纳米材料的制备方法
纳米材料的制备方法

纳米材料的制备方法纳米材料的制备方法多种多样,具体选择的方法取决于所需纳米材料的性质、应用需求以及实验条件等因素。
以下是几种常见的纳米材料制备方法:1.化学合成法:-溶液法:将适当的化学物质在溶剂中混合反应,控制反应条件如温度、pH值等,通过溶液中原子、离子或分子的自组装形成纳米结构。
常见的溶液法包括溶胶-凝胶法、共沉淀法、沉积法等。
-气相沉积法:将气态前驱物质通过化学反应沉积到基底表面,形成纳米结构。
气相沉积法包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
2.物理方法:-机械球磨法:通过机械力的作用使粉末颗粒在球磨罐中产生碰撞和摩擦,从而实现颗粒的细化和形态的改变,制备纳米颗粒或纳米结构。
-溅射法:利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积到基底表面,形成纳米薄膜或纳米结构。
3.生物合成法:-利用生物体内的生物合成过程,通过调控生物体的生理条件或添加适当的试剂,使生物体产生纳米材料。
常见的生物合成法包括植物合成、微生物合成等。
4.模板法:-利用模板的空间排列结构和特定的化学性质,将原料物质定向沉积或填充到模板孔道中,通过模板的模板效应制备纳米结构。
常见的模板法包括硅模板法、自组装模板法等。
5.激光法:-利用激光束对物质进行光照,控制激光的能量和焦点位置,使材料在局部区域发生化学或物理变化,形成纳米结构。
常见的激光法包括激光烧蚀、激光诱导化学气相沉积等。
这些制备方法各有特点,可以根据纳米材料的具体要求选择适合的方法进行制备。
同时,纳米材料的制备过程中需要注意控制反应条件、纯度和结构等关键因素,以确保制备得到高质量的纳米材料。
纳米材料的合成和表征方法技巧

纳米材料的合成和表征方法技巧纳米材料是一种尺寸在1到100纳米之间的材料,具有独特的物理、化学和生物学性能。
纳米材料的合成和表征方法对于研究其性质和应用具有重要意义。
本文将探讨几种常见的纳米材料合成和表征方法技巧。
一、溶剂热法溶剂热法是一种常用的纳米材料合成方法,通过在高温、高压条件下进行反应,使反应物溶解在溶剂中,并逐渐形成纳米颗粒。
该方法具有反应温度和时间可控、纳米颗粒尺寸可调的优点。
在合成纳米材料的过程中,选择合适的溶剂是关键。
通常选择的溶剂应具有较高的沸点和相对较低的相对极性,具有适当的溶解性和稳定性。
常用的溶剂有乙二醇、正庚烷、N,N-二甲基甲酰胺等。
在溶剂热法中,合成剂和溶剂必须在密封容器中加热。
在合成过程中,根据不同的反应需求,可采用不同的加热方式,如水浴加热、电子源加热或高压反应釜。
二、溶胶凝胶法溶胶凝胶法是一种通过溶胶的凝胶化过程得到纳米材料的方法。
其基本原理是先制备溶胶,然后使其凝胶化。
凝胶形成后,通过干燥、热处理等方法,可以得到纳米颗粒。
在凝胶制备过程中,常用的溶胶剂有水、醇类、酸、氨等。
通过调节溶胶剂的性质和浓度,可以控制纳米颗粒的形貌和尺寸。
需要注意的是,溶胶凝胶法中的凝胶化过程对于纳米颗粒的形成至关重要。
凝胶化一般通过化学反应或物理交联实现,如水解反应、凝胶离子交换等。
三、X射线衍射(XRD)表征X射线衍射是一种常用的纳米材料表征方法,可用于分析物质的结晶性和晶格参数。
通过测量材料对入射X射线的散射角度和强度,可以推断出材料的晶体结构和晶粒尺寸。
X射线衍射实验通常使用X射线衍射仪进行。
在实验过程中,需调整X射线的入射角度和测量角度,使得出射光束和检测器的位置最佳。
同时,需选取合适的X射线波长和强度,以提高衍射信号的强度和质量。
通过对X射线衍射谱的分析,可以得到纳米材料的结晶度、晶粒尺寸、晶面方位和晶格畸变等信息。
这些信息有助于了解纳米材料的物理性质和结构特征。
四、透射电子显微镜(TEM)表征透射电子显微镜是一种常用的纳米材料表征方法,可提供纳米级别的材料结构、形貌和晶体结构等信息。
第三章纳米材料的制备方法

第三章纳米材料的制备方法纳米材料的制备方法可以分为物理方法、化学方法和生物方法三类。
物理方法包括机械法、气相法和溶液法等;化学方法包括沉淀法、溶胶-凝胶法、化学气相沉积法等;而生物方法主要是利用生物体或生物分子在生物环境下合成纳米材料。
机械法是指通过力的作用将宏观材料制备成纳米尺寸的材料,常见的方法有高能球磨法和挤压法。
高能球磨法是通过高能球磨机将粗颗粒材料和球磨介质一起置于球磨罐中进行强烈碰撞实现的。
挤压法则是将粗颗粒材料置于特定的装置中,通过外力作用使材料变形而制备纳米材料。
气相法是通过气相反应将气态物质制备成纳米材料,常见的方法有气相沉积法和气溶胶法两种。
气相沉积法是将气态前体输送到反应器中,在特定温度和压力条件下发生化学反应,生成纳米颗粒。
气溶胶法则是将气态前体生产成准稳态悬浮液,再经过控制条件使气溶胶中的颗粒在特定条件下成长。
溶液法是通过将溶液中溶解的化合物沉淀出来形成纳米颗粒的方法,常见的方法有沉淀法和溶胶-凝胶法。
沉淀法是将两种反应物溶解在溶液中,然后通过添加沉淀剂使沉淀物形成纳米颗粒。
溶胶-凝胶法则是将溶胶转变成凝胶,在适当条件下控制凝胶的形成和热处理过程,最终制备成纳米材料。
化学气相沉积法是通过在可控的气相条件下,将气态前体沉积在衬底上生成纳米颗粒的方法,主要应用于金属和半导体纳米材料的制备。
该方法需要控制反应气体的成分和温度,以及反应时间和衬底的性质。
生物方法是指利用生物体或生物分子在生物环境下合成纳米材料,包括微生物法和生物模板法两种。
微生物法是利用微生物在代谢过程中产生的酶或其他生物分子对金属离子进行还原或沉淀,形成金属纳米材料。
生物模板法则是利用生物体的分子结构作为模板,在其表面沉积纳米材料,通过控制反应条件可以得到不同形状和尺寸的纳米材料。
总结而言,纳米材料的制备方法多种多样,从物理方法到化学方法再到生物方法,每种方法都有其独特的优势和适用范围。
在制备纳米材料时,需要考虑材料性质、制备条件以及后续应用等因素,以选择最适合的制备方法。
物理实验技术使用中的纳米材料制备方法详解

物理实验技术使用中的纳米材料制备方法详解纳米材料是近年来科技领域的热门话题,其独特的物理、化学性质使其在许多领域具有广泛应用前景。
然而,纳米材料的制备并不简单,需要借助特殊的实验技术和方法。
本文将详细介绍在物理实验技术中常用的纳米材料制备方法,帮助读者更好地了解和运用这些技术。
一、溶胶-凝胶法溶胶-凝胶法是一种常用的纳米材料制备方法。
该方法的基本原理是将溶液中的前驱体通过凝胶化反应形成固体材料。
首先,通过化学反应制备出前驱体溶液,例如常用的金属盐溶液。
接着,通过适当的处理条件,如调控温度、pH值等,使溶液发生凝胶化反应,形成固体凝胶体。
最后,通过煅烧、焙烧等热处理过程将凝胶转变为纳米材料。
二、溶液法溶液法是一种常见且易于操作的纳米材料制备方法。
该方法的基本原理是将溶液中的前驱体通过溶剂蒸发、溶剂热法等方式得到纳米尺寸的晶体。
首先,准备溶液中的前驱体,可以是金属离子、金属配合物等。
然后,通过调节溶液的浓度、温度等条件,使得溶液中的前驱体发生聚集、析出等反应,形成纳米尺寸的晶体。
最后,通过离心、过滤等手段将纳米晶体分离出来并进行后续处理。
三、气相法气相法是一种常用的纳米材料制备方法,尤其适用于制备无机纳米材料。
该方法的基本原理是将气态前驱体通过化学气相沉积、喷雾热解等方式转变为纳米颗粒。
首先,将气态前驱体通过气体携带或喷雾形式导入反应室中。
然后,在适当的温度和气氛条件下,前驱体发生热解、化学反应等步骤,形成纳米颗粒。
最后,通过凝结、沉积等过程将纳米颗粒收集起来。
四、电化学沉积法电化学沉积法可以控制纳米材料的形貌和尺寸,是一种常用的纳米材料制备方法。
该方法的基本原理是通过在电解质溶液中施加电场使得金属离子发生还原沉积反应,形成纳米尺寸的材料。
首先,准备含有金属离子的电解质溶液。
然后,在适当的电流密度下,通过施加电场使得金属离子在电极表面发生还原沉积反应,形成纳米颗粒。
最后,通过控制电解质溶液的浓度、温度等条件,可以控制纳米材料的形貌和尺寸。
纳米材料的制备方法

纳米材料的制备方法
纳米材料的制备方法主要有几种,其中包括物理法、化学法和生
物技术法。
1. 物理法:物理法的制备方法又可以分为几类,包括电磁熔炼法、湿法分散器等。
例如电磁熔炼法可以通过电磁力场将含有特定成分的
材料加热融化,然后通过冷却和固定,形成小尺度的粒子。
湿法分散
器也可以将混入溶剂中的原料加以研磨并调节粒径,从而获得纳米溶胶。
2. 化学法:化学法中,主要有溶剂热法、溶剂冷法等。
溶剂热法
是使用溶剂作为介质,将原料溶解,然后加入体系内氧化剂进行氧化
聚合,最后用超声处理微粒,形成更小的纳米粒子。
而溶剂冷法则是
将原料溶解后,再加入表面活性剂,使其聚集形成纳米粒子。
3. 生物技术法:生物技术法则是利用微生物的合成能力进行合成,将原料添加到表面活性剂、微生物介质、磷酸肥料等中,以促进微生
物的生长和代谢,最终形成纳米粒子。
以上就是纳米材料的制备方法主要有几种,它们分别是物理法、
化学法和生物技术法。
这些方法都有不同的优点和缺点,需要根据具
体应用场景选择合适的方法,以期获得更高质量的纳米材料粒子。
纳米材料制备方法研究

纳米材料制备方法研究一、引言随着纳米材料在生物医学、电子技术、材料科学等领域的广泛应用,对纳米材料的制备方法研究也愈发重要。
纳米材料的制备方法可以影响其形态、尺寸、结构和性质等性能参数,因此,研究纳米材料制备方法是进一步发展纳米技术的重要方向。
本文将介绍常见的纳米材料制备方法,并对其特点、适用范围和优缺点进行简要分析。
二、化学方法化学方法是制备纳米材料的常用方法之一。
该方法主要是通过溶液中的化学反应,在特定条件下使物质分子逐渐聚集形成纳米粒子。
常见的化学方法包括溶胶凝胶法、沉淀法和水热法。
1、溶胶凝胶法溶胶凝胶法是指将溶胶中的单质或化合物在凝胶体系下进行加热处理使其聚集形成纳米颗粒。
该方法操作简便、成本低廉、制备效果稳定,且适用于大量高品质的纳米材料的制备。
缺点是通常制备的纳米颗粒强烈聚集,难以获得单一纳米粒子。
2、沉淀法沉淀法是指通过化学反应使产物溶于水中,然后通过沉淀和离心技术获得纳米颗粒。
该方法制备的纳米颗粒尺寸分布较为均匀,但由于制备过程中反应条件较为复杂,纳米颗粒的分散性和稳定性较差。
3、水热法水热法是指将反应物溶于水中,加热至高温高压条件下,通过反应、聚合、析出等一系列步骤制备纳米材料。
该方法制备效率高、粒径小、单分散性好,且获得的纳米颗粒表面光滑且不容易聚集生成团簇。
三、物理方法物理方法是制备纳米材料的重要方法之一。
该方法通过物理原理对原料进行处理而制备纳米材料。
常见的物理方法包括溅射法、热蒸发法、化学气相沉积法等。
1、溅射法溅射法是将大颗粒物质,通过干法和稳态复合材料深度处理等方法,利用冲击蒸发和扩散相结合的原理将大颗粒物质转化为小尺寸,高纯度的纳米粒子。
该方法制备的颗粒尺寸小、稳定性好,成品纯度较高,但由于需要高质量的仪器设备,成本较高。
2、热蒸发法热蒸发法是以高温蒸发的方式制备纳米颗粒。
该方法可以制备纳米尺寸非常小的颗粒(如CdTe量子点),但同时由于成本高昂和原料纯度要求较高,真正应用还较为局限。
纳米材料的制备方法与应用

纳米材料的制备方法与应用【前言】
纳米材料因其独特的物理和化学性质在材料科学领域受到越来越广泛的关注。
本文将重点介绍纳米材料的制备方法与应用。
【制备方法】
1.溶剂热法
溶剂热法是将材料和溶剂混合后加热至高温,然后在所需温度下静置一段时间,使得材料能够在比常温更快的速度下形成纳米级粒子。
溶剂热法制备的纳米材料具有单一晶相、尺寸均匀、分散性好等特点,但需注意溶剂的选择和控制反应条件。
2.机械球磨法
机械球磨法是将原料放入球磨罐中随机碰撞,重复球磨,进一步细化颗粒。
该方法制备的纳米材料具有尺寸均匀性好,极小晶粒尺寸等特点,但需注意添加剂的选择和球磨时间等影响因素。
3.气相法
气相法利用气体被激活后生成具有活性中间体的特性,使得原材料在很短的时间内形成纳米粉末。
气相法常用于制备氧化物类和碳类纳米材料,具有同时制备大量粉末的优点。
【应用】
1.能源领域
纳米材料在能源领域中应用广泛,如可用于制备太阳能电池、柔性电池等。
常用的纳米材料包括二氧化钛、氧化铁等。
2.生物医学领域
纳米材料在生物医学领域中具有广泛应用,例如利用纳米材料制备疫苗、药物缓释等。
常用的纳米材料包括纳米碳管、石墨烯等。
3.材料领域
纳米材料在材料领域中应用广泛,包括制备高效催化剂、节能降耗等。
常用的纳米材料包括纳米金属、纳米氮化硅等。
【结语】
纳米材料制备方法多样,应用领域广泛。
在未来的发展中,纳米材料将在更多领域得到应用,如环境治理、信息技术等,其重要性不言而喻。
纳米材料制备方法简介

纳米材料制备方法简介
纳米材料制备方法是指用于生产纳米材料的各种工艺方法,它们可以将原材料加工成纳米尺度的微粒。
根据纳米材料的性质及其用途,纳米材料制备方法大致可分为两大类:物理方法和化学方法。
一、物理方法:
1. 气相沉积法:利用气体中的还原剂及原料释放到真空室内,在真空中经过热力学的反应形成纳米颗粒。
2. 冷冻干燥法:将悬浮液放入冷冻装置中冷冻,然后将液体分子强行脱水,使悬浮液中的物质在固态中凝结而形成纳米粒子。
3. 电火花法:利用电解质在特定的电场作用下,催化产生的等离子体,使原料形成纳米粒子。
4. 光敏剂法:利用光敏剂对激发光进行吸收,使原料进行分散而形成纳米粒子。
二、化学方法:
1. 化学气相沉积法:利用气态原料在真空中经过化学反应而形成纳米粒子。
2. 超声法:利用超声波的震荡,使原料分散而形成纳米粒子。
3. 生物法:利用微生物或植物细胞在特定条件下,形成纳米粒子。
4. 酸-碱法:将原料溶液与混合酸溶液混合,使原料溶解,并形成纳米粒子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沉淀法主要分为: 直接沉淀法、共沉淀法、均匀沉淀法、 水解沉淀法、化合物沉淀法等。
共沉淀法
在含有多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀 的方法称为共沉淀法 (coprecipitation) 。根据沉淀的类型可分为单 相共沉淀(沉淀物为单一化合物或单相固溶体 ) 和混合共沉淀 (沉淀 产物为混和物)。
气相反应法
气相化学反应法制备纳米粒子是利用挥发性 的金属化合物的蒸气,通过化学反应生成所需要 的化合物,在保护气体环境下快速冷凝,从而制 备各类物质的纳米粒子。气相反应法制备超微粒 子具有很多优点,如粒子均匀、纯度高、粒度小、 分散性好、化学反应性与活性高等。气相化学反 应法适合于制备各类金属、金属化合物以及非金 属化合物纳米粒子,如各种金属、氮化合物、碳 化物、硼化物等。按体系反应类型可将气相化学 反应法分为气相分解和气相合成两类。
物理法
构筑法
气相反应法
化学法
液相反应法
其他方法
纳米粒子合成的物理方法
真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成 等粒子体,然后骤冷。其特点纯度高、结晶组织好、粒度可 控,但技术设备要求高。 物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特 点操作简单、成本低,但产品纯度低,颗粒分布不均匀。 机械球磨法 采用球磨方法,控制适当的条件得到纯元素、合金或复 合材料的纳米粒子。其特点操作简单、成本低,但产品纯度 低,颗粒分布不均匀。
微细粉末时,其相应成本较低,具有实用性。
其他物理方法
火花放电法,是将电极插入金属粒子的堆积层,利用电 极放电在金属粒子之间发生电火花,从而制备出相应的 微粉。
爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强 的载荷作用于金属套,使得套内的粉末得到压实烧结, 通过爆炸法可以得到1m 以下的纳米粒子。 活化氢熔融金属反应法的主要特征是将氢气混入等离子 体中,这种混合等离子体再加热,待加热物料蒸发,制 得相应的纳米粒子。
通常是利用两种以上物质之间的气相化学反应,在 高温下合成为相应的化合物,再经过快速冷凝,从而制 备各类物质的纳米粒子。一般的反应形式为: A(气)+ B(气) → C(固)+ D(气)↑ 激 光 诱 导 气 相 反 应
液相反应法
液相法制备纳米粒子的共同特点是该法均以 均相的溶液为出发点,通过各种途径使溶质与溶 剂分离,溶质形成一定形状和大小的颗粒,得到 所需粉末的前驱体,热解后得到纳米微粒。主要 的制备方法有:
关键: 如何使组成材料的多 种离子同时沉淀?
高速搅拌 过量沉淀剂 调节pH值
均相沉淀法
在金属盐溶液中加入沉淀剂溶液时,即使沉淀剂的含量很低, 不断搅拌,沉淀剂浓度在局部溶液中也会变得很高。所以一般的沉 淀过程是不平衡的,但如果控制溶液中的沉淀剂浓度,使之缓慢地 增加,则使溶液中的沉淀处于平衡状态,且沉淀能在整个溶液中均 匀地出现,这种方法称为均相沉淀 (或均匀沉淀)。通常是通过溶液 中的化学反应使沉淀剂慢慢地生成,从而克服了由外部向溶液中加 沉淀剂而造成沉淀剂的局部不均匀性,结果沉淀不能在整个溶液中 均匀出现的缺点。
纳米粒子合成的化学方法
化学法主要是“自下而上”的方法,即是通 过适当的化学反应(化学反应中物质之间的原子 必然进行组排,这种过程决定物质的存在状态), 包括液相、气相和固相反应,从分子、原子出发 制备纳米颗粒物质。化学法包括气相反应法和液 相反应法。
气相反应法可分为:气相分解法、气相合成法及气-固 反应法等 液相反应法可分为:沉淀法、水热 / 溶剂热法、溶胶-凝 胶法、反相胶束法等
例如:将尿素水溶液加热到70oC左右,就会发生如下水解反应: (NH2)2CO + 3H2O → 2NH4OH + CO2 由此生成的沉淀剂NH4OH在金属盐的溶液中分布均匀,浓度低,使 得沉淀物均匀地生成。由于尿素的分解速度受加热温度和尿素浓度的控 制,因此可以使尿素分解速度降得相低。有人采用低的尿素分解速度来 制得单晶微粒,用此种方法可制备多种盐的均匀沉淀。
冷冻干燥法
先使干燥的溶液喷雾在冷冻剂中冷冻,然后 在低温低压下真空干燥,将溶剂升华除去,就可
以得到相应物质的纳米粒子。如果从水溶液出发
制备纳米粒子,冻结后将冰升华除去,直接可获
得纳米粒子。如果从熔融盐出发,冻结后需要进
行热分解,最后得到相应纳米粒子。冷冻干燥法
用途比较广泛,特别是以大规模成套设备来生产
粉碎作用力的作用形式
粉碎法
一般的粉碎作用力都是几种力的组合,如球磨机和振动 磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的 组合;气流磨是冲击、磨碎与剪碎的组合,等等。
物料被粉碎时常常会导致物质结构及表面物理化学性质发生变 化,主要表现在: 1、粒子结构变化,如表面结构自发的重组,形成非晶态结构 或重结晶。 2、粒子表面的物理化学性质变化,如电性、吸附、分散与团 聚等性质。 3、受反复应力使局部发生化学反应,导致物料中化学组成发 生变化。
普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领
域有广阔的应用前景。
构筑法
构筑法是由小极限原子或分子的集合体人工合成超微粒子 块体材料
原子分子化 纳米粒子
如何使块体材料 通过物理的方法 原子分子化?
蒸发、离子溅射、溶剂分散……
电阻加热、等离子体加热、激光加 热、电子束加热、电弧放电加热、 高频感应加热、太阳炉加热……
机械粉碎法
气流磨技术发展较快,20 世纪80 年代德国Alpine 公
司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,
产品粒度达到了1 ~ 5m。降低入磨物粒度后,可得平均
粒度 1m 的产品,也就是说,产品的粒径下限可达到 0.1m 以下。除了产品粒度微细以外,气流粉碎的产品还 具有粒度分布窄、粒子表面光滑、形状规则、纯度高、 活性大、分散性好等优点。因此,气流磨引起了人们的
(1) 可以制备多种纳米金属,包括高熔点和低熔点金属。常规 的热蒸发法只能适用于低熔点金属;
(2) 能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91, Mn9,ZrO2等; 通过加大被溅射阴极表面可加大纳米微粒的获得量。采用磁控 溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备 纳米铜颗粒。
如何使许多原子 或分子凝聚生成 纳米粒子?
惰性气体中或不活泼气体中凝聚 流动的油面上凝聚 冷冻干燥法 „„
蒸发凝聚法
蒸发凝聚法是将纳米粒子的原料加热、蒸发,使 之成为原子或分子;再使许多原子或分子凝聚,生成
极微细的纳米粒子。利用这种方法得到的粒子一般在
5 ~ 100 nm 之间。蒸发法制备纳米粒子大体上可分
纳米粒子制备方法
纳米粒子合成概述
自然界中的纳米粒子 ——尘埃、烟20世纪初人们已开始用 蒸发法制备金属及其氧化物的纳米粒子。
20世纪中期人们探索机械粉碎法使物质粒子细化 (极限为数 微米)。 近几十年来机械粉碎法可以使微粒小到0.5微米左右。 多种化学方法(表面活性剂的应用)和物理方法的开发。 近十年来各种高技术,如激光技术、等离子体技术等的应 用,使得制备粒度均匀、高纯、超细、分散性好的纳米粒子 成为可能,但问题是如何规模化。
粉碎法
“粉碎”一词是指块体物料粒 子由大变小过程的总称,它包括“破 碎”和“粉磨”。前者是由大料块变 成小料块的过程,后者是由小料块变 成粉末的过程。粉碎过程就是在粉碎 力的作用下固体物料或粒子发生形变 进而破裂的过程。当粉碎力足够大时, 力的作用又很迅猛,物料块或粒子之 间瞬间产生的引力大大超过了物料的 机械强度。因而物料发生了破碎。粉 碎作用力的类型主要有如右图所示几 种。可见物料的基本粉碎方式是压碎、 剪碎、冲击粉碎和磨碎。常借助的外 力有机械力、流能力、化学能、声能、 热能等。主要由湿法粉碎和干法粉
几种典型的粉碎技术:球磨、振动球磨、振动磨、搅拌 磨、胶体磨、纳米气流粉碎气流磨
机械粉碎法
机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变 形进而破裂,产生更微细的颗粒。物料的基本粉碎方式是压碎、 剪碎、冲击粉碎和磨碎。一般的粉碎作用力都是这几种力的组 合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲 击、磨碎与剪碎的组合,等等。理论上,固体粉碎的最小粒径 可达0.01~0.05m。然而,用目前的机械粉碎设备与工艺很难达 到这一理想值。粉碎极限取决于物料种类、机械应力施加方式、 粉碎方法、粉碎工艺条件、粉碎环境等因素。比较典型的纳米 粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。其 中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃) 的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。
沉淀法、水解法、喷雾法、水热/溶剂热法(高温高压)、 蒸发溶剂热解法、氧化还原法 ( 常压 ) 、乳液法、辐射化 学合成法、溶胶凝胶法等。
沉淀法
沉淀法通常是在溶液状态下将不同化学成分的物质混合,在 混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再 将此沉淀物进行干燥或煅烧,从而制得相应得纳米粒子。存在于 溶液中的离子A+和B-, 当它们的离子浓度积超过其溶度积[A+][B - ] 时, A + 和 B - 之间就开始结合,进而形成晶核。由晶核生长和 在重力的作用下发生沉降,形成沉淀物。一般而言,当颗粒粒径 成为1微米以上时就形成沉淀。沉淀物的粒径取决于核形成与核成 长的相对速度。即核形成速度低于核成长,那么生成的颗粒数就 少,单个颗粒的粒径就变大。
水解沉淀法
众所周知,有很多化合物可用水解生成沉淀, 用来制备纳米粒子。反应的产物一般是氢氧化物 或水合物。因为原料是水解反应的对象是金属盐 和水,所以如果能高度精制金属盐,就很容易得 到高纯度的纳米粒子。
常用的原料有:氯化物、硫酸盐、硝酸盐、 氨盐等无机盐以及金属醇盐。 据此可将水解沉淀法分为无机盐水解法和金 属醇盐水解法
无机盐水解法
其原理是通过配置无机盐的水合物,控制其水解条件,合成单 分散性的球、立方体等形状的纳米粒子。例如对钛盐溶液的水解可 以使其沉淀,合成球状的单分散形态的二氧化钛纳米粒子。通过水 解三Biblioteka 铁盐溶液,可以得-Fe2O3纳米粒子。