应力与应变分析
工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
工程力学中的应力-应变分析如何进行?

工程力学中的应力-应变分析如何进行?工程力学中的应力应变分析如何进行?在工程力学的领域中,应力应变分析是一项至关重要的工作。
它不仅帮助我们理解材料在受力时的行为,还为工程设计和结构安全性评估提供了关键的依据。
那么,应力应变分析究竟是如何进行的呢?要进行应力应变分析,首先得清楚什么是应力和应变。
简单来说,应力是材料内部单位面积上所承受的力,而应变则是材料在受力作用下发生的相对变形。
我们先来看应力。
应力可以分为正应力和切应力。
正应力是垂直于作用面的应力分量,比如一根杆子受到拉伸,其横截面上的应力就是正应力。
切应力则是平行于作用面的应力分量,像轴在扭转时,其横截面上就会产生切应力。
计算应力时,需要明确受力的情况和作用面的面积。
以简单的拉伸为例,如果一个杆子受到的拉力为 F,横截面积为 A,那么正应力就等于 F/A。
但实际情况往往复杂得多,可能涉及到不均匀的受力分布或者复杂的几何形状。
接下来谈谈应变。
应变分为线应变和角应变。
线应变表示长度的相对变化,比如杆子在拉伸时长度的增加量与原长的比值就是线应变。
角应变则反映了角度的变化,常见于物体的扭转或剪切变形。
为了准确测量应变,通常会使用各种应变测量仪器,比如电阻应变片。
这些仪器能够将微小的应变转化为电信号,从而实现测量和记录。
在实际的工程问题中,应力和应变之间存在着一定的关系,这就是材料的本构关系。
不同的材料具有不同的本构关系,比如线性弹性材料遵循胡克定律,即应力与应变成正比;而对于塑性材料,其应力应变关系则更加复杂。
要进行应力应变分析,第一步是确定结构的受力情况。
这包括外力的大小、方向和作用点,以及内部约束力的分布。
通过对结构进行力学建模,可以将复杂的实际结构简化为便于分析的力学模型。
然后,根据所选的力学模型,运用相应的力学原理和公式来计算应力和应变。
这可能涉及到材料力学中的拉伸、压缩、弯曲、扭转等各种基本变形的理论,以及结构力学中的静定和超静定结构的分析方法。
材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
应力应变分析

§10.1 应力的概念 一点处的应力状态
1.内力在变形体内某一截面上分布的描述
用截面法求某一截面上的内力,得出该截面上的
内力分量:FN , FS ,T , M ——截面分布内力系向截
y
FR FN
面形心简化后的等效力系 x
FS
T
为正确描述变形,应在 该截面上的每一点,描
Pi
2
注意
同理,某点的三个主应力中,任意二个主 应力都可找出一组切应力极值,分别为:
主切应力
P1
2
2
3
P2
1
3
2
P3
1
2
2
该点单元体的最大切应力应为三者当中的最大者,即
max
1
2
3
2
2
(10.5)
2
1
1
1
3 P3所在平面
3 P1 所在平面
3 P2 所在平面
而最大切应力所在平面的法向应为1,3两方向 的角平分线方向。
求
1,
2,
,
3
max
y
80
解: z 50MPa 为一个主应力
x
在 x,y 平面内
z
50
80 2
80 2 2
1 90MPa
2 10MPa
3 50MPa
302
40 50
9010MPa
50
Dy
10
C
max
1 3
2
70MPa
30
90
Dx
§11.6 应变分析
1. 某点处(单元体的)变形的描述——应变
x y
2
x
材料力学应力与应变分析

在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。
工程力学中的应力和应变分析

工程力学中的应力和应变分析工程力学是应用力学原理解决工程问题的学科,它研究物体受外力作用下的力学性质。
应力和应变是工程力学中的重要概念,它们对于分析材料的强度和变形特性具有重要意义。
本文将就工程力学中的应力和应变进行详细分析。
一、应力分析应力是指物体单位面积上的内部分子间相互作用力。
根据作用平面的不同,可以分为法向应力和剪切应力两种。
1. 法向应力法向应力是指力作用垂直于物体某一截面上的应力。
根据物体受力状态的不同,可以分为拉应力和压应力两种。
- 拉应力拉应力是指作用于物体截面上的拉力与截面面积的比值。
拉应力的计算公式为:σ = F/A其中,σ表示拉应力,F表示作用力,A表示截面面积。
- 压应力压应力是指作用于物体截面上的压力与截面面积的比值。
压应力的计算公式与拉应力类似。
2. 剪切应力剪切应力是指作用在物体截面上切向方向上的力与截面面积的比值。
剪切应力的计算公式为:τ = F/A其中,τ表示剪切应力,F表示作用力,A表示截面面积。
二、应变分析应变是指物体由于外力的作用而产生的形变程度。
根据变形情况,可以分为线性弹性应变和非线性应变。
1. 线性弹性应变线性弹性应变是指物体在小应力下,应变与应力成正比,且随应力消失而恢复原状的应变现象。
线性弹性应变的计算公式为:ε = ΔL/L其中,ε表示线性弹性应变,ΔL表示物体的长度变化,L表示物体的原始长度。
2. 非线性应变非线性应变是指物体在较大应力下,应变与应力不再呈线性关系的应变现象。
非线性应变的计算公式较为复杂,需要根据具体情况进行分析。
三、应力和应变的关系应力和应变之间存在一定的关系,常用的关系模型有胡克定律和杨氏模量。
1. 胡克定律胡克定律是描述线性弹性材料的应力和应变之间关系的基本模型。
根据胡克定律,拉应力和拉应变之间的关系可以表示为:σ = Eε其中,σ表示拉应力,E表示弹性模量,ε表示拉应变。
2. 杨氏模量杨氏模量是描述材料抵抗拉伸或压缩变形能力的物理量。
材料力学:第八章-应力应变状态分析

正负符号规定:
切应力 t - 使微体沿顺时针 旋转为正 方位角 a - 以 x 轴为始边、逆时针旋转 为正
斜截面应力公式推导 设α斜截面面积为dA, 则eb侧面和bf 底面面积分别为dAcosα, dAsinα
由于tx 与 ty 数值相等,同时
sa+90 ,ta+90
E
sa+90 ,ta+90
结论: 所画圆确为所求应力圆
应力圆的绘制与应用3
应力圆的绘制
已知 sx , tx , sy ,
画相应应力圆
t
先确定D, E两点位置, 过此二点画圆即为应力圆
Ds x ,t x , E s y ,t y
t
C OE
s 2 , 0
s 1 , 0
应力圆绘制 作D, E连线中垂线,与x轴相交即为应力圆圆心
tb sb
t
sa
O
C
ta
D
sa ,ta
t
s
E
sb ,tb
O
D
sa ,ta
C
s
E
sb ,tb
由|DC|=|CE|,可得sC值:
sC
s
2 β
+
t
2 β
s
2 α
+
t
2 α
2 sα sβ
点、面对应关系
转向相同, 转角加倍 互垂截面, 对应同一直径两端
应变状态
构件内一点处沿所有方位的应变总况或集合, 称为该点处的 应变状态
研究方法
环绕研究点切取微体, 因微体边长趋于零, 微体趋于所研究 的点, 故通常通过微体, 研究一点处的应力与应变状态
工程力学中的应变与应力分析方法总结和应用研究

工程力学中的应变与应力分析方法总结和应用研究工程力学是一门研究物体在受力作用下的运动和变形规律的学科,应变与应力分析是工程力学中的重要内容。
本文将总结和探讨工程力学中的应变与应力分析方法,并探讨其在实际工程中的应用。
一、应变分析方法应变是物体在受力作用下发生的变形程度的度量。
应变分析方法主要有拉伸应变、剪切应变和体积应变等。
1. 拉伸应变:拉伸应变是指物体在受拉力作用下发生的变形程度。
拉伸应变的计算公式为ε = ΔL / L0,其中ΔL为物体在受拉力作用下的变形长度,L0为物体的初始长度。
拉伸应变的大小与物体的材料性质有关。
2. 剪切应变:剪切应变是指物体在受剪切力作用下发生的变形程度。
剪切应变的计算公式为γ = Δx / h,其中Δx为物体在受剪切力作用下的变形长度,h为物体的高度。
剪切应变的大小与物体的切变模量有关。
3. 体积应变:体积应变是指物体在受力作用下发生的体积变化程度。
体积应变的计算公式为εv = ΔV / V0,其中ΔV为物体在受力作用下的体积变化量,V0为物体的初始体积。
体积应变的大小与物体的体积模量有关。
二、应力分析方法应力是物体内部受力情况的描述,应力分析方法主要有拉应力、剪应力和体应力等。
1. 拉应力:拉应力是指物体在受拉力作用下单位面积上的受力情况。
拉应力的计算公式为σ = F / A,其中F为物体受到的拉力,A为物体的受力面积。
拉应力的大小与物体的弹性模量有关。
2. 剪应力:剪应力是指物体在受剪切力作用下单位面积上的受力情况。
剪应力的计算公式为τ = F / A,其中F为物体受到的剪切力,A为物体的受力面积。
剪应力的大小与物体的剪切模量有关。
3. 体应力:体应力是指物体内部各点上的应力情况。
体应力的计算公式为σ =F / A,其中F为物体受到的力,A为物体的横截面积。
体应力的大小与物体的杨氏模量有关。
三、应变与应力分析方法的应用研究应变与应力分析方法在实际工程中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 1.2.3 八面体应力与等效应力
即主应力空间的{111}等倾面上的应力。
这组截面的方向余弦为:
lx ly lz
1 3
54o44'
正应力
8
1 3
(1
2
3)
1 3
I1
剪应力
8
1 3
(1 2 )2 ( 2 3)2 ( 3 1)2
§ 1.5 应变与位移关系方程
§ 1.5.1 几何方程 § 1.5.2 变形连续方程
§ 1.6 点的应变状态
指围绕该点截取的无限小单元体的各棱长及棱间 夹角的变化情况。
可表示为张量形式:
ij xxy
.
y
.
.
xz yz z
( i, j = x, y, z )
应力(stress)
应力S是内力的集度 内力和应力均为向量
lim P
S A0 A
应力的单位:1Pa=1N/m2 =1.0197kgf/mm2
1MPa=106 N/m2
应力是某点A的坐标的函数,即受力体内不同点 的应力不同。
应力是某点A在坐标系中的方向余弦的函数,即 同一点不同方位的截面上的应力是不同的。
——即变形前后尺寸比值的自然对数
应力应变分析的相似性与差异性
相似性:张量表示、张量分析、张量关系相似
ij
(i,
j
x,
y,
z)
1,2,3
I1,
I2,
I3
max
,8,8
' ij
,
m
ij (i, j x, y, z) 1,2,3 J1, J2, J3 max , 8,8 i'j ,m
应力可以进行分解Sn n、n(n—normal,法向)
某截面(外法线方向为n)上的应力:
全应力(stress) 正应力(normal sress) 剪应力(shear stress)
Sn n n n x y z n x y z
或者
Snn
ijlil j ijli
e
2 2(1 )
(
(1 2 )2 (2 3)2 (3 1)2
(——泊松比)
对于塑性变形:
e
2( 3
(1 2 )2 (2 3)2 (3 1)2
真实应力和真实应变含义:
tr p(t) A(t)
表示某瞬时的应力值
tr ln(lt l0 )
差异性:
概念:应力 研究面元ds上力的集度 应变 研究线元dl的变化情况
内部关系:应力—应力平衡微分方程 应变—应变连续(协调)方程 弹性变形:相容方程
塑性变形:体积不变条件
等效关系: 等效应力—弹性变形和塑性变形表达式相同
等效应变—弹性变形和塑性变形表达式不相同
对于弹性变形:
(i, j x, y, z)
x
x
xy
y
xz
z
0
即 (不计体力)
yx
x
y
y
yz
z
0
zx
zy
z
0
x
y
z
物理意义:表示变形体内无限相邻两质点的点的应力状态 的关系。对弹性变形和塑性变形均适用。
.x'
xy
' y
xz yz
m
1 0
0 1
0 0
.
. z .
.
' z
0 0 1
' x
x
m,
' y
y
m
' z
z
m
§ 1.4 应力平衡微分方程
直角坐标下的应力平衡微分方程*
ij 0 i
3 I1 2 I2 I3 0
( 3 I1 2 I2 I3 0)
( 1)( 2)( 3) 0
§ 1.2.2 主剪应力和最大剪应力
主剪应力(principal shear stress):极值剪应力(不为零) 平面上作用的剪应力。主应力空间的{110}面族。
表示对某瞬时之前的应变的积分
ห้องสมุดไป่ตู้
最大剪应力(maximun shear stress):
通常规定:
1 2 3
则有最大剪应力:
max
1 3 2
或者: 其中:
且有:
max max{ 12 , 23 , 31 }
12
1
2
2
, 23
2
3 2
,31
3
1 2
12 23 31 0
应变张量(strain tensor)也可进行与应力张 量类似的分析。
§ 1.7 应变增量
全量应变与增量应变的概念 前面所讨论的应变是反映单元体在某一变 形过程终了时的变形大小,称作全量应变 增量应变张量
d ij
1 2 xi
(dU j )
x j
(dUi )
§ 1.8 应变速度张量
设某一瞬间起dt时间内,产生位移增量
dUi,则应有dUi=Vidt。其中Vi为相应位移
速度。代入增量应变张量,有:
d ij
1 2 xi
(V jdt)
x j
(Vi
dt
)
1 Vi 2 x j
Vi xi
dt
n
Sn2
2 n
(求和约定的缩写形式)
§ 1.2 点的应力状态分析
§ 1.2.1主应力及应力张量不变数 § 1.2.2主剪应力和最大剪应力 § 1.2.3八面体应力与等效应力
§ 1.2.1 主应力及应力张量不变数
设想并证明主应力平面(其上只有正应力,剪应力 均为零)的存在,可得应力特征方程:
应力与应变分析
§ 1.1应力与点的应力状态 § 1.2点的应力状态分析 § 1.3应力张量的分解与几何表示 § 1.4应力平衡微分方程 § 1.5应变与位移关系方程 § 1.6点的应变状态 § 1.7应变增量 § 1.8应变速度张量 § 1.9主应变图与变形程度表示
§ 1.1 应力与点的应力状态
外力(load)与内力(internal force) 外力P:施加在变形体 上的外部载荷。 内力Q:变形体抗衡外 力机械作用的体现。
总应力
P8
2 8
2 8
八面体上的正应力与塑性变形无关,剪应力与塑性变形有
关。
§ 1.3 应力张量的分解与几何表示
ij
' ij
ij m
(i,j=x,y,z)
其中
m
1 3
(
x
y
z
)
即平均应力,
为柯氏符号。
即
x xy
.
y
xz yz
令 即为应变速率张量 ij
1
Vi
2 x j
V j xi
§ 1.9 主应变图与变形程度表示
主变形图是定性判断塑性变形类型的图示方法。 主变形图只可能有三种形式
变形程度表示
绝对变形量 ——指工件变形前后主轴方向上尺寸
的变化量 相对变形
——指绝对变形量与原始尺寸的比值, 常称为形变率 真实变形量