2017最新人教版七年级数学下册期中考试试题

合集下载

2017年七年级数学下期中试卷(带答案)

2017年七年级数学下期中试卷(带答案)

篇一:最新北京市2016-2017年七年级下期中考试数学试题(含答案) 第二学期七年级4月份质量检测数学试题卷一、选择题(共10个小题,每小题3分,共30分)1.如图,直线b、c被直线a所截,则∠1与∠2是(▲ )A.同位角B. 内错角C. 同旁内角D. 对顶角2.下列各式是二元一次方程的是(▲ )A.3y?21x?yxB. ?2y?0 C.y1 D.x2?y?0 x233.下列计算正确的是(▲ )347A.a?a?a B.a34?a7C.?a2b33?a6b9 D.2a4?3a5?6a94.方程■x?2y?x?5是二元一次方程,■是被弄污的x的系数,请你推断■的值属于下列情况中的(▲ )A.不可能是-1 B.不可能是-2C.不可能是1 D.不可能是25.二元一次方程2x?y?7的正整数解有(▲ )A. 4组B. 3组C. 2组D. 1组6.如图,将一条两边沿互相平行的纸带按图折叠,则∠α的度数等于(▲ )A.50 oB.60 o C.75 oD.85 o7.若关于x,y的二元一次方程组x?y?5k的解也是二元一次方程?x?y?9k2x?3y?6的解,则k的值为(▲ ) (第6题)A.3434 B. C.?D.? 4343ab3a?2b8.已知x?2,x?3则x(▲ )(A)17(B)72(C)24 (D)369.两个角的两边分别平行,其中一个角是60°,则另一个角是(▲ )A. 60°B. 120°C. 60°或120°D. 无法确定10.如图,BD∥GE,AQ平分∠FAC,交BD于Q,∠GFA=50°,∠Q=25°,则∠ACB的度数( )(第10题)A.90?B.95?C.100?D.105?二、填空题(本大题6个小题,每小题4分,共24分)11.将方程4x?3y?6变形成用y的代数式表示x,则x=.12.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中正确的是.(填写序号)13.已知m?n?2,mn2,则(1?m)(1?n)?.14.如图,在△ABC中,∠ABO=20°,∠ACO=25°,∠A=65°,则∠BOC的度数_____________.15.如右图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为 m.16.我国南宋时期杰出的数学家杨辉是钱塘人,下面的图表是他在《详解九章算术》中记载的“杨辉三角”.此图揭示了(a?b)n(n为非负整数)的展开式的项数及各项系数的有关规律. 2(a?b)1?a?b(a?b)2?a2?2ab?b2(a?b)3?a3?3a2b?3ab2?b3? ? ( a ? b)4?(1)请仔细观察,填出(a+b)4的展开式中所缺的系数.(a+b)4=a4+4a3b+2b2+ ab2+b4(2)此规律还可以解决实际问题:假如今天是星期三,再过7天还是星期三,那么再过814篇二:2016—2017学年初一下数学期末考试试卷及答案初一数学第二学期期终教学质量调研测试本试卷由填空题、选择题和解答题三大题组成 ,共29题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将由己的考试号、学校、姓名、班级用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对;2.答选择题须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题纸上,保持答题纸清洁,不要折叠,不要弄破,答在试卷和草稿纸上无效。

2017-2018学年人教版数学七年级(下册)期中考试试卷及答案

2017-2018学年人教版数学七年级(下册)期中考试试卷及答案

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是()A.B.C.﹣D.﹣2.有下列说法:(1)﹣3是的平方根;(2)﹣7是(﹣7)2的算术平方根;(3)25的平方根是±5;(4)﹣9的平方根是±3;(5)0没有算术平方根.其中,正确的有()A.0个 B.1个 C.2个 D.3个3.商合杭高铁预算投资818亿元,设计速度350公里/小时,预计2020年通车.高铁阜阳西站(已开工建设)是商合杭铁路新建15个车站中规模最大的中间枢纽站.其中818亿用科学记数法表示为()A.8.18×108B.81.8×109C.8.18×1010D.0.818×1094.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°5.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B. C. D.6.已知直角坐标系中,点P(x,y)满足(5x+2y﹣12)2+|3x+2y﹣6|=0,则点P 坐标为()A.(3,﹣1.5) B.(﹣3,﹣1.5)C.(﹣2,﹣3)D.(2,﹣3)7.我们规定以下三种变换:(1)f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)g(a,b)=(b,a).如:g(1,3)=(3,1);(3)h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),求f(h(5,﹣3))=()A.(5,﹣3)B.(﹣5,3)C.(5,3) D.(3,5)8.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限9.关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A. B. C. D.二、填空题(本大题共5小题,每小题4分,满分20分)11.已知a、b为两个连续整数,且a<<b,则a+b=.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是.13.如图,如果所在位置的坐标为(﹣2,﹣2),所在位置的坐标为(1,﹣2),那么所在位置的坐标为(,).14.如下图,直线a∥b,则∠A=度.15.如图,三角形DEF是由三角形ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=6,则BE的长度是.三、(本大题共2小题,满分20分)16.计算(1)|﹣|++2(﹣1)(2).17.解方程组(1)(2).四、(本大题共2小题,每小题8分,满分16分)18.已知x的两个平方根分别是2a﹣1和a﹣5,且,求x+y的值.19.如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1,B1,C1;(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.五、(本大题共2小题,每小题8分,满分16分)20.已知关于x,y的二元一次方程组的解适合方程x+y=8,求m的值.21.如图,EF∥AD,∠1=∠2,∠BAC=60°,求∠AGD的度数.六、(本大题共1小题,每小题10分,满分10分)22.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?七、(本题满分8分)23.现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?八、(本题满分10分)24.已知:关于x,y的二元一次方程组小丽正确的解得而小军粗心,把c看错了,解得请确定a、b、c的值.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.的相反数是()A.B.C.﹣D.﹣【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.有下列说法:(1)﹣3是的平方根;(2)﹣7是(﹣7)2的算术平方根;(3)25的平方根是±5;(4)﹣9的平方根是±3;(5)0没有算术平方根.其中,正确的有()A.0个 B.1个 C.2个 D.3个【考点】平方根;算术平方根.【分析】运用平方根和算术平方根的定义求解判定.【解答】解:1)的平方根有±3,因此﹣3是的平方根,正确;(2)﹣7是(﹣7)2的算术平方根;7是(﹣7)2的算术平方根,错误,(3)25的平方根是±5,正确,(4)﹣9的平方根是±3;负数没有平方根,错误,(5)0没有算术平方根.是0,错误.故选:C.3.商合杭高铁预算投资818亿元,设计速度350公里/小时,预计2020年通车.高铁阜阳西站(已开工建设)是商合杭铁路新建15个车站中规模最大的中间枢纽站.其中818亿用科学记数法表示为()A.8.18×108B.81.8×109C.8.18×1010D.0.818×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:818亿=818 0000 0000=8.18×1010,故选:C.4.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30°B.60°C.90°D.120°【考点】平行线的性质.【分析】先根据两直线平行,内错角相等得到∠ADB=∠B=30°,再利用角平分线定义得到∠ADE=2∠B=60°,然后再根据两直线平行,内错角相等即可得到∠DEC 的度数.【解答】解:∵AD∥BC,∴∠ADB=∠B=30°,∵DB平分∠ADE,∴∠ADE=2∠B=60°,∵AD∥BC,∴∠DEC=∠ADE=60°.故选B.5.如图所示,数轴上表示3、的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A.B. C. D.【考点】实数与数轴.【分析】点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,即可求得c 的值.【解答】解:点C是AB的中点,设C表示的数是c,则﹣3=3﹣c,解得:c=6﹣.故选C.6.已知直角坐标系中,点P(x,y)满足(5x+2y﹣12)2+|3x+2y﹣6|=0,则点P 坐标为()A.(3,﹣1.5) B.(﹣3,﹣1.5)C.(﹣2,﹣3)D.(2,﹣3)【考点】点的坐标;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】直接利用绝对值的性质以及偶次方的性质得出x,y的值,进而得出答案.【解答】解:∵(5x+2y﹣12)2+|3x+2y﹣6|=0,∴,解得:,故P点坐标为:(3,﹣).故选:A.7.我们规定以下三种变换:(1)f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);(2)g(a,b)=(b,a).如:g(1,3)=(3,1);(3)h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(﹣3,2)=(3,2),求f(h(5,﹣3))=()A.(5,﹣3)B.(﹣5,3)C.(5,3) D.(3,5)【考点】点的坐标.【分析】先根据第3个变换知:h(5,﹣3)=(﹣5,3),再根据第1个变换得出结论:f(﹣5,3)=(5,3).【解答】解:f(h(5,﹣3))=f(﹣5,3)=(5,3),故选C.8.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a、b 的不等式,再根据不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.9.关于x,y的方程组的解是,其中y的值被盖住了,不过仍能求出p,则p的值是()A.﹣ B.C.﹣ D.【考点】二元一次方程组的解.【分析】将x=1代入方程x+y=3求得y的值,将x、y的值代入x+py=0,可得关于p的方程,可求得p.【解答】解:根据题意,将x=1代入x+y=3,可得y=2,将x=1,y=2代入x+py=0,得:1+2p=0,解得:p=﹣,故选:A.10.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐标是()A. B. C. D.【考点】规律型:点的坐标.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2015的坐标.【解答】解:半径为1个单位长度的半圆的周长为:,∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,∴点P1秒走个半圆,当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,﹣1),当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),…,∵2015÷4=503 (3)∴A2015的坐标是,故选:B.二、填空题(本大题共5小题,每小题4分,满分20分)11.已知a、b为两个连续整数,且a<<b,则a+b=7.【考点】估算无理数的大小.【分析】求出的范围:3<<4,即可求出a b的值,代入求出即可.【解答】解:∵3<<4,a<<b,∵a b是整数,∴a=3,b=4,∴a+b=3+4=7,故答案为:7.12.已知关于x,y的二元一次方程组的解互为相反数,则k的值是﹣1.【考点】二元一次方程组的解.【分析】将方程组用k表示出x,y,根据方程组的解互为相反数,得到关于k 的方程,即可求出k的值.【解答】解:解方程组得:,因为关于x,y的二元一次方程组的解互为相反数,可得:2k+3﹣2﹣k=0,解得:k=﹣1.故答案为:﹣1.13.如图,如果所在位置的坐标为(﹣2,﹣2),所在位置的坐标为(1,﹣2),那么所在位置的坐标为(﹣4,1).【考点】坐标确定位置.【分析】根据士所在位置的坐标为(﹣2,﹣2),相所在位置的坐标为(1,﹣2),确定坐标原点,从而得出炮所在位置的坐标.【解答】解:∵士所在位置的坐标为(﹣2,﹣2),相所在位置的坐标为(1,﹣2),∴炮所在位置的坐标为(﹣4,1).故答案为:(﹣4,1).14.如下图,直线a∥b,则∠A=25度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【分析】本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.15.如图,三角形DEF是由三角形ABC通过平移得到,且点B,E,C,F在同一条直线上,若BF=14,EC=6,则BE的长度是4.【考点】平移的性质.【分析】根据平移的性质得BE=CF,再利用BE+EC+CF=BF得到BE+6+BE=14,然后解方程即可.【解答】解:∵三角形DEF是由三角形ABC通过平移得到,∴BE=CF,∵BE+EC+CF=BF,∴BE+6+BE=14,∴BE=4.故答案为4.三、(本大题共2小题,满分20分)16.计算(1)|﹣|++2(﹣1)(2).【考点】实数的运算.【分析】(1)原式利用绝对值的代数意义,立方根定义计算即可得到结果;(2)原式利用算术平方根、立方根定义计算即可得到结果.【解答】解:(1)原式=﹣+2+2﹣2=3﹣;(2)原式=6+3+2=11.17.解方程组(1)(2).【考点】解二元一次方程组.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:3y﹣6+2y=﹣1,即y=1,把y=1代入①得:x=﹣1,则方程组的解为;(4),①+②得:7m=14,即m=2,把m=2代入①得:n=,则方程组的解为四、(本大题共2小题,每小题8分,满分16分)18.已知x的两个平方根分别是2a﹣1和a﹣5,且,求x+y的值.【考点】立方根;平方根.【分析】先根据正数的两个平方根互为相反数,求出a的值,从而确定x的值,再根据立方根求出y的值,即可解答.【解答】解:由题意可知2a﹣1+a﹣5=0∴a=2∴2a﹣1=3∴x=32=9∵∴x﹣y﹣2=27∴y=﹣20∴x+y=﹣11.19.如图,将三角形ABC向右平移5个单位长度,再向上平移3个单位长度请回答下列问题:(1)平移后的三个顶点坐标分别为:A1(4,7),B1(1,2),C1(6,4);(2)画出平移后三角形A1B1C1;(3)求三角形ABC的面积.【考点】作图-平移变换.【分析】(1)先画出平移后的图形,结合直角坐标系可得出三点坐标;(2)根据平移的特点,分别找到各点的对应点,顺次连接即可得出答案;(3)将△ABC补全为矩形,然后利用作差法求解即可.【解答】解:(1)结合所画图形可得:A1坐标为(4,7),点B1坐标为(1,2),C1坐标为(6,4).(2)所画图形如下:(3)S△ABC=S矩形EBGF﹣S△ABE﹣S△GBC﹣S△AFC=25﹣﹣5﹣3=.五、(本大题共2小题,每小题8分,满分16分)20.已知关于x,y的二元一次方程组的解适合方程x+y=8,求m的值.【考点】二元一次方程组的解.【分析】方程组消去m得到关于x与y的方程,与已知方程联立求出x与y的值,即可确定出m的值.【解答】解:方程组消去m得,3x+2y=2,联立得:,解得:,把x=14,y=﹣6代入方程组,m=10.21.如图,EF∥AD,∠1=∠2,∠BAC=60°,求∠AGD的度数.【考点】平行线的判定与性质.【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出DG∥AB,根据平行线的性质得出∠BAC=∠AGD即可.【解答】解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥AB,∴∠BAC=∠AGD,∵∠BAC=60°,∴∠AGD=60°.六、(本大题共1小题,每小题10分,满分10分)22.某天,一蔬菜经营户用114元从蔬菜批发市场购进黄瓜和土豆共40kg到菜市场去卖,黄瓜和土豆这天的批发价和零售价(单位:元/kg)如下表所示:(1)他当天购进黄瓜和土豆各多少千克?(2)如果黄瓜和土豆全部卖完,他能赚多少钱?【考点】一元一次方程的应用.【分析】(1)设他当天购进黄瓜x千克,则土豆(40﹣x)千克,根据黄瓜的批发价是2.4元,土豆批发价是3元,共花了114元,列出方程,求出x的值,即可求出答案;(2)根据(1)得出的黄瓜和土豆的斤数,再求出每斤黄瓜和土豆赚的钱数,即可求出总的赚的钱数.【解答】解:(1)设他当天购进黄瓜x千克,则土豆(40﹣x)千克,根据题意得:2.4x+3(40﹣x)=114,解得:x=10则土豆为40﹣10=30(千克);答:他当天购进黄瓜10千克,土豆30千克;(2)根据题意得:(4﹣2.4)×10+(5﹣3)×30=16+60=76(元).答:黄瓜和土豆全部卖完,他能赚76元.七、(本题满分8分)23.现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣、…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现.问:(1)第50个数是什么数?(2)把从第1个数开始的前2015个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?【考点】规律型:数字的变化类;实数的运算.【分析】(1)首先根据这列数的排列规律,可得每6个数一个循环:1、﹣1、、﹣、、﹣;然后用50除以6,根据余数的情况判断出第50个数是什么数即可;(2)首先用2015除以6,求出一共有多少个循环,以及剩下的数是多少;然后用循环的个数乘以1+(﹣1)++(﹣)+()+(﹣),再加上剩下的数,求出把从第1个数开始的前2015个数相加,结果是多少即可;(3)首先求出1、﹣1、、﹣、、﹣六个数的平方和是多少;然后用520除以六个数的平方和,根据商和余数的情况,判断出一共有多少个数的平方相加即可.【解答】解:(1)这列数每6个数一个循环:1、﹣1、、﹣、、﹣;∵50÷6=8…2,∴第50个数是﹣1.(2)∵2015÷6=335…5,1+(﹣1)++(﹣)+()+(﹣)=0,,∴从第1个数开始的前2015个数的和是:335×0+=.(3)∵=12,520÷12=43…4,而且,∴43×6+3=261,即共有261个数的平方相加.八、(本题满分10分)24.已知:关于x,y的二元一次方程组小丽正确的解得而小军粗心,把c看错了,解得请确定a、b、c的值.【考点】二元一次方程组的解.【分析】把正确的解代入第二个方程可求得c的值,把小丽所得的解和正确解分别代入第一个方程可得到关于a、b的方程组,可求得a、b的值,即可解答.【解答】解:把代入5x﹣cy=1,得10﹣3c=1,解得c=3,把和都代入ax+by=3组成方程组解得所以a=3,b=﹣1,c=3.2017年2月21日第21页(共21页)。

2017-人教版七年级下册数学期中考试卷(含答案)

2017-人教版七年级下册数学期中考试卷(含答案)

2017-人教版七年级下册数学期中考试卷(含答案)七年级数学科试卷(时间: 120 分钟满分: 100 分)友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉稳、沉稳,发挥出平时的水平,祝你考出好的成绩。

一、心填一填 ( 每 2 分,共24 分)1. 在同一平面内,两条直有种地址关系,它是;2.若直 a//b , b//c ,,其原由是;3. 如 1 直 AB,CD,EF订交与点 O,中AOE的角是, COF 的角是。

D AF AC B12DA CBOECBD图 13图 24.如 2,要把池中的水引到D,可 C 点引 CD⊥ AB于 D,尔后沿 CD开渠,可使所开渠道最短,明的依照:;5.点 P( -2 , 3)关于 X称点的坐是。

关于原点称点的坐是。

6.把“ 角相等”写成“若是⋯⋯那么⋯⋯”的形式。

7. 一个等腰三角形的两分是3cm和 6cm,它的周是cm.8. 若点 M( a+5,a-3 )在 y 上,点 M的坐。

9.若 P( X, Y)的坐足XY>0,且 X+Y<0,点 P 在第象限。

10. 一个多形的每一个外角等于30o,个多形是形,其内角和是。

11.直角三角形两个角的均分所组成的角等于度。

12.如 3,四形 ABCD中,1与 2足关系 AB//CD,当AD//BC( 只要写出一个你成立的条件 ) 。

二、精心一 ( 以下各小的四个中,有且只有一个是吻合意的,把你吻合意的答案代号填入答表中,每小 2 分,共 12分 )号123456答案1.以下各中,∠ 1 与∠ 2是角的是: ()2.以以下各段,能成三角形的是()A、 2cm, 3cm, 5cmB、 5cm, 6cm, 10cmC、 1cm, 1cm, 3cmD、3cm, 4m, 9cm3.某人到瓷商店去一种多形形状的瓷用来无地板,他的瓷形状不能够够是()A .正三角形B.方形C.正八形 D .正六形4.在直角坐系中,点P( -2 , 3)向右平移 3个位度后的坐 ()A.( 3, 6) B.(1,3) C.(1,6) D.(3,3)5c5. 如 4,以下条件中,不能够判断直a//b的是()1 2aA 、∠ 1=∠3B、∠2=∠3 C、∠ 4=∠ 5 D 、∠ 2+∠4=180°6. 以下形中有定性的是()4b A.正方形 B.方形 C.直角三角形 D.平行四形3412017-人教版七年级下册数学期中考试卷(含答案) 三.作图题。

2017年七年级(下)数学期中考试试卷及答案

2017年七年级(下)数学期中考试试卷及答案

2017年七年级(下)数学期中考试试题(满分:100分 考试时间:100分钟)一、选择题(每题2分,共20分)1.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无 花果,质量只有0.000000076克,将0.000000076用科学记数法表示为 ( ▲ ) A .7.6×10-8 B .7.6×10-9C .7.6×108D .7.6×10 92.下列各式从左到右的变形中,为因式分解的是 ( ▲ ) A .()x a b ax bx -=- B .2221(1)(1)x y x x y -+=+-+ C .21(1)(1)y y y -=+- D .()cax bx c x a b x++=++3.下列所示的四个图形中,1∠和2∠是同位角的是 ( ▲ ) A. ②③ B. ①②③ C. ①②④ D. ①④4.下列命题是真命题的有 ( ▲ ) ①两个锐角的和是锐角; ②在同一平面内,若直线a ⊥b ,b ⊥c ,则直线a 与c 平行; ③一个三角形有三条不同的中线; ④两条直线被第三条直线所截,同旁内角互补. A . 1个 B .2个 C .3个 D .4个5.如图,在△ABC 中,AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D ,则图中能表示点到直线距离的线段共有 ( ▲ ) A .2条 B .3条 C .4条D .5条6.如图是婴儿车的平面示意图,其中AB ∥CD ,∠1=120°,∠3= 40°,那么∠2为( ▲ )A .80°B .90°C .100°D .102°7.下列计算中错误..的是 ( ▲ ) A .26)3(2a a a -=-⋅ B. 125)1101251(2522+-=+-⨯x x x x C .1)1)(1)(1(42-=+-+a a a a D .41)21(22++=+x x x8.若212x mx k ++是一个完全平方式,则k 等于 ( ▲ )A .214mB .214m ±C .2116mD .2116m ±①2121②12③12④9.已知m x a =,n x b =(x ≠0),则32m nx -的值等于 ( ▲ )A .32a b -B .32a bC .32a bD .32a b -10.如图,把图中的一个三角形先横向平移x 格,再纵向平行y 格,就能与另一个三角形拼合成一个四边形,那么x y + ( ▲ ) A .有一个确定的值 B .有两个不同的值. C .有三个不同的值 D .有三个以上不同的值第5题图 第6题图 第10题图二、填空题(每空1分,共22分) 11.直接写出计算结果:(1)2332()x y xy ⨯-= ▲ ; (2) 2(3)m n -= ▲ ; (3)(8)(5)a a +-= ▲ ; (4)32)()(y x x y n-⋅-= ▲ ;(5) =-⨯714)91(3= ▲ ; (6)23.9×9.1+156×2.39-0.239×470= ▲ . 12.直接写出因式分解的结果:(1) 22328x y xy -+= ▲ ; (2) 221625y x -= ▲ ; (3)=++221236y xy x ▲ ; (4)2584x x --= ▲ . 13.分别根据下列两个图中已知角的度数,写出相应∠α的度数:∠α= ▲ ° ∠α= ▲ ° ∠α= ▲ °14.“如果两个实数相等,那么它们的绝对值相等”的逆命题是 ▲ ,这个逆命题是 ▲ 命题(填“真”或“假”).15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ▲ .16.在下列代数式:①11()()22x y x y -+,②(3)(3)a bc bc a +--,③(3)(3)x y x y -+++④(100)(100)m n n m -+-,能用平方差公式计算的是 ▲ (填序号). 17.如图,将长方形ABCD 沿AE 折叠,使点D 落在BC 边上的点F ,若∠BFA=34°,则∠DEA= ▲ °.18.如图1是我们常用的折叠式小刀,其刀柄外形是一个直角梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是 ▲ °.第17题图 第18题图19.若代数式232x x -+可以表示为2(1)(1)x a x b ++++的形式,则a b -的值是 ▲ .20.已知△ABC 中,∠A=α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C=90°+12α;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C= ▲ °;当∠B 、∠C 同时n 等分时,(n -1)条等分角线分别对应交于O 1、O 2,…,O n -1,如图(3),则∠BO n -1C= ▲ °(用含n 和α的代数式表示).三、计算或化简(写出必要的演算步骤,共33分) 21.(18分)计算:(1)103111()()()222--+-÷- (2) 5243)()()2(a a a -÷+-(3))2131)(312(a b b a -+ (4)2(23)(3)(3)x y y x x y --+-(5) )23)(23(++--+y x y x (6) 2222(32)(32)94)m m m -+-+(22.(12分)因式分解:(1) 2223251035xy z y z y z --+ (2) 2()6()9a b b a ---+(3) 8144-b a (4) 4224817216x x y y -+23.(3分)已知253x x -=,求代数式2(1)(21)(1)1x x x ---++的值.四、解答题(共25分)24.(4分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.请完整填上结论或依据. 证明:∵∠3=∠4( 已知 ) ∴BD ∥EC ( )∴∠5+∠ =180° ( ) ∵∠5=∠6( 已知 )∴∠6+∠ =180°( 等式的性质 ) ∴AB ∥CD ( )∴∠2=∠ ( 两直线平行,同位角相等 ) ∵∠1=∠2( 已知 )∴∠1=∠ ( 等量代换 ) ∴ED ∥FB ( )25.(5分)如图,BD 是△ABC 的角平分线,DE ∥BC , 交AB 于点E ,∠A=38°,∠BDC=55°,求△BED 各内角的度数.26.(6分)观察下列各式:①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳、发现的规律,写出4×2016×2017+1可以是哪个数的平方? (2)试猜想第n 个等式,并通过计算验证它是否成立.(3)利用前面的规律,将22114()(1)122x x x x ++++因式分解.AD27.(10分)长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足23210a b b b -+-+=.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN= 45° (1)则a = ,b = ;(2)若灯B 射线先转动20秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.图1 图2MM数 学 试 题 答 案题号 1 2 3 4 5 6 7 8 9 10 答案ACCBDABCBB二、填空题(每空1分;共22分)11、(1)652y x -,(2)2296m mn n -+(3)2340a a +-.(4)32)(+-n y x(5)1-, (6)47812、(1)()224xy x y --,(2))45)(45(y x y x -+,(3)()26y x +,(4)(12)(7)x x -+.13、50,27,50; 14、如果两个实数的绝对值相等,那么它们相等.假 15、六.16、①③ 17、73°. 18、90°. 19、-11. 20、2603α+.1801n n nα-+三、计算或化简(写出必要的演算步骤,共33分)21、(18分)计算:(1)-10;(2)39a -.(3)229121b a ab +- (4)xy x y 1251022-- (5)44922-+-x x y (6) 2144m -22、(12分)因式分解:(1)25(527)y z x z y -+- (2)2(3)a b -+(3))3)(3)(9(22-++ab ab b a (4)22(32)(32)x y x y +-23、(3分) 原式=251x x -+ 当253x x -=时,原式= 4四、解答题(共25分)24、(4分)证明:∵∠3=∠4( 已知 )∴BD ∥EC ( 内错角相等,两直线平行 )∴∠5+∠ CAB =180° ( 两直线平行 ,同旁内角互补 ) ∵∠5=∠6( 已知 )∴∠6+∠ CAB =180°( 等式的性质 ) ∴AB ∥CD ( 同旁内角互补,两直线平行 ) ∴∠2=∠ EGA ( 两直线平行,同位角相等 ) ∵∠1=∠2( 已知 )∴∠1=∠ EGA ( 等量代换 ) ∴ED ∥FB ( 同位角相等,两直线平行 )25、(5分)∠EDB=∠EBD=17°,∠BED=146°26、(6分):(1)4×2016×2017+1=(2016+2017)2= 4033 2;(2)猜想第n 个等式为4n (n+1)+1=(2n+1)2,理由如下:∵左边= 4n (n+1)+1= 4n 2+4n+1,右边=(2n+1)2= 4n 2+4n+1, ∴左边=右边, ∴4n (n+1)+1=(2n+1)2; (3)利用前面的规律,可知22222241114()(1)12()1(21)(1)222x x x x x x x x x ⎡⎤++++=⨯++=++=+⎢⎥⎣⎦ 27、(10分)(1)a=3,b=1;(2)设A 灯转动x 秒,两灯的光束互相平行, ①在灯A 射线转到AN 之前AF 位置,如右图1 此时BE ∥AF ,则3t=(20+t )×1,解得t=10;②在灯A 射线转到AN 之后回转AF 位置,如右图2此时BE ∥AF ,则3t ﹣3×60+(20+t )×1=180°,解得t=85,综上所述,当t=10秒或85秒时,两灯的光束互相平行; (3)不变,理由如下:设灯A 射线转动时间为t 秒, ∵∠CAN=180°﹣3t ,∴∠BAC= 45°﹣(180°﹣3t )=3t ﹣135°, 又∵PQ ∥MN ,∴∠BCA=∠CBD +∠CAN= t +180°﹣3t=180°﹣2t , 而∠ACD=90°,∴∠BCD=90°﹣∠BCA=90°﹣(180°﹣2t )=2t ﹣90°, ∴∠BAC :∠BCD=3:2, 即2∠BAC=3∠BCD .PP AM。

2017-2018七年级第二学期期中考试试卷(人教新课标含答案)

2017-2018七年级第二学期期中考试试卷(人教新课标含答案)

a c21b七年级数学第二学期期中考试试题班级: 姓名: 座号: 评分:(考试时间: 120 分钟 满分: 150 分)一、选择题(精挑细选,每小题 4 分,共 40 分) 1.在同一平面内,两直线的位置关系有( )A .相交B .平行C .异面D .相交或平行 2.下列正多边形,单独一种不能进行密铺的是( )A .正三边形B .正四边形C .正五边形D .正六边形3.如图由∠l =∠2得a ∥b 是应用( )A .同位角相等,两直线平行; B.两直线平行同位角相等C .同旁内角相等两直线平行; D.两直线平行同旁内角相等 4.三角形的三个内角两两一定互为( )A .同位角B .内错角C .同旁内角D .邻补角5.若点P 为直线外一点,点A 、B 、C 、D 为直线l 上的不同的点,其中PA=3, PB=4,PC=5, PD=3。

那么点P 到直线1的距离是( )A. 3 B .小于3 C .不大于3 D .不小于36.点 P 在第二象限,到x 轴和Y 轴的距离分别是3和7,那么点P 的坐标为( ) A. (一7,3) B. (7,一3) C. (一3 ,7) D. (3,一7)7.已知点P(5 , 6)横坐标加2,向下平移3个单位,那么得到点P 是( ) A .左移动2个单位,纵坐标为3 B .左移动2个单位,纵坐标为9 C .右移动2个单位,纵坐标为3 D .右移动2个单位,纵坐标为9 8.下列图形具有稳定性的是( )A B C D9.若三角形三个内角度数之比为 2 : 3 : 6 , 那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .不能确定 10.下列是真命题的是( )A .内错角相等 B.三角形必有一内角不大于60度C .请仔细做题,考出水平 D.和为180度的两角是邻补角 二、填空题(细心填一填,每小题 4 分,共 20 分)11.建设房屋时要用石灰画宅基地,先要在地上钉桩,某宅基地前排只钉了两个桩就确定了前排的位置,这是利用我们所学的数学原理:__________________.DA C EBDACEB(第12题) (第14题)12.如图,直线AB,CD 相交于O 点,OE 平分∠BOC, ∠EOC=25°,求∠BOD 度数是____________.13.小李在教室里的座位记作(2 ,5)表示他坐在第二排第五列,那么小王坐在第四列第三排记作_______________。

人教版七年级下册数学期中考试卷及答案2017

人教版七年级下册数学期中考试卷及答案2017

人教版七年级下册数学期中考试卷及答案2017一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是( )A.6m>-6B.-5m0 D.1-m 2.下列各式中,正确的是( )A. =±4B.± =4C. =-3D. =-43.已知a>b>0,那么下列不等式组中无解的是( )A. B. C. D.4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40°(C) 先右转50°,后左转130° (D) 先右转50°,后左转50°5.解为的方程组是( )A. B. C. D.6.如图,在△ABC中,∠ABC=500,∠ACB=800,BP平分∠ABC,CP平分∠ACB,则∠BPC 的大小是( )A.10 cm2B.12 cm2C.15 cm2D.17 cm2(1) (2) (3)7某商场对顾客实行如下优惠方式:⑴一次性购买金额不超过1万元,不予优惠;⑵一次性购买金额超过1万元,超过部分9折优惠,某人第一次在该商场付款8000元,第二次又在该商场付款19000元,如果他一次性购买的话可以节省( )。

A、600元B、800元C、1000元D、2700元8.三个实数- ,-2,- 之间的大小关系( )A、- >- >-2B、- >-2>- x k b 1 .c o mC、-2>- >-D、- 9.如图,△A1B1C1是由△ABC沿BC方向平移了BC长度的一半得到的,若△ABC的面积为20 cm2,则四边形A1DCC1的面积为( )10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)&shy;C.(3,4)&shy;D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,11.49的平方根是________,算术平方根是______,-8的立方根是_____.12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=_______.17.若代数式的值不小于代数式的值,则的取值范围是。

2017-2018年人教版七年级下册数学期中考试卷(含答案)

2017-2018年人教版七年级下册数学期中考试卷(含答案)

2017-2018年人教版七年级下册数学期中考试卷(含答案)七年级数学科试卷(时间:120分钟 满分:100分)友情提示:亲爱的同学,现在是检验你半期来的学习情况的时候,相信你能沉着、冷静,发挥出平时的水平,祝你考出好的成绩。

一、细心填一填(每题2分,共24分)1. 在同一平面内,两条直线有 种位置关系,它们是 ;2.若直线a//b ,b//c ,则 ,其理由是 ;3.如图1直线AB ,CD ,EF 相交与点O ,图中AOE ∠的对顶角是 ,COF ∠的邻补角是 。

图34.如图2,要把池中的水引到D 处,可过C 点引CD ⊥AB 于D ,然后沿CD 开渠,可使所开渠道最短,试说明设计的依据: ;5.点P (-2,3)关于X 轴对称点的坐标是 。

关于原点对称点的坐标是 。

6.把“对顶角相等”写成“如果……那么……”的形式为 。

A B D C 1 2 A B C D 图2A F C EB D 图O7.一个等腰三角形的两边长分别是3cm和6cm,则它的周长是 cm.8.若点M(a+5,a-3)在y轴上,则点M的坐标为。

9.若P(X,Y)的坐标满足XY>0,且X+Y<0,则点P在第象限。

10.一个多边形的每一个外角等于30o,则这个多边形是边形,其内角和是。

11.直角三角形两个锐角的平分线所构成的钝角等于度。

12.如图3,四边形ABCD中,12∠∠与满足关系时AB//CD,当时AD//BC(只要写出一个你认为成立的条件)。

二、精心选一选(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题2分,共12分)题号 1 2 3 4 5 6答案1.下列各图中,∠1与∠2是对顶角的是:( )2.以下列各组线段为边,能组成三角形的是( ) A、2cm, 3cm, 5cm B、5cm, 6cm, 10cm C、1cm, 1cm, 3cm D、3cm, 4m, 9cm3.某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板,他购买的瓷砖形状不可以是( )A.正三角形 B.长方形 C.正八边形cD .正六边形4.在直角坐标系中,点P (-2,3)向右平移3个单位长度后的坐标为( ) A .(3,6) B.(1,3) C.(1,6) D.(3,3) 5. 如图4,下列条件中,不能判断直线a//b 的是( ) A 、∠1=∠3 B 、∠2=∠3 C 、∠4=∠5 D 、∠2+∠4=180°6.下列图形中有稳定性的是( ) A .正方形 B.长方形 C.直角三角形 D.平行四边形三.作图题。

新人教版2017-2018学年七年级(下)期中数学试卷及答案解析

新人教版2017-2018学年七年级(下)期中数学试卷及答案解析

2017-2018学年七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.下列各图中,∠1与∠2是对顶角的是()A. B. C. D.2.4的平方根是()A. 2B. ±2C. 2D. ±23.在下列所给出坐标的点中,在第二象限的是()A. (2,3)B. (−2,3)C. (−2,−3)D. (2,−3)4.在实数5,722,−83,0,−1.414,π2,36,0.1010010001中,无理数有()A. 2个B. 3个C. 4个D. 5个5.如图所示,点E在AC的延长线上,下列条件中不能判断BD//AC()A. ∠3=∠4B. ∠1=∠2C. ∠D=∠DCED. ∠D+∠ACD=180∘6.下列命题是假命题的是()A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7.如图,表示7的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A. (4,2)B. (−2,−4)C. (−4,−2)D. (2,4)9.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(−1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A. (a+3,b+5)B. (a+5,b+3)C. (a−5,b+3)D. (a+5,b−3)10.如图所示,将含有30∘角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35∘,则∠2的度数()A. 10∘B. 25∘C. 30∘D. 35∘二、填空题(本大题共4小题,共20.0分)11.若整数x满足|x|≤3,则使7−x为整数的x的值是______(只需填一个).12.如图,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70∘,则∠DOG=______.13.把9的平方根和立方根按从小到大的顺序排列为______.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为______(用n表示).三、解答题(本大题共9小题,共50.0分)315.计算:(1)100+−8(2)|3−2|−(−2)216.求下列各式中x的值:(1)2x2=4;(2)64x3+27=017.如图,直线a//b,点B在直线b上,AB⊥BC,∠1=55∘,求∠2的度数.18.完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF∠AGB=______(对顶角相等)∴∠EHF=∠DGF∴DB//EC(______)∴∠______=∠DBA(______)又∵∠C=∠D∴∠DBA=∠D∴DF//______(______)∴∠A=∠F(______).19.已知5a+2的立方根是3,3a+b−1的算术平方根是4,c是13的整数部分.(1)求a,b,c的值;(2)求3a−b+c的平方根.20.如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道.有以下两个方案:方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N 到D小区铺设的管道最短.在途中标出M、N的位置,保留画图痕迹;设方案一中铺设的支管道总长度为L1,方案二中铺设的支管道总长度为L2,则L1与L2的大小关系为:L1______L2(填“>”、“<”或“=”)理由是______.21.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场的坐标为______;超市的坐标为______.(3)请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.22.如图,长方形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(6,0),(0,10),点B在第一象限内.(1)写出点B的坐标,并求长方形OABC的周长;(2)若有过点C的直线CD把长方形OABC的周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.23.如图1,已知射线CB//OA,∠C=∠OAB,(1)求证:AB//OC;(2)如图2,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.①当∠C=110∘时,求∠EOB的度数.②若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.答案和解析1. B2. D3. B4. A5. B6. B7. A8. B9. D10. B11. 7(答案不唯一)12. 55∘13. −3<3<314. (2n,1)15. 解:(1)原式=10+(−2)=8;(2)原式=2−3−2=−3.16. 解:(1)2x2=4;x2=2解得:x=±2;(2)64x3+27=064x3=−27则x3=−2764.解得:x=−3417. 解:∵a//b,∴∠2=∠3.∵AB⊥BC,∴∠ABC=90∘,∴∠1+∠3=90∘,∴∠3=90∘−∠1=90∘−55∘=35∘,∴∠2=∠3=35∘.18. ∠DGF;同位角相等,两直线平行;C;两直线平行,同位角相等;AC;内错角相等,两直线平行;两直线平行,内错角相等19. 解:(1)∵5a+2的立方根是3,3a+b−1的算术平方根是4,∴5a+2=27,3a+b−1=16,∴a=5,b=2,∵c是13的整数部分,∴c=3;(2)将a=5,b=2,c=3代入得:3a−b+c=16,∴3a−b+c的平方根是±4.20. >;垂线段最短21. (4,3);(2,−3)22. 解:(1)∵A(6,0),C(0,10),∴OA=6,OC=10.∵四边形OABC是长方形,∴BC=OA=6,AB=OC=10,∴点B的坐标为(6,10).∵OC=10,OA=6,∴长方形OABC的周长为:2×(6+10)=32.(2)∵CD把长方形OABC的周长分为3:5两部分,∴被分成的两部分的长分别为12和20.①当点D在AB上时,AD=20−10−6=4,所以点D的坐标为(6,4).②当点D在OA上时,OD=12−10=2,所以点D的坐标为(2,0).23. (1)证明:∵CB//OA∴∠C+∠COA=180∘∵∠C=∠OAB∴∠OAB+∠COA=180∘∴AB//OC(2)①∠COA=180∘−∠C=70∘∵∠FOB=∠AOB,OE平分∠COF∴∠FOB+∠EOF=12(∠AOF+∠COF)=12∠COA=35∘②∠OBC:∠OFC的值不发生变化∵CB//OA∴∠OBC=∠BOA,∠OFC=∠FOA∵∠FOB=∠AOB∴∠FOA=2∠BOA∴∠OFC=2∠OBC∴∠OBC:∠OFC=1:2答案详解1. 解:A、∠1与∠2不是对顶角,故A选项错误;B、∠1与∠2是对顶角,故B选项正确;C、∠1与∠2不是对顶角,故C选项错误;D、∠1与∠2不是对顶角,故D选项错误.故选:B.根据对顶角的定义对各选项分析判断后利用排除法求解.本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2. 解:∵4=2,∴4的平方根是±2.故选:D.先化简4,然后再根据平方根的定义求解即可.本题考查了平方根的定义以及算术平方根,先把4正确化简是解题的关键,本题比较容易出错.3. 解:根据每个象限内点的坐标符号可得在第二象限内的点是(−2,3),故选:B.根据第二象限内点的坐标符号(−,+)进行判断即可.本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4. 解:无理数有:5,π,共2个,2故选:A.利用无理数的定义判断即可.此题考查了无理数,算术平方根,以及立方根,弄清无理数的定义是解本题的关键.5. 解:A、∵∠3=∠4,∴BD//AC,故本选项错误;B、根据∠1=∠2不能推出BD//AC,故本选项正确;C、∵∠D=∠DCE,∴BD//AC,故本选项错误;D、∵∠D+∠ACD=180∘,∴BD//AC,故本选项错误;故选:B.根据平行线的判定逐个判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.6. 解:A、对顶角相等是真命题;B、两直线平行,同旁内角互补,B是假命题;C、平行于同一条直线的两直线平行是真命题;D、同位角相等,两直线平行是真命题;故选:B.根据对顶角的性质、平行线的判定和性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7. 解:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出7的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.8. 解:∵点P位于x轴下方,y轴左侧,∴点P在第三象限;∵距离y轴2个单位长度,∴点P的横坐标为−2;∵距离x轴4个单位长度,∴点P的纵坐标为−4;∴点P的坐标为(−2,−4),故选:B.位于x轴下方,y轴左侧,那么所求点在第三象限;距离x轴4个单位长度,可得点P 的纵坐标;距离y轴2个单位长度,可得点P的横坐标.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;易错点的判断出所求点所在的象限.9. 解:∵线段CF是由线段AB平移得到的;点A(−1,4)的对应点为C(4,1),∴点B(a,b)的对应点F的坐标为:(a+5,b−3).故选:D.直接利用平移的性质得出对应点坐标的变化规律进而得出答案.此题主要考查了平移变换,正确得出坐标变化规律是解题关键.10. 解:如图,延长AB交CF于E,∵∠ACB=90∘,∠A=30∘,∴∠ABC=60∘,∵∠1=35∘,∴∠AEC=∠ABC−∠1=25∘,∵GH//EF,∴∠2=∠AEC=25∘,故选:B.延长AB交CF于E,求出∠ABC,根据三角形外角性质求出∠AEC,根据平行线性质得出∠2=∠AEC,代入求出即可.本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.11. 解:∵|x|≤3,∴−3≤x≤3,则使7−x为整数的x的值是:7等.故答案为:7(答案不唯一).直接得出x的取值范围,进而得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出x的取值范围是解题关键.12. 解:∵∠AOE=70∘,∴∠BOF=70∘,∵OG平分∠BOF,∴∠GOF=35∘,∵CD⊥EF,∴∠DOF=90∘,∴∠DOG=90∘−35∘=55∘,故答案为:55∘.首先根据对顶角相等可得∠BOF=70∘,再根据角平分线的性质可得∠GOF=35∘,然后再算出∠DOF=90∘,进而可以根据角的和差关系算出∠DOG的度数.此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13. 解:∵9的平方根为−3,3,3,9的立方根为93<3.∴把9的平方根和立方根按从小到大的顺序排列为−3<93<3.故答案为:−3<9先分别得到3的平方根和立方根,然后比较大小.本题考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14. 解:由图可知,n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),所以,点A4n+1(2n,1).故答案为:(2n,1).根据图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后根据变化规律写出即可.本题考查了点的坐标的变化规律,仔细观察图形,分别求出n=1、2、3时对应的点A4n+1的对应的坐标是解题的关键.15. (1)直接利用算术平方根以及立方根的性质分别化简得出答案;(2)直接利用绝对值以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16. (1)直接利用平方根的定义计算得出答案;(2)直接利用立方根的定义计算得出答案.此题主要考查了平方根和立方根,正确把握相关定义是解题关键.17. 根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.18. 证明:∵∠AGB=∠EHF,∠AGB=∠DGF(对顶角相等),∴∠EHF=∠DGF,∴DB//EC(同位角相等,两直线平行),∴∠C=∠DBA(两直线平行,同位角相等),又∵∠C=∠D,∴∠DBA=∠D,∴DF//AC(内错角相等,两直线平行),∴∠A=∠F(两直线平行,内错角相等).故答案为:∠DGF;同位角相等,两直线平行;C;两直线平行,同位角相等;AC;内错角相等,两直线平行;两直线平行,内错角相等.根据对顶角相等推知∠EHF=∠DGF,从而证得两直线DB//EC;然后由平行线的性质得到∠DBA=∠D,即可根据平行线的判定定理,推知两直线DF//AC;最后由平行线的性质,证得∠A=∠F.本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.19. (1)直接利用立方根以及算术平方根的定义得出a,b,c的值;(2)利用(1)中所求,代入求出答案.此题主要考查了估算无理数的大小以及算术平方根和立方根,正确把握相关定义是解题关键.20. 解:图形如右图所示,由题意可得,支管道总长度为L1为线段CD的长,支管道总长度为L2为线段CD与线段DN的长,∴L1>L2(垂线段最短),故答案为:>,垂线段最短.根据题意可以作出合适的图形,并得到L1与L2的大小关系和相应的理由,本题得以解决.本题考查作图−应用与设计作图,最短路径,解答本题的关键是明确题意,作出相应的图形.21. 解:(1)如图所示:(2)市场坐标(4,3),超市坐标:(2,−3);(3)如图所示:△A1B1C1的面积=3×6−12×2×2−12×4×3−12×6×1=7.(1)以火车站为原点建立直角坐标系即可;(2)根据平面直角坐标系写出点的坐标即可;(3)根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可.此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22. (1)根据矩形的性质,点B的横坐标与点A的横坐标相等,纵坐标与点C的纵坐标相等解答,进而利用长方形的周长解答即可;(2)求出被分成的两个部分的周长,再根据点D在边OA上或AB上确定出点D坐标即可;考查了点的坐标的确定,矩形的性质,熟练掌握矩形的性质是解题的关键,难点在于(2)求出被分成的两个部分的周长并确定出点D的位置.23. (1)根据平行线的性质即可得出∠COA的度数,再根据∠COA+∠OAB=180∘,可得OC//AB;(2)①根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=12∠COA,从而得出答案;②根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017学年新人教版七年级数学下册期中考试试题
一、选一选(每题3分,共30分)
1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )
A.130°
B.140°
C.150°
D.160°
2.如图,把一块含有45°角的直角三角板的两个顶点放
在直尺的对边上,如果∠1=20°,那么∠2等于( ) A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”
位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )
A .(-1,1)
B .(-2,-1)
C .(-3,1)
D .(1,-2)
4.下列现象属于平移的是( )
A .冷水加热过程中小气泡上升成为大气泡
B 急刹车时汽车在地面上的滑动
C .投篮时的篮球运动
D .随风飘动的树叶在空中的运动
5.下列各数中,是无理数的为( )
A .39 B. 3.14 C. 4 D. 7
22-
6.若a 2=9, 3b =-2,则a+b=( )
A. -5
B. -11
C. -5 或 -11
D. ±5或±11
7、下列计算正确的是( )
A 、4=±2
B 、±36=6
C 、532=+
D 、3)3(2=-
8、估算227-的值( )
A 、在1和2之间
B 、在2和3之间
C 、在3和4之间
D 、在4和5之间
9、如图所示下列条件中,不能判定AB//DF 的是( )
A 、∠A+∠2=180°
B 、∠A=∠3
C 、∠1=∠4
D 、∠1=∠A
10、若点P (m+3,m+1)在x 轴上,则点P 的坐标为( )
A 、(0,-2)
B 、(2,0)
C 、(4,0)
D 、(0,-4)
11、若点M (3,-2)与点N (x 、y )在同一条平行于x 轴的直线上,且MN=1,则N 点的坐标为( )
A 、(4,-2)
B 、(3,-1)
C 、(3,-1)或(3,-3)
D 、(4,-2)或(2,-2)
12、 如图,已知AB//CD//EF ,BC//AD ,AD 平分∠BAD ,
那么图中与∠AGE 相等的角有( )
A 、5个
B 、4个
C 、3个
D 、2个
13、 二元一次方程3x -4y=3402的解是( )
A 、⎩⎨⎧==15613215y x
B 、⎩⎨⎧==15623216y x
C 、⎩⎨⎧==1563
3218y x D 、⎩⎨⎧==15643220y x
14、若121+a x y -2b 与-b x -231y 2的和是单项式,则a 、b 的值分别是( ) A 、a=2,b=-1 B 、a=2,b=1 C 、a=-2,b=1 D 、a=-2,b=-1
15、四个电子宠物排座位,一开始小鼠、小猴、小兔、小猫分别坐在1、2、3、4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列位置,第三次上下两排交换,第四次再左右两列交换……这样一直下去,则第2016次变换位置后,小兔坐在( )号位上。

1
2 鼠 猴 → 兔 猫 → 猫 兔 ……
3
4 兔 猫 鼠 猴 猴 鼠 A 、1 B 、2 C 、3 D 、4 16下列说法中(1)同位角相等;(2)点P (-1,m 2+1)在第二象限;(3)23是偶数;(4)无理数是无限小数,其中正确的结论是( )个
A 、1
B 、2
C 、3
D 、4
二、填一填(每题3分,共18分)
已知y=81x 2++-)(,则xy 的立方根是
通过平移把线段AB 先向右平移2个单位再向下平移1个单位得到线段A ′B ′,若点A ′的坐标为(4,-2),则点A 的坐标为
13、已知点P 的坐标为(2-a ,3a+6),若点P 到坐标轴
的距离相等,则P 点坐标为____________
如图AB ∥DE ,∠ABC=80°,∠CDE=140°,
则∠BCD=________
命题:若x 2=9,则x=3是____________命题(填 “真”或“假”)
16、对于有理数x 、y 定义新运算x ☆y=ax+by -1,其中a 、b 是常数,已知1☆2=8,(-3)☆3=-1,则4☆(-5)=___________
三、做一做(17题每小题5分,18~21题每题8分,22、23每题9分,24题12分,共72分)
17、计算与求值
(1)(-2)2×3233227)2
1()4()4(-⨯-+- (5分)
(2)求x 的值,2(x 2-2)3-16=0 (5分)
(3)如图直线AB 、CD 相交于点O ,OE 平分∠BOC ,∠AOD :∠BOE=7:1,求∠AOF 的度数。

(8分)
19、如图已知∠2=3∠1,且∠1+∠3=90°,求
证:
AB//CD 。

(8分)
20.已知关于x 、y 的方程组⎩⎨⎧=++=+k
y x y x 322k 53的解满足x+y=2,求k 的值。

(8分)
21.已知(ab -2)2+1-b =0,求)
2014)(2014(1)2)(2(1)1)(1(11++++++++++b a b a b a ab Λ的值。

(8分)
22.如图已知∠1=∠2,∠A=∠D ,求证∠F=∠C 。

(9分)
23.已知点A (-1,0)B (3,0),点C 在y 轴上,且△ABC 的面积为10,求:点C 的坐标。

(9分)
1
2
24.如图长方形OABC的位置如图所示,点B的坐标为(8,4),点P从点C出发向点O移动,速度为每秒1个单位;点Q同时从点O出发向点A移动,速度为每秒2个单位;
(1)请写出点A、C的坐标。

(3分)
(2)向几秒后,P、Q两点与原点距离相等。

(4分)
(3)在点P、Q移动过程中,四边形OPBQ的面积有何变化,说明理由。

(5分)
2016年春季期中考试七年级数学参考答案
选一选
1~5 D C D B D 6~10 A C A C B
填一填
11、-2 12、(2,-1)13、(3,3)或(6,-6)
14、40° 15、假 16、-4
做一做
17、(1)12 (2)x=2或x=-2
18、110°

k=4
2016
2015

(0,5)或(0,-5)
(1)A(8,0) C(0,4)
(2)设t秒后,P、Q与原点距离相等,依题意得:
4-t=2t
∴t=
3
4
(3)在P、Q移动过程中,四边形OPBQ面积保持不变均为16,理由如下:
设移动时间为t秒,于是有
CP=t OQ=2t ∴AQ=8-2t
∵S
四边形OPBQ =S
长方形OABC
-S△BCP-S△BAQ
∴S
四边形OPBQ =8×4-
2
1
×8×t-
2
1
×4×(8-2t)
=32-4t-16+4t =16。

相关文档
最新文档