城市生活垃圾焚烧炉渣的特性分析
城市垃圾焚烧炉内灰渣的性质及结渣机理初探

城市垃圾焚烧炉内灰渣的性质及结渣机理初探摘要:介绍了城市垃圾焚烧灰渣基本的物理化学性质,初步探讨了垃圾焚烧处理中的积灰、结渣形成的机理,为焚烧炉的正常运行提供科学的保证,为灰渣的深度开发利用及污染防治提供科学依据。
关键词:垃圾焚烧残渣结渣机理再利用1 垃圾焚烧残渣的基本性质为了正确地处理、管理城市垃圾焚烧后的灰渣,应全面了解这些灰渣的物理和化学性质,如灰渣的粒径大小分布、表面积、形态、密度、组成及化学性质等。
1.1 垃圾焚烧残渣的化学组成垃圾焚烧后灰烬的基本化学组成见表1。
1.2 城市垃圾焚烧残渣城市垃圾焚烧后的残渣主要包括飞灰和底渣。
根据Ontiveros J L ,Clapp T L and Kosson D S等人的研究[2],将垃圾焚烧炉的飞灰按粒径分为7档:〈20μm,20~41μm,42~60μm,61~110μm,111~149μm,150~230μm,〉230μm。
粒径大于230μm的,主要是焦炭的薄片,焦炭片越少,颗粒燃烧得越完全,它与第2次供风有密切的关系。
对颗粒的密度和表面积进行分析,测量表明:飞灰密度的大小可表明物料的燃烬性,密度越大燃烬性越好;飞灰的密度越大则有更大的表面积,灰表面积随粒径的减小而增大,这种现象与炉的效率或装置的收集效率有关。
通过分析灰的固体总挥发度可考察各个组成未燃烬的情况。
城市垃圾焚烧飞灰最多的颗粒主要是黑色和白色颗粒,形状包括扁平和园状型的,成渣结块时也有球型的,然而,球型的粒子不太多。
Taylor[3]用碎海绵、卷纸状、画板状等词语来描述垃圾焚烧飞灰的形状。
通过电子扫描图可见飞灰晶型结构的形成, Cahill and Newland [4]等人用挥发富集理论来解释,铝和硅的气化温度比焚烧温度高,因而成为其他挥发元素的晶核。
Furuya[5]等人分析得到飞灰颗粒为CaSO4型。
但Ontiveros J L, Clapp T L and Kosson D S[2]等人对飞灰样品的研究表明,它们的晶体结构除了CaSO4型之外,还有可能有NaCl 或KCl型。
生活垃圾焚烧炉渣特性分析

生活垃圾焚烧炉渣特性分析摘要:由于生活垃圾焚烧炉渣为一般固体废物,在生活垃圾管理及技术研究中其重视度远低于飞灰、渗沥液、烟气等;而炉渣规范化综合利用是建设现代化生活垃圾焚烧处理厂的必然要求。
通过对生活垃圾焚烧产生的炉渣特性进行分析,为炉渣的预处理和综合利用提供基础和科学依据。
关键词:生活垃圾焚烧;炉渣;特性1物理性质城市生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。
未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、陶瓷碎片、木屑及少量布条、塑料、金属制品等物质组成。
焚烧炉渣形状表现为完全中空的球体或者内部包含有数量众多小球的子母球体,呈不规则蜂窝状,表面多为玻璃质,粒径组成在2~50mm之间(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。
基本符合道路建材中集料的级配要求。
由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热酌减率反映垃圾的焚烧效果,一般较低,小于3%;松散堆置时的密度为1.2g/m3左右,压实堆置时的密度为1.5g/m3左右。
2化学性质炉渣呈碱性,新鲜炉渣的pH值一般在10以上。
焚烧炉渣主要由硅酸盐玻璃相、矿物相的物质组成。
焚烧炉渣中高浓度的硅酸盐、以及Ca、K、Na、Mg等碱(土)金属元素,具有较强的酸缓冲能力。
主要矿物成分有SiO2、Al2O3、CaO、Fe2O3等,其中,SiO2是焚烧炉渣的主要组成材料,Fe-Al氧化物在城市生活垃圾焚烧炉渣中大量存在。
生活垃圾焚烧炉渣中含有相当一部分富含铁的组分,炉渣含铁量约占焚烧炉渣质量的5%,在新鲜炉渣中,铁元素的存在形式主要有尖晶石类含铁物质(Fe3O4以及含Al-、Ti-的衍生物),含铁合金(包括Fe-P,Fe-S,Fe-Cu-Pb),赤铁矿(Fe2O3)和未燃烧的单质铁(Fe)形式。
(完整版)生活垃圾焚烧炉渣性质及处置技术

1、生活垃圾焚烧炉渣性质(1)炉渣的物理性能生活垃圾焚烧炉渣是生活垃圾焚烧的副产物,包括炉排上残留的焚烧残渣和从炉排间掉落的颗粒物,呈黑褐色,原炉渣有刺激性气味,经过处理后气味减弱。
未经处理的焚烧炉渣主要由灰渣、碎玻璃和砖块、陶瓷碎片、木屑,以及少量碎布条、塑料、金属制品等物质组成。
碎玻璃、陶瓷碎片等主要来自于工程中的建筑垃圾,但只要其粒径大小不超过5mm,就不会影响炉渣多孔砖的整体性能。
金属制品主要来自于人们的生活用品,如易拉罐、钉子、铁罐等,并且其中的单质铁会氧化,产生锈蚀,影响砖的性能。
布条、塑料等物质是由于生活垃圾在焚烧过程中燃烧不够充分而未能去除。
炉渣中还含有极少量的有色金属,在公路基层应用过程中可能会由于和碱反应产生H2而破坏路面,大颗粒金属可能会损坏施工设备,对施工的危害较大,应尽可能地除去;炉渣中的可燃物含量较低,5mm以上颗粒中的可燃物含量在0.06~1.34%。
可燃物的存在不利于资源化利用,如影响应用时路面的长期稳定性,影响无机结合料与炉渣的结合,而降低材料强度。
因此,该将这些物质尽量去除。
经过预处理的炉渣只含有少量的碎玻璃、砖块和陶瓷碎片,布条、塑料等有机物几乎全部去除。
由于炉渣主要物理组分质地坚硬,因而作为集料使用时能保证一定的强度。
(2)炉渣的含水率、热灼减率、堆积密度、吸水率由于水淬降温排渣作用,炉渣的含水率约为12.0%~18.9%,随着堆积时间、天气等因素上下波动;炉渣热灼减率反映垃圾的焚烧效果,一般较低,为1.57%~3.16%;炉渣堆积密度在1150kg/m3~1350kg/m3之间,吸水率为37%左右。
说明炉渣是一种多孔的轻质材料,强度不高。
(3)炉渣的粒径分布炉渣粒径分布较均匀,主要集中在2~50mm的范围内(占60.8%~7.68%),小于0.074mm的颗粒含量在0.06%~1.36%。
基本符合道路建材中集料的级配要求。
(4)炉渣化学成分预处理后的炉渣主要化学成分及含量为:硅35%~50%、钙7%~15%、铝3.5%~7.0%、铁3.0%~6.0%、钠2.5%~8.0%、钾1.3%~3.0%、磷0.7%~3.0%,不同地点、不同批次的炉渣主要化学组成接近,由此可认为预处理后的炉渣的化学成分相对比较稳定。
城市生活垃圾焚烧灰渣及其性质分析

关 键词 :城市 生 活垃 圾 焚烧 灰 渣
底灰
烟 气 净 化系 统 飞灰
混 合 灰渣
性 质
成的影响也不 可忽视 。 因此, 必须寻找合 适的处理处
1 前 言
20 0 2年, 上海浦东新区生活垃圾焚烧厂( 9 f ) 1 5 d 0 和上 海江桥生活垃圾焚烧厂一期工程( 0 t ) 1 0/ 都将 0 d 相继建 成 并运行 投产 , 计每 年两 厂一 共将产 生约 预 1 8万 t 左右灰 渣。 灰渣 ( 飞灰和炉渣 的总称 ) 尤其是 , 飞灰 中, 存在含量较高的铅( b) P 和镉 ( d 等重金属, C ) 以及极少量 的二嗯 噗和呋喃等有机污染物 , 若处理不
当, 对环境造成 很大危害 。 会
置 方 法 消 纳 这 些灰 渣 。
2 灰 渣 的产 生 及分 类
焚烧可使城市 生活垃圾 的体积 减少 9 %, 量减 0 质 少 7 %[1我国将焚烧灰渣分 为炉渣和 飞灰 。 0 】 , 炉渣
是 指燃 烧 后 剩 留在 炉 床 上 的产 物 , 飞 灰 是 指 在 烟 气 而
烟气 净 化 系统 飞灰 ( P e i u s A C rsd e ) 烟 灰 f s ( l a h) y
混合 灰 渣( o i e a h) c mb n d s
底 灰 、 气 净 化 系统 飞 灰 和 热 回收 系统 飞 灰 的混 合 物 。 国的 焚 烧 厂 烟 美
311底 灰( .. 即炉渣 ) 是灰渣 的主要部分 , 大约 占灰 渣
3 灰 渣 的 性 质
31物 理 性质 .
一
第一作者章骅 , ,98 生,9 6 女 17 年 19 毕业 于 同济 大学, 为 同 现
生活垃圾焚烧炉渣

生活垃圾焚烧炉渣
生活垃圾焚烧炉渣是指在生活垃圾焚烧过程中产生的固体废物,它是焚烧后残
留下来的灰渣和废渣。
随着城市化进程的加快,生活垃圾的数量不断增加,焚烧处理成为一种常见的垃圾处理方式。
然而,焚烧处理生活垃圾所产生的渣滓也引起了人们的关注。
生活垃圾焚烧炉渣的处理和利用成为了环保领域的热点话题。
一方面,焚烧炉
渣中含有大量的有害物质,如重金属、氯化物等,如果随意丢弃或未经处理就会对环境和人体健康造成严重影响。
另一方面,焚烧炉渣中也含有一定量的可回收物质,如玻璃、金属等,如果能够有效利用,不仅可以减少资源浪费,还可以降低对环境的影响。
针对生活垃圾焚烧炉渣的处理和利用问题,各地政府和环保部门都在积极探索
解决方案。
一些地区已经建立了专门的焚烧炉渣处理厂,采用物理、化学等方法对渣滓进行处理,将有害物质降到最低,同时尽可能地回收利用可回收物质。
此外,一些科研机构也在研究开发新的处理技术,希望能够找到更加环保、高效的处理方法。
除了政府和科研机构的努力,公众的参与也是解决生活垃圾焚烧炉渣问题的关键。
大家可以从日常生活中做起,垃圾分类、减少使用一次性包装、鼓励回收利用等措施都可以有效减少生活垃圾的数量,从根本上减少焚烧炉渣的产生。
总的来说,生活垃圾焚烧炉渣是一个复杂的环保问题,需要政府、科研机构和
公众共同努力才能找到解决方案。
通过合理的处理和利用,我们可以减少对环境的污染,保护人类健康,实现可持续发展的目标。
希望在不久的将来,我们能够看到生活垃圾焚烧炉渣得到有效处理和利用,成为环境保护的一部分。
《安全环境-环保技术》之垃圾焚烧炉渣综合利用的现状分析

垃圾焚烧炉渣综合利用的现状分析炉渣是生活垃圾焚烧过程中不可避免产生的副产物,具有产生量大、资源化潜力高的特性。
随着我国生活垃圾焚烧发电厂建设管理水平的提高,炉渣规范化综合利用已经成为焚烧厂管理的重点关注问题。
为此有必要对焚烧炉渣综合利用项目进行调研分析,总结适用的综合利用技术路线与运行管理建议,从而为进一步规范与提高我国焚烧炉渣综合利用水平提供技术支持。
1 焚烧炉渣综合利用总体情况1.1 焚烧炉渣综合利用特性分析焚烧炉渣是生活垃圾焚烧过程伴生副产物,其产生量约为进厂垃圾量的20%,按2017年全国生活垃圾焚烧量9.3215×107t,则焚烧炉渣年产生量约为1.8×107t。
炉渣主要由陶瓷和砖石碎片、石头、玻璃、熔渣、铁和其他废旧金属及未燃尽可燃物组成。
炉渣的化学成分与水泥混凝土工业中的硅质混和材料相似,矿物组成主要与建筑天然集料相似,因此具有良好的资源化潜力。
1.2 焚烧炉渣综合利用设施总体情况由于焚烧炉渣为一般固体废物,在生活垃圾管理及技术研究中其重视度远低于飞灰、渗沥液、烟气等;同时,我国垃圾焚烧厂基本上采用委托第三方处理的方式,政府监管较为薄弱,由此造成目前我国焚烧炉渣项目相关的应用技术研究较少,管理数据信息缺失。
本课题组结合2017—2018年住建部组织开展的“生活垃圾焚烧处理设施集中整治工作”,对全国125家焚烧厂炉渣处理情况进行资料调研。
结果显示,炉渣进行综合利用的焚烧厂有102座,填埋处理的有19家,由水泥厂处理的有4家。
由此可见,我国80%以上的炉渣都进行了综合利用。
为更好地了解炉渣综合利用技术与项目运行情况,通过咨询行业专家、主要垃圾焚烧投资商以及部分城市环卫主管部门,最终选取了6家建设与运行管理水平相对较好的典型项目进行现场调研,项目基本情况见表1。
总体看来,调研项目基本上能做到进厂炉渣的及时处理及综合利用产品的稳定销售;在技术工艺方面,均采用湿法分选预处理工艺,主要产品为免烧砖与替代集料;在生产管理方面,生产设施建设、设备维护、厂区环境、工人劳动保护有较大差别,有的项目建设与管理水平与焚烧厂相当,而大多数项目仍处于较低水平;在政府监管方面,政府监管主要关注炉渣进出厂量方面,对于生产过程涉及较少。
生活垃圾焚烧飞灰的物理化学特性

生活垃圾焚烧飞灰的物理化学特性随着城市化进程的加速,生活垃圾的产生量日益增多,如何妥善处理这些垃圾成为社会的焦点。
生活垃圾焚烧是一种有效的处理方法,但产生的飞灰却含有多种有害物质,如不妥善处理,会对环境产生二次污染。
因此,了解生活垃圾焚烧飞灰的物理化学特性及其应用场景显得至关重要。
生活垃圾焚烧飞灰主要来源于生活垃圾焚烧过程,是一种高浓度的有机废渣。
飞灰的组成复杂,主要包括玻璃、金属、无机物和有机物等。
这些组成决定了飞灰的物理化学特性,如颗粒组成、水分含量、化学成分等。
在物理特性方面,生活垃圾焚烧飞灰的颗粒组成较为复杂,主要分为微小颗粒和大颗粒。
微小颗粒主要是不完全燃烧的有机物和无机物,而大颗粒则是燃烧后的残渣。
飞灰的水分含量较高,一般在10%-20%之间,这也为其处理和处置带来一定困难。
在化学特性方面,生活垃圾焚烧飞灰的化学成分主要包括氧化钙、二氧化硅、三氧化二铝等无机物,以及一些重金属元素,如铬、铅、汞等。
这些化学成分中,有些具有毒性,如二噁英、重金属等,对环境和人体健康产生不良影响。
针对生活垃圾焚烧飞灰的处理,目前主要有物理方法、化学方法和生物降解方法等。
物理方法主要是将飞灰进行固化处理,将其与水泥、石灰等材料混合,形成稳定的固化体,减少对环境的危害。
化学方法包括酸碱中和、化学氧化还原等,通过化学反应降低飞灰中的有害物质含量。
生物降解方法则是利用微生物将飞灰中的有机物分解为无害物质。
生活垃圾焚烧飞灰的应用场景较为广泛,主要作为工程填料和土壤改良剂等。
作为工程填料,飞灰可填充道路、场地等,起到固化土壤的作用。
飞灰中的某些成分可以作为土壤改良剂,提高土壤质量。
然而,在应用过程中,应充分考虑飞灰中的有害物质,避免对环境和人体健康产生不良影响。
生活垃圾焚烧飞灰的物理化学特性和应用场景息息相关。
在了解飞灰的组成和性质后,我们可以采取有效的处理方法和应用方式,降低其对环境的危害。
然而,目前生活垃圾焚烧飞灰的处理仍面临诸多挑战,如处理成本高、技术不够成熟等。
生活垃圾焚烧炉渣概述

生活垃圾焚烧炉渣概述填埋、堆肥向焚烧的转移,已经是全世界城市生活垃圾处理处置的发展趋势,尤其是在土地紧张、人口众多的城市地区,焚烧几乎成为不二选择。
譬如在欧盟出台的《废弃物管理指令》中,规定了废弃物管理的一个梯次架构,即填埋、焚烧、再生、再利用、预防。
填埋作为固废管理的托底方案,防止废弃物的产生成为第一选择。
值得注意的是,焚烧并未被归入再生环节,表明了对城市生活垃圾作为矿物资源和材料资源内蕴价值的挖掘,优先于其作为潜在能源的挖掘。
同时也说明,如果我们对焚烧产物,如炉渣和飞灰,不加以有效地再生利用,焚烧的意义就大打折扣。
城市生活垃圾真正的工业化焚烧,出现在一百多年前的英国曼彻斯特与德国汉堡,而焚烧炉渣资源化从一开始就伴随着生活垃圾焚烧的出现而产生。
这种资源化主要体现在两方面:一是用磁铁从炉渣中分离铁质金属,二是将炉渣用作道路材料或填埋场覆土。
这样一种粗放的资源化模式,百年来进步不大。
而与此同时,焚烧热效率的提升、热能利用、焚烧尾气处理,以及在中国比较典型的垃圾渗沥液处理,在技术上都取得了长足的进步。
不过,近十几年来,炉渣资源化已经发生了深刻改变,这种改变主要体现在炉渣产生、加工与应用三个环节。
炉渣排放中,水淬一直是不可或缺的环节。
研究发现,水淬对炉渣中以铁、铝为代表的金属减值严重,也极大影响了湿炉渣的后续金属提取。
于是,以瑞士焚烧厂为代表,包括日本若干家焚烧厂在内,近年来陆续采纳了干法排渣技术,金属的品质与回收率都得到了极大提升,这是一直作为焚烧技术变革的被动参与者的炉渣,变身为焚烧技术的主动影响者的历史节点,是炉渣的资源属性被充分认识的深刻体现。
在炉渣加工技术上,从代尔夫特大学研发的ADR炉渣撞击分离技术,到涡电流技术的性能改进与包括Magnus涡电流和湿式涡电流在内的新型涡电流技术的开发,到磁密度分离技术的商业化,到德国目前仍在优化中的基于高压电脉冲的选择性破碎技术,乃至美国仍在开发中的有色金属高速识别的X射线荧光谱分选技术,可以说,近十几年来炉渣加工技术发生着前所未有的变革,不只给炉渣资源回收、质量提升以机遇,也惠及其他固废的处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
城市生活垃圾焚烧炉渣的特性分析
发表时间:2019-12-05T14:53:57.150Z 来源:《房地产世界》2019年13期作者:张至殷光跃张志鹏
[导读] 研究样品分别来自广州、桂林、苏州、宁波、重庆和沈阳,依次标记为样品1—6。
广西筛芬环保科技有限公司广西南宁 530012
摘要:随着焚烧炉渣存量的快速增加,焚烧炉渣的合理处置与资源化利用成了新的研究课题。
现有炉渣的资源化研究主要倾向于将其转化为建筑材料,但可行性受到其来源和自身特性的影响,在资源利用过程中出现了不同程度的工程质量或污染问题,制约了其规模化应用。
对垃圾焚烧炉渣进行系统全面的理化特性分析和研究是实现垃圾焚烧炉渣的消纳与资源化的前提。
关键词:城市生活垃圾;焚烧炉渣;特性分析
1城市生活垃圾焚烧炉渣的特性
研究样品分别来自广州、桂林、苏州、宁波、重庆和沈阳,依次标记为样品1—6。
各垃圾焚烧厂运行时间均在近5年内,广州市的焚烧厂最早,运行起始于2011年,沈阳的焚烧厂在2019年开始运行。
各垃圾焚烧厂焚烧炉类型和处理能力有所差异,但焚烧温度基本相同,均高于850℃。
各地垃圾焚烧炉渣的产生比例大致相同,占垃圾焚烧总量的20%~25%
1.1炉渣物理性质分析
(1)物理组成
炉渣组分种类较多,主要组成部分是熔渣、有机物、黑色金属、有色金属和玻璃碎片等。
在本次实验操作当中,我们选取大约600g的炉渣,然后放置于鼓风干燥箱当中,对炉渣进行烘干操作,直到炉渣的重量不再变化,在烘干操作之后,称量己经干燥至恒重的炉渣大约500g克,对其进行下列操作:首先进行磁选操作,旨在分离选择出炉渣当中的黑色金属。
接着需要使用摄子等工具手动分离剩余的炉渣,依据剩余炉渣当中玻璃和有色金属的外观不同,形状不同以及特征不同等条件,将玻璃碎片和有色金属进行有效的分离。
通过上述操作之后,将对剩余的熔渣,分离出的有机物、各色金属和玻璃碎片等进行准确的称量操作,以确定其各自的重量。
显而易见的是熔渣含量最高、黑色金属次之,有色金属再次,而玻璃碎片和有机物的含量最低。
在上述的样本中,通过分析可以得知,含量最高的熔渣大部分是由于燃烧生活垃圾而产生的,它的最主要的成分是不可燃烧的无机物,同时也含有可燃物燃烬灰分、未燃烬炭、残余的添加剂和大量燃烧产生的反应生成物的存在;而含量次之的黑色金属和有色金属,它们主要是一些废铁、铜和铝等金属物质;玻璃碎片主要来自于各种玻璃容器和器具,如玻璃窗等;有机物主要是为燃烧或是未燃尽的塑料、木板、纸张等。
(2)微观形态
使用SEM扫描电镜对6个垃圾焚烧炉渣样品进行微观形态分析。
由图可知:放大1000倍时,观察到炉渣大小形状不一,边缘多呈现不规则状,且表面较为粗糙;放大5000倍(图2b)观察炉渣颗粒形态,6个样品中的炉渣颗粒形状不同,颗粒表面凹凸不平,有球状、针状、棍状等不规则晶体附着在其表面,且中间空隙较明显;将炉渣颗粒进一步放大10000倍,观察某一炉渣表面的部分形貌细节,可以看出不同地区垃圾炉渣存在较大差别,例如样品2和样品5的炉渣中多由针状、片状、短棒状等多种不规则晶体组成,而样品1、样品3、样品4和样品6多为多孔海绵状不规则晶体组成。
总体来看,生活垃圾焚烧炉渣为由不规则状小粒子黏结成的大颗粒团聚体,且由于各地区生活垃圾组分以及焚烧工艺的差异存在不同。
1.2炉渣化学性质分析
(1)热酌减率
热酌减率是指焚烧炉渣经灼烧减少的质量占原焚烧炉渣质量的百分比。
依据CJJ90—2002《生活垃圾焚烧处理工程技术规范》,炉渣热灼减率应控制在3%~5%。
本次实验利用马弗炉600℃进行炉渣的热酌减率实验,结果表明:除样品3生活垃圾焚烧炉渣热酌减率为3.1%外,其余地区焚烧炉渣热酌减率均低于3%,说明当前各地区垃圾焚烧场焚烧充分,有机物燃烧彻底。
(2)浸出毒性
由垃圾焚烧炉渣浸出毒性检测结果见表可知:六地区生活垃圾焚烧炉渣的浸出液毒性均远低于GB5085.3—2007《危险废物鉴别标准浸出毒性鉴别》,属于一般固体废弃物;与存量垃圾土相比,除锌浸出含量低于垃圾土外,其余重金属浸出含量均与其接近。
无论炉渣或存量垃圾土,锌浸出含量较高,均由于我国垃圾分类执行效果不明显,部分电池与生活垃圾混合丢弃。
将炉渣的重金属浸出含量与GB3838—2002《地表水环境质量标准》Ⅴ类水标准和GB5084—2005《农田灌溉水质标准》进行对比,仅样品6中Cr和样品4、5中Pb浸出含量稍超出标准限值。
因此,本研究涉及的生活垃圾焚烧炉渣可作为一般固废进行处理,其处理或资源化利用时对环境造成危害的可能性不大。
2生活垃圾焚烧炉渣应用
2.1水泥和混凝土
炉渣作为替代材料生产水泥的实验己被广泛研究,但适当的处理必须采取措施以满足生产水泥、熟料质量和环境安全要求。
由于炉渣和水泥成份类似,主要成分为硅酸、钙和铝,再加上科学的制作工艺就可以制造出高质的硅酸盐水泥,通过炉渣对水泥原料进行替换具有高度的可行性。
炉渣水力特性取决于其碱度,碱度越高,其水力特性越强。
有研究给出的CaO/SiO2是最简单的碱度指数,其比值必须大于1。
钙含量相对较高的炉渣与水泥的水化胶凝反应相似,这暗示了炉渣作为替代骨料的巨大潜力。
混凝土强度和耐久性受炉渣的物理和化学特性影响,垃圾原料决定了炉渣化学成分,冷却的方法决定了炉渣的物理结构。
渣碱度和玻璃相达到较高的水平的混凝土性能更为出众。
炉渣使用前必须经过脱水、干燥和研磨处理,炉渣的胶凝性反应速率随炉渣细度变小而提高。
还有研究通过改变炉渣的粒度分布实验表明,在混凝土中掺入细小的炉渣颗粒降低波特兰水泥建筑能耗,用粒径2-8mm炉渣做成的混凝土整体性能高于粒径8-16mm炉渣做成的混凝土。
将炉渣利用在混凝土中时,一般进行活性激发处理。
2.2陶瓷与玻璃
陶瓷为非均质材料,主要有天然原料混合组成,这表明这些原料可以被不同类型的废料代替。
有研究表明使用大量处理后的炉渣可作为生产陶瓷原料,获得新的陶瓷具有良好性能。
生活垃圾焚烧炉渣中SiO2、AL2O3、Ca0含量高,可以替代粘土生产陶瓷。
采用较高温度(>1.000℃)能促进炉渣有效掺入陶瓷基体中,炉渣中活性较强的重金属促进烧结过程。
加入炉渣可以降低烧结温度节约能源,最终产品
通常无有害物浸出。
有研究采用“混合微波烧结”工艺将炉渣(掺量高达55wt%)制成陶瓷砖,基于微波热处理制成的陶瓷材料,在经
5min、900℃的热处理,样品参数就符合相关标准。
炉渣玻璃化是一个具有吸引力的废物利用过程,可以破坏有害有机物,固定重金属,减少固体废物使用量。
炉渣中含有较高含量、呈玻璃网状的Si02,这表明利用这些废物制成玻璃材料的适宜性。
将CaO、K20等物质充当核心的助熔剂,利用常规的熔融淬火方法将炉渣在高温环境中加热处理,在合适的粘度下倒入模具,冷却后得到均匀光滑的黑色玻璃。
这种玻璃在水中和碱性溶液中表现出良好的化学稳定性,具有良好的机械性能和化学性能,可用于建筑材料,例如作为墙壁和屋顶板材料。
垃圾焚烧灰渣造玻璃的利用率在90%左右,明显降低生产成本。
2.3道路路基
兴建道路需要采购大量材料,为提高环保意识,应尽量减少材料的使用。
炉渣可以用作道路柔性路面基层和底基层材料,与传统碎石材料相比,炉渣是一个优异的高致密替代碎石材料。
当炉渣代替原始材料作为基层材料,不会有额外的能量消耗或物料消耗,唯一的区别是,炉渣到道路施工现场的运输距离长于运输天然材料的距离,因此用于路基填充大大减少垃圾焚烧厂对炉渣的处理量和天然材料的消耗。
2.4垃圾填埋场覆盖材料
堆填区采取了合理的环境保护设施,其中比较典型的是应用现代化的渗滤液回收系统,进而让炉渣因重金属对人类身体健康造成的威胁能够有效的消除,综合各方面因素进行考虑,炉渣充当垃圾填埋场覆盖材料是非常理想的选择。
参考文献:
[1]程曦,朱广,徐辉,缪建冬,陈萍.生活垃圾焚烧炉渣的工程特性[J].环境卫生工程,2018,2603:18-22.
[2]詹婷婷,邱战洪,郑婉珍,姚俊.生活垃圾焚烧炉渣覆盖层对Cr(Ⅵ)在填埋场中迁移的影响[J].科技通报,2018,3405:236-239.。