详解]如图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APE,∴∠A+∠C-∠P=180°,故答案是:∠A+∠C-∠P=180°.18.如图,等边△ABC中,BD⊥AC于点D,AD=3.5cm,点P、Q分别为AB、AD上的两个定点且BP=AQ=2cm,若在BD上有一动点E使PE+QE最短,则PE+QE的最小值为_____cm[答案]5[解析][分析]过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,根据轴对称的相关性质以及两点之间线段最短可以得出此时PE+QE最小,并且等于Q,进一步利用全等三角形性质求解即可.[详解]如图,过BD作P的对称点,连接P,Q,Q与BD交于一点E,再连接PE,此时PE+QE最小.∵与P关于BD对称,∴PE=E,BP=B=2cm,∴PE+QE= Q,又∵等边△ABC中,BD⊥AC于点D,AD=3.5cm,∴AC=BC=AB=7cm,∵BP=AQ=2cm,∴QC=5cm,∵B=2cm,∴C=5cm,∴△Q C为等边三角形,∴Q=5cm.∴PE+QE=5cm.所以答案为5.[点睛]本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,熟练掌握相关概念是解题关键.三.解答题19.计算(1)(2m+n﹣2)(2m+n+2) (2)(2+a)(2﹣a)﹣a(5b﹣a)+3a4b2+(﹣a2b)2[答案](1)22++-;(2)2-5ab+4a4b2.m mn n444[解析][分析](1)根据平方差公式和完全平方公式计算即可;(2)根据整式乘法,加减运算法则进行计算即可.[详解]解:(1)(2m+n﹣2)(2m+n+2)()2m n+-=2422m mn n++-;=444(2)(2+a)(2﹣a)﹣a(5b﹣a)+ 3a4b2+(﹣a2b)2=2-a2-5ab+a2+3a4b2+ a4b2=2-5ab+4a4b2.[点睛]本题考查了整式的乘法运算和乘法公式,解题的关键是牢记平方差公式和完全平方公式,并严格按照整式乘法法则进行.20.(1)计算:(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 (2)先化简,再求值:[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x ,其中x =2,y =﹣1.[答案](1)53-;(2)2x y -,4. [解析][分析](1)根据负整数指数幂,0指数幂,积的乘方逆运算计算,再进行加减运算即可;(2)先根据完全平方公式和平方差公式展开合并,再根据多项式除以单项式计算,最后代入求值即可.[详解]解:(1)(﹣12)﹣1+(π﹣3.14)0+(﹣23)2019•(32)2018 20182018223=21332⎛⎫⎛⎫⎛⎫-++-⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()20182=113⎛⎫-+-⨯- ⎪⎝⎭ 2=13⎛⎫-+- ⎪⎝⎭ =53-; (2)[(x ﹣2y )2+(x ﹣2y )(2y +x )]÷2x =22224442x xy y x y x ⎡⎤-++-÷⎣⎦=2242x xy x ⎡⎤-÷⎣⎦=2x y -,当x =2,y =﹣1时,原式=()221-⨯-=4.[点睛]本题考查了负整数指数幂,0指数幂,积的乘方逆运算,整式的加减乘除混合运算及代入求值等知识,解题关键是牢记相关知识,严格按法则进行计算.21.已知()25a b +=,()23a b -=,求下列式子值:(1)22a b +;(2)4ab .[答案](1)4;(2)2;(1)直接利用完全平方公式将原式展开,进而求出22a b +的值;(2)直接利用(1)中所求,进而得出ab 的值,求出答案即可.[详解]解:(1)∵()25a b +=,()23a b -=,∴22+25a b ab +=,2232b a b a +-=,∴()2228a b +=,解得:224a b +=,(2)∵224a b +=,∴4+2ab=5,解得:ab=12, ∴4ab =14=22⨯; [点睛]本题主要考查了完全平方公式,掌握完全平方公式是解题的关键.22.已知:如图,AB ∥CD ,∠B =∠D .点EF 分别在AB 、CD 上.连接AC ,分别交DE 、BF 于G 、H .求证:∠1+∠2=180°证明:∵AB ∥CD ,∴∠B =_____._____又∵∠B =∠D ,∴_____=_____.(等量代换)∴_____∥_____._____∴∠l +∠2=180°._____[答案]见解析根据平行线的性质结合已知得到∠D=∠BFC,证明DE∥BF,利用平行线的性质得出结论.[详解]证明:∵AB∥CD,∴∠B=∠BFC.(两直线平行,内错角相等),又∵∠B=∠D,∴∠D=∠BFC.(等量代换)∴DE∥BF.(同位角相等,两直线平行),∴∠l+∠2=180°.(两直线平行,同旁内角互补).故答案为:∠BFC;两直线平行,内错角相等;∠D;∠BFC;DE;BF;同位角相等,两直线平行;两直线平行,同旁内角互补.[点睛]本题考查了平行线的判定和性质,熟练掌握平行线的性质和判定定理是解题的关键.23.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示(1)甲的速度为______千米/分,乙的速度为______千米/分(2)当乙到达终点A后,甲还需______分钟到达终点B(3)请通过计算回答:当甲、乙之间的距离为10千米时,甲出发了多少分钟?[答案](1)16,43;(2) 78;(3)283或60分钟[解析][分析](1)根据路程与时间的关系,可得甲乙的速度;(2)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案;(3)根据题意列方程即可解答.[详解]解:由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,甲的速度是1÷6=16千米/分钟,由纵坐标看出AB两地的距离是16千米, 设乙的速度是x千米/分钟,由题意,得10x+16×16=16,解得x=43,即乙的速度为43米/分钟.故答案为16;43;(2)甲、乙相遇时,乙所行驶的路程:4401033⨯=(千米)相遇后乙到达A站还需1416263⎛⎫⨯÷=⎪⎝⎭(分钟),相遇后甲到达B站还需411036⎛⎫⨯÷⎪⎝⎭=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为78;(3)110606÷=(分钟),设甲出发了x分钟后,甲、乙之间的距离为10千米时,根据题意得,16x+43(x-6)=16-10,解得x=283,答:甲出发了283或60分钟后,甲、乙之间的距离为10千米时.[点睛]本题考查了一次函数的应用,利用同路程与时间的关系得出甲乙的速度是解题关键.24.在△ABC中,AB=AC,点D是射线CB上的一个动点(不与点B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D 线段CB 上,且∠BAC =90°时,那么∠DCE =______度.(2)设∠BAC =α,∠DCE =β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).[答案](1)90°;(2)①α+β=180°;②α=β.[解析]试题分析:(1)利用等腰三角形证明ABD ≅ACE,所以∠ECA=∠DBA,所以∠DCE =90°.(2)方法类似(1)证明△ABD ≌△ACE ,所以∠B=∠ACE ,再利用角的关系求αβ180+=︒. (3)同理方法类似(1).试题解析:解:(1) 90 度.∠DAE =∠BAC ,所以∠BAD =∠EAC,AB=AC,AD=AE ,所以ABD ≅ACE,所以∠ECA=∠DBA,所以∠ECA =90°.(2)① αβ180+=︒.理由:∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE,又AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠B=∠ACE .∴∠B +∠ACB =∠ACE+∠ACB ,∴B ACB DCE β∠∠∠+==.∵αB ACB 180∠∠++=︒,∴αβ180+=︒.(3)补充图形如下, αβ=.。

人教版数学七年级下册《期中考试试卷》(含答案)

人教版数学七年级下册《期中考试试卷》(含答案)
A. (﹣1,﹣3)B. (3,1)C. (1,3)D. (﹣3,﹣1)
【答案】D
【解析】
分析】
直接利用已知点坐标建立平面直角坐标系,进而得出答案.
【详解】解:如图所示:邮局位置的点的坐标是(﹣3,﹣1).
故选:D.
【点睛】本题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.
8.如图,直线CE∥DF,∠CAB=125°,∠ABD=85°,则∠ECA+∠BDF=( )
(1)求点A、B、C、D的坐标;
(2)在x轴上是否存在点P,使三角形PBC的面积等于平行四边形ABDC的面积?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),点E在y轴的负半轴上,且∠BAE=∠DCB.求证:AE∥BC.
答案与解析
一.选择题(共8小题)
1.下列实数中,属于无理数的是( )
【解析】
【分析】
命题由题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.
【详解】命题可以改写为:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
【点睛】任何一个命题都可以写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.在改写过程中,不能简单地把题设部分、结论部分分别塞在“如果”、“那么”后面,要适当增减词语,保证句子通顺而不改变原意.
A.30°B.35°C.36°D.40°
【答案】A
【解析】
【分析】
首先由直线 ,根据两直线平行,同旁内角互补,求得 ,然后由 , ,利用三角形外角的性质,求得答案.
【详解】如图,∵CE∥DF,
∴∠CEA+∠F=180°,
∵∠CAB=125°,∠ABD=85°,

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

人教版数学七年级下册期中考试试题含答案

人教版数学七年级下册期中考试试题含答案

人教版数学七年级下册期中考试试卷一、选择题:(本大题共12个小题,每小题3分,共36分)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()2.已知是二元一次方程组的解,则a ﹣b 的值为()A .3B .2C .1D .﹣13.下列说法正确的是()A.相等的两个角是对顶角B .和等于180度的两个角互为邻补角C .若两直线相交,则它们互相垂直D .两条直线相交所形成的四个角都相等,则这两条直线互相垂直4.下列命题中,属于真命题的是()A .两个锐角的和是锐角B .在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥cC .同位角相等D .在同一平面内,如果a//b ,b//c ,则a//c 5.如图,已知b a //,直角三角板的直角顶点在直线a 上,若︒=∠301,则2∠等于:A.︒30B.︒40C.︒50D.︒606.如图,在数轴上表示实数7的可能是:A.点PB.点QC.点MD.点N7.若点P ),(y x 在第四象限,且3||,2||==y x ,则y x +等于:A.1- B.1 C.5 D.5-8.已知⎩⎨⎧-==11y x 是方程组⎩⎨⎧=-=+21by cx cy ax 的解,则b a ,间的关系是:A.3=+b a B.1-=-b a C.0=+b a D.3-=-b a 9.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么7条直线最多有:A.28个交点B.24个交点C.21个交点D.15个交点10.下列四个数:31,3,3----π,其中最大的数是()A.3-B.3-C π- D.31-11.如右图,线段AB 经过平移得到线段CD,其中A 、B 的对应点分别是C 、D,这四个点都在格点上,若线段AB 上有一点P ),(b a ,则点P 在CD 上的对应点P'的坐标为:A.)2,4(+-b a B.)2,4(--b a C )2,4(++b a D.)2,4(-+b a 12.张小花家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程为:A.⎩⎨⎧=++-=+95000%)101(%)151(50000y x y x B.⎩⎨⎧=--+=-95000%)101(%)151(50000y x y x C.⎩⎨⎧=+--=+95000%)101(%)151(50000y x y x D.⎩⎨⎧=+--=-95000%)101(%)151(50000y x y x 二、填空题:(本大题共6个小题,每小题3分,共18分)13.如图,要使BF AD //,则需要添加的条件是_____________(写一个即可).14.已知一个正数的两个平方根分别是62-m 和m +3,则2)(m -的值为____________.15.平面直角坐标系中,点A )7,5(-到x 轴的距离是__________.16.要把一张面值为10元的人民币换成零钱,如果现有足够的面值为2元、1元的人民币,那么有_____种换法.17.请将命题"等腰三角形的底角相等"改写为"如果……,那么……"的形式:____________________________________.18.如图,已知BE AD //,点C 是直线FG 上的动点,若在点C 的移动过程中,存在某时刻使得︒=∠︒=∠22,45DAC ACB ,则EBC ∠的度数为________.三、解答题:(本大题共7个小题,共46分)19.(本小题满分5分)计算:|21|27)4()3(322-+---+-20.(本小题满分5分)一个正方形鱼池的边长是xm ,当边长增加m 3后,这个鱼池的面积变为281m ,求x .21.(每小题4分,共计8分)按要求解下列方程组:(1)用代入法解方程组:⎩⎨⎧=-=+102322y x y x (2)用加减法解方程组:⎩⎨⎧=+=-8251153y x y x 22.(本小题满分5分)如图,已知CD AB //,C A ∠=∠.求证:BCAD //23.(本小题满分7分)甲乙两位同学在解方程组⎩⎨⎧=-=+1413y bx y ax 时,甲把字母a 看错了得到方程组的解为⎪⎩⎪⎨⎧-==472y x ;乙把字母b 看错了得到方程组的解为⎩⎨⎧-==12y x .求原方程组正确的解.24.(本小题满分8分)如图,︒=∠+∠180BCF ADE ,BE 平分ABC ∠,E ABC ∠=∠2.(1)AD 与BC 平行吗?请说明理由;(2)AB 与EF 的位置关系如何?为什么?(3)若AF 平分BAD ∠,试说明:︒=∠+∠90F E .(注:本题第(1)(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程)解:(1)BC AD //,理由如下:∵︒=∠+∠180BCF ADE (已知)︒=∠+∠180ADF ADE (平角的定义)∴=∠ADF __________(______________________)∴BC AD //(__________________________)(2)AB 与EF 的位置关系是:互相平行∵BE 平分ABC ∠(已知)∴ABE ABC ∠=∠2(角平分线定义)又∵E ABC ∠=∠2(已知)∴ABE E ∠=∠22(____________________)∴ABE E ∠=∠(____________________)∴______//_______(________________________)25.(本小题满分8分)如图平面直角坐标系内,已知点A 的坐标是)0,3(-.(1)点B 的坐标为_______,点C 的坐标为_____,=∠BAC ______;(2)求ABC ∆的面积;(3)点P 是y 轴负半轴上的一个动点,连接BP 交x 轴于点D,是否存在点P 使得ADP ∆与BDC ∆的面积相等?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案一.选择题题号123456789101112答案B D D D B C C A C D A B二.填空题13.︒=∠+∠180ABC A 或︒=∠+∠180DCB D 或EBF A ∠=∠或DCF D ∠=∠(任意写一个即可,不必写全)14.115.716.617.如果一个三角形是等腰三角形,那么它的两个底角相等18.︒︒6723或(第18题仅填一种情况并且正确的给2分,填了两种情况但其中有一种错误的不给分)三.解答题19.解:原式=12343-+++......................................3分=29+....................................................5分20.解:由题意得81)3(2=+x ...................................................................3分解得126-==x x 或(不合题意,舍去)..........................................4分答:该鱼池的边长x 等于m 6..........................................................5分21.解:(1)由①,得x y 22-=③..................................................1分将③代入②,得10)22(23=--x x 解这个方程,得2=x ...................................................2分将2=x 代入③,得2-=y ..........................................3分所以原方程组的解是⎩⎨⎧-==22y x ...................................................4分(2)①5⨯得,552515=-y x ③..........................................................5分②3⨯得,24615=+y x ④④-③,得3131-=y 1-=y .....................................................................6分将1-=y 代入①,得2=x ...........................................................7分所以原方程组的解是⎩⎨⎧-==12y x ....................................................8分22.证明:∵CDAB //∴︒=∠+∠180C B ....................................2分又∵C A ∠=∠................................................3分∴︒=∠+∠180A B ....................................4分∴BC AD //.................................................5分解:∵甲看错了字母a 但没有看错b∴将⎪⎩⎪⎨⎧-==472y x 代入14=-y bx 得,147(42=-⨯-b ................................2分∴3-=b ....................................................................................................3分同理可求得2=a ......................................................................................4分将3,2-==b a 代入原方程组,得⎩⎨⎧=--=+143132y x y x ......................................5分解得⎩⎨⎧=-=57y x ..............................................................................................6分∴原方程组正确的解是⎩⎨⎧=-=57y x .................................................................7分解:(1)∠BCF 同角的补角相等同位角相等,两直线平行...............................1.5分等量代换等式性质AB EF 内错角相等,两直线平行...........................4分(每空0.5分,八个空共计4分)证明:由(1)知BCAD //∴︒=∠+∠180ABC DAB ...............................................................5分∵BE 平分ABC ∠,AF 平分DAB∠∴DABBAF ABC ABE ∠=∠∠=∠21,21∴︒=︒⨯=∠+∠=∠+∠90180212121DAB ABC BAF ABE ......6分由(2)知EFAB //∴F BAF E ABE ∠=∠∠=∠,.........................................................7分∴︒=∠+∠180F E ...........................................................................8分解:(1))5,2()0,5(︒45....................................................3分(2)过点B 作x BE ⊥轴于E∵点A,B,C 的坐标分别为)0,5(),5,2(),0,3(-∴5,835==+=+=BE OC OA AC ........................................5分∴20582121=⨯⨯=⋅=∆BE AC S ABC .........................................6分(3)存在点P 使得ADP ∆与的BDC ∆的面积相等........................................7分此时点P 的坐标为)5,0(-.........................................................................8分。

人教版数学七年级下册《期中考试卷》(含答案)

人教版数学七年级下册《期中考试卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++= 2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = 3.若=8,=4,则2m n +=( )A. 12B. 4C. 32D. 24.用加减消元法解方程3210415x y x y -=⎧⎨-=⎩①②时,最简捷的方法是( ) A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1 B. 2 C. 3 D. 46.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3 B. 3- C. 6 D. 6-7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 8.计算(13)2019×32020 的结果为 ( ). A. 1 B. 3 C. 13 D. 20209.已知关于,方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( ) A. ,3 B. 2,3 C. ,3- D. 2,3-10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ 二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x +5y -3=0,用含x 的代数式表示y,则y=________.12.写出一个以13x y =-⎧⎨=⎩为解的二元一次方程______. 13.已知则3632x y y x -=⎧⎨-=⎩,则x y +的值为______. 14.已知4m a =,3n a =,则2m n a +=__________.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. 17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.18.某体育场环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-21.(1)已知a m =2,a n =3,求a m +n 值;(2)已知3x +1=81,求x.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.24.已知方程组51542ax y x by +=⎧⎨+=-⎩①②由于甲看错了方程①中a ,得到方程组的解为31x y =-⎧⎨=-⎩乙看错了方程②中的b ,得到方程组的解为52x y =⎧⎨=⎩试求出a ,b 的值.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?答案与解析一、选择题(本题共计10个小题,每题4分,共计40分)1.下列方程是二元一次方程的是( )A. 2x-y=3B. x+1=2C. 335y x +=D. x y z 6++=[答案]A[解析][分析]根据二元一次方程的定义对各选项进行逐一分析即可.[详解]解: A.符合二元一次方程的定义,故是二元一次方程,故本选项正确;B.含有一个未知数,是一元一次方程,故本选项错误;C.是分式方程,故本选项错误;D.是三元一次方程,故本选项错误.故选A .[点睛]本题考查了二元一次方程的定义,即含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2.下列运算正确的是( )A. 224a a a +=B. 3412a a a ⋅=C. 3412()a a =D. 22()ab ab = [答案]C[解析][分析]分别计算出各项的结果,再进行判断即可.[详解]A.2222a a a +=,故原选项错误;B. 322223x x y xy x y xy y ++---,故原选项错误;C. 3412()a a =,计算正确;D. 222()ab a b =,故原选项错误.故选C[点睛]本题主要考查了合并同类项,同底数幂的乘法,幂的乘方以及积的乘方,熟练掌握运算法则是解题的关键.3.若=8,=4,则2m n+=()A. 12B. 4C. 32D. 2[答案]C[解析][分析]根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,可得22•2m n m n,据此用8乘以4,求出2m n+的值是多少即可.[详解]解:2?228432m n m n,故选:C.[点睛]此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是判断出:22•2m n m n.4.用加减消元法解方程3210415x yx y-=⎧⎨-=⎩①②时,最简捷的方法是()A. ②×2+①,消去B. ②×2-①,消去C. ①×4-②×3,消去D. ①×4+②×3,消去[答案]B[解析][分析]把②×2-①,即可消去.[详解]把②×2-①,得5x=20,故选B.[点睛]本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.5.若12x y =-⎧⎨=⎩是关于x 、y 的方程2x ﹣y+2a =0的一个解,则常数a 为( ) A. 1B. 2C. 3D. 4[答案]B[解析][分析] 将12x y =-⎧⎨=⎩代入2x ﹣y+2a =0解方程即可求出a.[详解]将x=-1,y=2代入方程2x-y+2a=0得:-2-2+2a=0,解得:a=2.故选B .6.若关于x y 、的一元二次方程组5323x y x y p +=⎧⎨+=⎩的解满足1x y -=-,则的值为( ) A. 3B. 3-C. 6D. 6- [答案]C[解析][分析]先消元用表示出方程组的解,再代入已知条件,即可求得.[详解]因为5323x y x y p+=⎧⎨+=⎩, 故可得23325232p x p y -⎧=⎪⎪⎨-⎪=⎪⎩, 代入1x y -=-,则424p =解得6p .故选:C.[点睛]本题考查二元一次方程组的求解,属基础题.7.如果2n 3273⨯=,则n 的值为( )A. 6B. 1C. 5D. 8 [答案]C[解析]∵2n 3273⨯=,∴23n 333⨯=,∴5n 33=,∴n =5.故选C.8.计算(13)2019×32020 的结果为 ( ). A. 1B. 3C. 13D. 2020[答案]B[解析][分析]直接利用积的乘方运算法则将原式变形求出答案. [详解]解:20192020201911()3(3)333⨯=⨯⨯ =3.故选:B .[点睛]此题主要考查了积的乘方运算,正确利用积的乘方法则将原式变形是解题关键.9.已知关于,的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则,的值分别为( )A. ,3B. 2,3C. ,3-D. 2,3-[答案]B[解析][分析] 将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可.[详解]由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩, 将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到 4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B.[点睛]此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.10.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺,问木长多少尺,设木长为尺,绳子长为尺,则下列符合题意的方程组是( ) A. 4.5112y x y x =+⎧⎪⎨=+⎪⎩ B. 4.5112y x y x =+⎧⎪⎨=-⎪⎩ C. 4.5112y x y x =-⎧⎪⎨=+⎪⎩ D. 4.5112y x y x =-⎧⎪⎨=-⎪⎩ [答案]B[解析][分析] 根据题意可以列出相应的二元一次方程组,从而本题得以解决.[详解]用一根绳子去量一根长木,绳子还剩余4.5尺,则 4.5y x =+,将绳子对折再量长木,长木还剩余1尺,则11 2y x=-,∴4.5 112y xy x=+⎧⎪⎨=-⎪⎩,故选B.[点睛]本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(本题共计8个小题,每题4分,共计32分)11.已知方程3x+5y-3=0,用含x的代数式表示y,则y=________.[答案]335x -;[解析]分析: 将x看作已知数求出y即可. 详解:方程3x+5y-3=0,解得:y=335x -.故答案为335x -.点睛: 此题考查了解二元一次方程,解题的关键是将x看作已知数求出y.12.写出一个以13xy=-⎧⎨=⎩为解的二元一次方程______.[答案]x+y=2[解析][分析]先由-1和3列出一个算式:-1+3=2,即可得出x=-1,y=3为x+y=2解,得到正确答案.[详解]根据题意得:x+y=2.故答案为:x+y=2.[点睛]此题考查二元一次方程的解,解题关键在于掌握方程的解即为能使方程左右两边相等的未知数的值.13.已知则3632x yy x-=⎧⎨-=⎩,则x y+的值为______.[答案][解析][分析]将两个方程相加得到2x+2y=8,再两边同时除以2即可得到答案.[详解]3632x y y x -=⎧⎨-=⎩①②, 由①+②,得2x+2y=8,∴x+y=4,故答案为:4.[点睛]此题考查解二元一次方程组,求方程组中两个未知数的其他关系式时,可根据方程组中两个方程的关系直接求值.14.已知4m a =,3n a =,则2m n a +=__________.[答案]48[解析][分析]利用幂的运算中同底数幂相乘,底数不变指数相加的运算方法,先将2m n a +分解成几个数相乘的形式,即可得出结果.[详解]解:244348m n m m n a a a a +=⨯⨯=⨯⨯=故答案为:48.[点睛]本题主要考查是幂的运算中同底数幂相乘的运算法则,掌握同底数幂相乘,底数不变指数相加是解题的关键.15.已知2m a =,32n b =,,为正整数,则3102m n +=_________.[答案]32a b[解析][分析]逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.[详解]解:2m a =,32n b =,,为正整数,52n b ∴=,3103522(2)(2)m n m n +∴=⨯32a b =.故答案为:32a b .[点睛]此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键. 16.若21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解,则(a+b )(a-b )的值为_________. [答案]-15[解析][分析]把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求出a ,b 的值,再代入代数式(a+b)(a-b)计算即可.[详解]解:∵21x y =⎧⎨=⎩是关于x 、y 的方程组27ax by bx ay +=⎧⎨+=⎩的解, 2227a b b a +=⎧∴⎨+=⎩, 解得:14a b =-⎧⎨=⎩, ∴(a+b )(a-b )=(-1+4)×(-1-4)=-15.故选:B .[点睛]本题考查二元一次方程组的解和解二元一次方程组.理解方程组的解满足方程组中的每一个方程是解题的关键.17.三元一次方程组1,2,3x y y z x z +=⎧⎪+=⎨⎪+=⎩的解是______.[答案]1,0,2.x y z =⎧⎪=⎨⎪=⎩[解析][分析]根据解三元一次方程组的方法解方程即可.[详解]解:1,2,3,x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,++①②③得2()6x y z ++=,所以3x y z ++=④.把①代入④,得2z =.把②代入④,得1x =.把③代入④,得0y =.所以原方程组的解为1,0,2.x y z =⎧⎪=⎨⎪=⎩[点睛]本题考查解三元一次方程组,解题的关键是通过加减消元法或代入消元法消去未知数,从而达到解方程的目的.18.某体育场的环行跑道长400米,甲、乙同时从同一起点分别以一定的速度练习长跑和骑自行车.如果反向而行,那么他们每隔30秒相遇一次.如果同向而行,那么每隔80秒乙就追上甲一次.甲、乙的速度分别是多少?设甲的速度是x 米/秒,乙的速度是y 米/秒.则列出的方程组是_____.[答案]30()40080()400x y y x +=⎧⎨-=⎩ [解析]分析]此题中的等量关系有反向而行,则两人30秒共走400米;②同向而行,则80秒乙比甲多跑400米[详解]解:①根据反向而行,得方程为30(x+y )=400;②根据同向而行,得方程为80(y ﹣x )=400.那么列方程组30()40080()400x y y x +=⎧⎨-=⎩.[点睛]此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程组三、解答题(本题共计7个小题,共计78分)19.解方程组:(1)102x y x y +=⎧⎨-=⎩ (2)293217x y x y -=⎧⎨+=⎩[答案](1)64x y =⎧⎨=⎩;(2)51x y =⎧⎨=⎩ [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)102x y x y +=⎧⎨-=⎩①② ①+②得:2x =12,解得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩; (2)293217x y x y -=⎧⎨+=⎩①②①×2+②得:7x =35,解得:x =5,把x =5代入①得:y =1,则方程组的解为51x y =⎧⎨=⎩. [点睛]此题考查了二元一次方程组的解法,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 20.计算:(1)()()24576332x x x x x ⋅+⋅-+ (2)2324251(3)()()2a b a b -⋅-⋅-[答案](1)412x ;(2)14132716a b [解析][分析] (1)先算幂的乘方、同底数幂相乘、再算加减;(2)先算积的乘方再算同底数幂乘法;[详解]解:(1)()()24576332x x x x x ⋅+⋅-+ =1266122x x x x +⋅+=1212122x x x ++=412x(2)2324251(3)()()2a b a b -⋅-⋅- =63810127()16a b a b -⋅⋅- =14132716a b [点睛]考核知识点:同底数幂乘法、幂的乘方、积的乘方.掌握相关运算法则是关键.21.(1)已知a m =2,a n =3,求a m +n 的值;(2)已知3x +1=81,求x.[答案](1)6.(2)x =3.[解析]试题分析:(1)用同底数幂的乘法法则,底数不变,指数相加;(2)逆用同底数幂的乘法法则,将3x +1转化为3x ×3,再求解.试题解析:(1)a m +n =a m ·a n =2×3=6.(2)因为3x +1=3x ×3=81,所以3x =27=33.所以x =3.22.已知2a =3,2b =6,2c =12,试问a ,b ,c 之间有怎样的关系?请说明理由.[答案]2b =a +c ,理由见解析.[解析][分析]由62=3×12,可得()22222b a c a c +=⨯=,即可求得a,b,c 之间的关系. [详解]解:(答案不唯一)方法一:∵2326212a b c ===,,,且2666312⨯==⨯,∴()22222a c a c b +=⨯=,∴2b =a +c .方法二:∵2b =6=3×2=2a ×2=2a +1,∴b =a +1.① 又∵2c =12=6×2=2b ×2=2b +1,∴c =b +1.② ①-②,得2b =a +c[点睛]考查幂的乘方与积的乘方,同底数幂的乘法,比较基础,找出等量关系是解题的关键.23.对于实数、,定义关于“”的一种运算:2a b a b ⊗=+,例如132135⊗=⨯+=.(1)求()43⊗-的值;(2)若()2x y ⊗-=-,()21y x ⊗=-,求x y +的值.[答案](1)5;(2)1x y +=-[解析][分析](1)利用题目中的新定义进行计算即可;(2)根据新定义,对式子进行化简后得到二元一次方程,求解该方程组即可.[详解]解:(1)根据题中的新定义得:原式=()243835⨯+-=-=;故答案为:5. (2)根据题中的新定义化简得:2241x y x y -=-⎧⎨+=-⎩, 两式相加得:333x y +=-,则1x y +=-.故答案为:.[点睛]本题借助新定义题型考查了二元一次方程组的解法,新定义题型就按照题目的意思来进行计算即可,本质还是要熟练掌握二元一次方程的解法.24.已知方程组51542ax yx by+=⎧⎨+=-⎩①②由于甲看错了方程①中的a,得到方程组的解为31xy=-⎧⎨=-⎩乙看错了方程②中的b,得到方程组的解为52xy=⎧⎨=⎩试求出a,b的值.[答案]110 ab=⎧⎨=-⎩[解析] [分析]根据方程组解的定义,31xy=-⎧⎨=-⎩应满足方程②,52xy=⎧⎨=⎩应满足方程①,将它们分别代入方程②①,就可得到关于a,b的方程,解得a,b的值.[详解]解:根据题意31xy=-⎧⎨=-⎩是②方程的解,52xy=⎧⎨=⎩是①方程的解,∴4(3)(1)2 55215ba⨯-+⨯-=-⎧⎨+⨯=⎩解得110 ab=⎧⎨=-⎩[点睛]此题主要考查了二元一次方程组解的定义,解决本题的关键是二元一次方程组解的定义.25.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?[答案](1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少.[解析][分析](1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.[详解]解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得883520 6123480x yx y+=⎧⎨+=⎩解得300140 xy=⎧⎨=⎩答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.[点睛]本题主要考查二元一次方程组的实际问题的应用,解题的关键是读懂题目的意思,根据题目给出的条件,设出未知数,分别找出甲组和乙组对应的工作时间,找出合适的等量关系,列出方程组,再求解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉山学校七年级第二学期期中测试卷
(100分 90分钟)
一、选择题:(每题3分,共33分) 1.如图,AB ∥ED,∠B+∠C+∠D=( )
A.180°
B.360°
C.540°
D.270° 2.若点A(x,3)与点B(2,y)关于x 轴对称,则( )
A.x=-2,y=-3;
B.x=2,y=3;
C.x=-2,y=3;
D.x=2,y=-3 3.三角形的一个外角小于与它相邻的内角,则这个三角形是( ) A.锐角三角形 B.钝角三角形; C.直角三角形 D.无法确定 4.有两边相等的三角形的两边长为3cm,5cm,则它的周长为( ) A.8cm B.11cm C.13cm D.11cm 或13cm 5.若点A(m,n)在第二象限,那么点B(-m,│n │)在( )
A.第一象限
B.第二象限;
C.第三象限
D.第四象限 6.已知点P 在第三象限,且到x 轴的距离为3,到y 轴的距离为5,则点P 的坐标为( • )
A.(3,5)
B.(-5,3)
C.(3,-5)
D.(-5,-3) 7.如图,已知EF ∥BC,EH ∥AC,则图中与∠1互补的角有( )
A.3个
B.4个
C.5个
D.6个 8.三角形是( )
A.连结任意三点组成的图形
B.由不在同一条直线上的三条线段首尾顺次相接所成的图形
C.由三条线段组成的图形
D.以上说法均不对
9.三条共点直线都与第四条直线相交,一共有( )对对顶角. A.8 B.24 C.7 D.12
10.△ABC 中,∠A=
13∠B=1
4
∠C,则△ABC 是( ) A.锐角三角形 B.直角三角形; C.钝角三角形 D.都有可能 11.学校的操场上,升旗的旗杆与地面关系属于( )
A.直线与直线平行;
B.直线与平面平行;
C.直线与直线垂直;
D.直线与平面垂直
二、填空题:(每题3分,共21分)
12.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________度. 13.已知点M(a,-1)和N(2,b)不重合. (1)当点M 、N 关于_______对称时,a=2,b=1
(2)当点M 、N 关于原点对称时,a=__________,b=_________. 14.若A(a,b)在第二、四象限的角平分线上,a 与b 的关系是_________.
15.两根木棒长分别为5和7,要选择第三根木棒将其钉成三角形,•若第三根木棒的长选取偶数时,有_______种选取情况.
16.一个多边形除了一个内角外,其余各内角之和为1680°,•那么这个多边形的边数为________.
17.n 边形的对角线的条数是_________.
18.如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50•°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β 为_________度的方向动工. 三、解答题:(19-22每题9分,23题10分,共46分)
19.如图,△ABC 中,AD ∥BC,AE 平分∠BAC,∠B=20°,∠C=30°,求∠DAE 的度数.
E D
C
B
A
D
A
E
C
B
H 1
F
E
D C
B
A G
2
1F E
D
C
B
A G

βα北乙

20.某个图形上各点的横坐标不变,纵坐标变为原来的相反数,•此时图形却未发生任何改变,你认为可能吗?举例说明若横、纵坐标都变为原来的相反数呢?
21.平面直角坐标系中,顺次连结(-2,1),(-2,-1),(2,-2),(2,3)各点,你会得
到一个什么图形?试求出该图形的面积.
22.如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你
从所得的关系中任意选取一个加以说明.
(1)
P
D
C
B
A
(2)
P
D
C
B
A
(3)
P
D
B A
(4)
P
D
C
B
A
23.已知:如图,△ABC中,∠ABC=∠C,BD是∠ABC的平分线,且∠BDE=∠BED,•∠
A=100°,求∠DEC的度数.
E
D
C
B
A
一、1.B 点拨:如答图,连结BD, 则∠ABD+∠BDE=180°.
而∠2+•∠CBD+•∠BDC=180°, 所以∠ABC+∠C+∠CDE
=∠ABD+∠CBD+∠BDE+∠BDC+∠2 =360°.
E
D
C
B
A
2.D 点拨:关于x 轴对称的两个点,横坐标相等,纵坐标互为相反数.
3.B 点拨:因为锐角三角形和直角三角形的任何一个外角都比它相邻的内角大或相等.
4.D 点拨:应分两种情况:
当3cm 为等边长时, 周长为:3+3+5=11(cm);
当5cm 为等边长时,3+5+5=13(cm). 5.A 点拨:因为点A 在第二象限, 所以m<0,n>0,
所以-m>0,│n │>0, 因此点B 在第一象限.
6.D 点拨:因为在第三象限,所以到x 轴的距离为3,说明纵坐标为-3,
到y 的距离为5,说明横坐标为-5,即P 点坐标为(-5,-3). 7.A 点拨:如答图,由AC ∥EH 得∠1=∠4,
由EF ∥BC 得∠2+∠4=180°, ∠2=∠3,•∠1+∠5=180°,
所以有∠2、∠3、∠5,3个与∠1互补的角.
35
H 4
21
F
E
D C
B A G
8.B 点拨:三角形的定义.
9.D 点拨:应用对顶角的定义. 10.B 点拨:由题意得∠C=4∠A,
∠B=3∠A,
所以∠A+3∠A+4∠A=180°,• 所以∠A=22.5°,∠C=90°.
11.D 点拨:应用点、线、面之间的位置关系. 二、12.54 点拨:因为AB ∥CD,
所以∠1+∠BEF=180°,
所以∠BEF=180°-•∠1
=180°-72°=108°.
而∠2=∠BEG=1
2
∠BEF,
所以∠2=54°.
13.(1)x轴;(2)-2,1 点拨:两点关于x轴对称时,横坐标相等,•纵坐标互为相反数;
关于原点对称时,横纵坐标都是互为相反数.
14.互为相反数点拨:二、四象限夹角平分线上的点的横纵坐标绝对值相等,•符号相反.
15.4 点拨:因为第三边的取值范围是大于2,小于12,
在2~12之间的偶数有4,6,8,10,4个,所以应有4种情况.
16.12 点拨:设剩余一个内角度数为x°,
(n-2)·180°=1680°+x°,
n-2= 1680
180
x
︒+︒

,•
n=2+9+60
180
x
︒+︒

,
所以n应为12.
17.
(3)
2
n n-
点拨:多边形对角线条数公式.
18.北偏西130°
三、19.解:因为∠EAC=1
2
∠BAC
=1
2
(180°-20°-30°)=65°,
而∠ADC=90°,
所以∠DAC=60°,
所以∠EAD=65°-60°=5°.
20.解:可能.因为图形上的点原本就关于x轴对称,这样位置、•形状和大小没有改变.
21.解:梯形.因为AB长为2,CD长为5,AB与CD之间的距离为4,
所以S梯形ABCD= (25)4
2
+⨯
=14.
(如图)
22.解:①∠BAP+∠APC+∠PCD=360°;
②∠APC=∠BAP+∠PCD; ③∠BAP=∠APC+∠PCD; ④∠PCD=∠APC+∠PAB. 如②,可作PE ∥AB,(如图) 因为PE ∥AB ∥CD,
所以∠BAP=∠APE,∠EPC=∠PCD. 所以∠APE+∠EPC=∠BAP+∠PCD, 即∠APC=∠PAB+∠PCD.
P
E D
C
B
A
23.解:因为∠A=100°,∠ABC=∠C,
所以∠ABC=40°,• 而BD•平分∠ABC,• 所以∠DBE=20°. 而∠BDE=∠BED,
所以∠DEB=
1
2
(180°-20°)=80°, 所以∠DEC=100°.。

相关文档
最新文档