第六章模拟量输入输出与数据采集卡
PCI-3150 高速模拟量输入输出数据采集卡 说明书

特性概述规格2通道模拟量输入每通道40 MS/s A/D转换12 Bit A/D 分辨率16 MB 缓存模拟量,数字量,软件触发方式2通道模拟量输出具有任意波形输出模式40MS/s D/A 转换/通道12 Bit D/A 分辨率模拟重建滤波器16 MB 波形输出缓存在板DDS提供1Hz的采样时钟16通道数字量DIO,任意选择输入输出2路计数器/定时器143MHz,32位的DSP处理器支持的操作系统Windows 98/2000/NT/XP/Linux推荐软件VB/VC++/BCB/DelphiCVI, Mathlab 驱动支持用于Windows98/2000/NT/XP 的DLLPCI-3150是一个低成本的高速数据采集卡,板上集成16M(64MB可选)和32位143MHz的DSP处理器,提供足够长的模拟信号数据绝无数据丢失。
提供2个同步模拟信号输入端口,和宽电压输入范围。
PCI-3150是理想的通讯应用比如:通讯数据分析。
40MS/s采样率,在板的RAM和DSP处理可以作为理想的无数据丢失的记录仪。
具有12位的精度,高速数据采集,灵活的触发方式,是高速数据采集的理想产品。
在板的DSP处理器可预处理密集的数据,比如:FFTs和数据过滤,释放主机作为更高级的算法和控制。
外部的时钟和触发特点允许多块卡在同一个系统主机下。
PCI-3150是PCI的Plug-and-Play,数字自动校准技术,板上没有跳线和电位器。
数字I/O模拟输入输入通道:2通道(同步输入)输入阻抗:1MΩor50Ω(75Ω可选)软件选择耦合:AC or DC 软件选择输入带宽:70MHz(3dB)精度:12位输入范围:±50mV,±100mV,±200mV,±500mV, ±1V,±2V,±5V 软件选择共态抑制比:46dB (at DC)增益精度:+/-0.1dB相对于满量程(at 100kHz)零点精度:0.1%量程 +/-1mV(at DC)DNL(微分非线性): <1 LSB (无变化) INL(积分非线性): <4 LSBSNR(信噪比): 64dB (500 kHz input, 1Vpp range) SFDR(无杂散动态范围): 60dB (1Vpp range) 触发: 来源:任意输入通道,Ext, S/W, Dig I/O 级别:256个台阶 斜坡:+ or - 外部:±4V, 100kΩ Zin, 50 ns min脉冲带宽采样速率:内部时钟: 10k to 40MS/s(1Hz精度)单通道 10k to 20MS/s(1Hz精度)双通道 软件控制独立的输出时钟外部时钟: >=4x采样速率输入或输出100kΩ输入通道:16通道(2个8位端口),可选输入或输出输入高电平:2.0 - 5V最大 ,输入低电平: 0.8 - 0V最小 输出高电平: 2.4V max @ 24mA 输出低电平: 0.4V min @ 24mA 上电状态:输入(高阻态) 计数器/定时器:通道:2 (24 bits) , 时钟: 内部A/D or D/A时钟 速度: 80 MHz Max , 模式: 8254 modes 1, 2, 3, 5物理特性尺寸: 7.15 in x 4.20 in ,182 mm x 107 mm 功耗: 1.75 A at +5V ,0.5 A at +12V工作温度: 0℃ to 55℃ ,存储温度: -20℃ to 70℃ 连接器: 5 BNC Female,4 Input, 1 Ext trig/clk 40 Pin针(数字量I/O),32 Bit PCI模拟输出输出通道:2通道(同步输出),12位分辨率输出阻抗:1MΩor50Ω(75Ω可选)软件选择耦合:DC滤波器:7th 顺序贮藏器, 8MHz 3dB频率输出范围:±50mV,±100mV,±200mV,±500mV, ±1V,±2V,±5V 软件选择增益精度:+/-0.1dB相对于满量程(at 100kHz)零点精度:0.1%量程 +/-1mV(at DC)DNL(微分非线性): <1 LSB (无变化) INL(积分非线性): <1 LSBSNR(信噪比): 72dB (500 kHz input, 1Vpp range) SFDR(无杂散动态范围): 55dB (1Vpp range) 触发: 来源:任意输入通道,Ext, S/W, Dig I/O 级别:256个台阶 斜坡:+ or - 外部:±4V, 100kΩ Zin, 50 ns min脉冲带宽采样速率:内部时钟: 10k to 40MS/s(1Hz精度)单通道 10k to 20MS/s(1Hz精度)双通道 软件控制独立的输出时钟外部时钟: >=4x采样速率输入或输出100kΩZin,80MHz最大存储器:16MB(64MB可选)PCI:32bit,33 MHz总线连续控制,全速80MB/s到PC存储器运行模式:任意波形发生具有循环功能(正弦、正方形, 三角) 同步输出:软件激活TTL一致, 50Ω Zout 1在分割点连续采样。
核心提示数据采集卡的定义数据采集卡就是把模拟信

核心提示:一、数据采集卡的定义:数据采集卡就是把模拟信号转换成数字信号的设备,其核心就是A/D芯片。
二、数据采集简介:在计算机广泛应用的今天,数据采集的重要性是十分显著的。
它是计算机与外部物理世界连接的桥梁。
各种类型信号采集的难易程度差别很大。
实际采集时,噪声也可能带来一些麻烦。
数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。
时一、数据采集卡的定义:数据采集卡就是把模拟信号转换成数字信号的设备,其核心就是A/D芯片。
二、数据采集简介:在计算机广泛应用的今天,数据采集的重要性是十分显著的。
它是计算机与外部物理世界连接的桥梁。
各种类型信号采集的难易程度差别很大。
实际采集时,噪声也可能带来一些麻烦。
数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。
假设现在对一个模拟信号 x(t) 每隔Δ t 时间采样一次。
时间间隔Δ t 被称为采样间隔或者采样周期。
它的倒数1/ Δ t 被称为采样频率,单位是采样数 / 每秒。
t=0, Δ t ,2 Δ t ,3 Δ t …… 等等, x(t) 的数值就被称为采样值。
所有x(0),x( Δ t),x(2 Δ t ) 都是采样值。
这样信号x(t) 可以用一组分散的采样值来表示:下图显示了一个模拟信号和它采样后的采样值。
采样间隔是Δ t ,注意,采样点在时域上是分散的。
图 1 模拟信号和采样显示如果对信号 x(t) 采集 N 个采样点,那么 x(t) 就可以用下面这个数列表示:这个数列被称为信号 x(t) 的数字化显示或者采样显示。
注意这个数列中仅仅用下标变量编制索引,而不含有任何关于采样率(或Δ t )的信息。
所以如果只知道该信号的采样值,并不能知道它的采样率,缺少了时间尺度,也不可能知道信号 x(t) 的频率。
根据采样定理,最低采样频率必须是信号频率的两倍。
反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做恩奎斯特频率,它是采样频率的一半。
模拟输出数据采集卡最基本共62页文档

1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
《模拟量的输入输出》课件

模拟量输入的精度与误差
模拟量输入的精度是指能够转 换的最小变化量,通常取决于
设备的位数和分辨率。
误差则是指实际值与测量值 之间的差异,可能由多种因 素引起,如噪声、干扰和设
备的不完善等。
为了减小误差和提高精度,可 以采用滤波器、去噪技术和校
准等方法。
03
CATALOGUE
模拟量输出
模拟量输出的原理
在数据采集系统中的应用
环境监测
模拟量输入输出用于采集各种环境参 数,如温度、湿度、气压、风速等, 为气象预报、环境评估和科学研究提 供数据支持。
音频信号采集
在音频处理和录音工程中,模拟量输 入输出用于捕获和传输高质量的音频 信号,确保音频数据的准确性和完整 性。
在仪器仪表中的应用
工业仪表
在工业生产中,模拟量输入输出用于与各种传感器和执行器进行通信,实现自动化检测和控制。
模拟量用于表示连续变化 的音频信号,如音乐、语 音等。
视频处理
模拟量用于表示连续变化 的视频信号,如电影、电 视节目等。
02
CATALOGUE
模拟量输入
模拟量输入的原理
模拟量输入是指将连续变化的物理量(如电压、电流 、压力、温度等)转换成数字量,以便于计算机处理
。
模拟量输入的原理通常包括采样、保持和量化三个步 骤。
04
CATALOGUE
模拟量输入输出的应用实例
在控制系统中的应用
自动化生产线控制
模拟量输入输出用于实时监测生产线上的各种传感器数据,如温度、压力、流 量等,并根据预设的阈值进行自动调节,确保生产过程的稳定和高效。
机器人运动控制
通过模拟量输入输出,机器人可以接收来自传感器的位置、速度等信号,实现 精确的运动轨迹规划和实时调整。
制造业设备智能维护与故障预测方案

制造业设备智能维护与故障预测方案第一章绪论 (3)1.1 研究背景 (3)1.2 研究意义 (3)1.3 内容概述 (4)第二章,文献综述。
分析国内外制造业设备智能维护与故障预测技术的研究现状,总结现有研究成果和不足之处。
(4)第三章,设备智能维护与故障预测技术框架。
构建制造业设备智能维护与故障预测技术框架,明确各部分功能及相互关系。
(4)第四章,关键技术研究。
对设备状态监测、数据预处理、故障诊断与预测等关键技术进行深入研究和分析。
(4)第五章,实证分析。
以某制造业企业为案例,验证所提出的制造业设备智能维护与故障预测方案的有效性。
(4)第六章,结论与展望。
总结本研究的主要成果,指出存在的不足和改进方向,并对未来研究进行展望。
(4)第二章制造业设备智能维护概述 (4)2.1 设备智能维护的定义 (4)2.2 设备智能维护的必要性 (4)2.3 设备智能维护的关键技术 (5)第三章设备故障类型与机理 (5)3.1 设备故障类型分析 (5)3.2 设备故障机理研究 (6)3.3 故障诊断与预测方法 (6)第四章数据采集与预处理 (7)4.1 数据采集技术 (7)4.1.1 传感器技术 (7)4.1.2 数据采集卡技术 (7)4.1.3 无线通信技术 (7)4.1.4 网络传输技术 (7)4.2 数据预处理方法 (7)4.2.1 数据清洗 (7)4.2.2 数据转换 (7)4.2.3 数据整合 (8)4.2.4 特征提取 (8)4.3 数据质量评估 (8)4.3.1 数据完整性 (8)4.3.2 数据一致性 (8)4.3.3 数据准确性 (8)4.3.4 数据可靠性 (8)第五章设备状态监测与评估 (8)5.1 设备状态监测方法 (8)5.2 设备状态评估指标 (9)第六章智能故障预测技术 (10)6.1 故障预测方法 (10)6.1.1 简介 (10)6.1.2 基于信号处理的方法 (10)6.1.3 基于模型的方法 (10)6.1.4 基于数据驱动的方法 (10)6.2 预测模型建立 (10)6.2.1 数据预处理 (10)6.2.2 特征选择 (10)6.2.3 模型选择与训练 (10)6.2.4 模型验证与评估 (10)6.3 模型优化与调整 (11)6.3.1 模型参数优化 (11)6.3.2 特征优化 (11)6.3.3 模型融合与集成 (11)6.3.4 模型自适应调整 (11)第七章设备维护决策支持系统 (11)7.1 维护决策支持系统框架 (11)7.2 维护策略制定 (12)7.3 维护成本分析 (12)第八章智能维护系统实施与集成 (12)8.1 智能维护系统架构 (12)8.1.1 数据采集层 (13)8.1.2 数据处理层 (13)8.1.3 智能分析层 (13)8.1.4 决策与执行层 (13)8.2 系统集成与实施 (13)8.2.1 系统需求分析 (13)8.2.2 设备选型与采购 (13)8.2.3 系统搭建与调试 (13)8.2.4 系统集成 (13)8.2.5 系统部署与培训 (14)8.3 系统功能评估 (14)8.3.1 评估方法 (14)8.3.2 评估指标 (14)第九章安全生产与风险管理 (14)9.1 安全生产管理 (14)9.1.1 安全生产理念 (14)9.1.2 安全生产责任制 (14)9.1.3 安全生产管理制度 (15)9.2 风险识别与评估 (15)9.2.1 风险识别 (15)9.2.2 风险评估 (15)9.3 应急预案制定 (15)9.3.1 应急预案编制原则 (15)9.3.2 应急预案内容 (16)9.3.3 应急预案实施与评估 (16)第十章发展趋势与展望 (16)10.1 制造业设备智能维护发展趋势 (16)10.2 面临的挑战与机遇 (16)10.3 未来研究方向与展望 (17)第一章绪论1.1 研究背景科学技术的飞速发展,制造业作为国家经济的重要支柱,其生产效率和产品质量日益受到广泛关注。
数据采集卡

(3)缓存:主要用来存储AD芯片转换后的数据。带缓存板卡可以设置采样频率,否则不可改变。缓存有 RAM和FIFO两种。FIFO主要用作数据缓冲,存储量不大,速度快;RAM一般用于高速采集卡,存储量大,速度较慢。
(4)分辨率:采样数据最低位所代表的模拟量的值,常有12位、14位、16位等。如12位分辨率,当电压量 程为5000mV,单位增量为(5000mV)/4096=1.22mV(注:2的12次方为4096)。
数据采集卡
计算机技术术语
01 分类
03 技术参数
目录
02 功能 04 选型
基本信息
数据采集是指对设备被测的模拟或数字信号,自动采集并送到上位机中进行分析、处理。数据采集卡,即实 现数据采集功能的计算机扩展卡,可以通过USB、PXI、PCI、PCI Express、火线(1394)、PCMCIA、ISA、 Compact Flash、485、232、以太网、各种无线网络等总线接入计算机。
分类
分类
基于PC总线的板卡种类很多,其分类方法也有很多种。 按照板卡处理信号的不同可以分为模拟量输入板卡(A/D卡)、模拟量输出板卡(D/A卡)、开关量输入板 卡、开关量输出板卡、脉冲量输入板卡、多功能板卡等。其中多功能板卡可以集成多个功能,如数字量输入/输出 板卡将模拟量输入和数字量输入/输出集成在同一张卡上。 根据总线的不同,可分为PXI/CPCI板卡和PCI板卡。
模拟量的输入输出

• 转换时间
– 从开始转换到与满量程值相差±1/2 LSB所对应 的模拟量所需要的时间
V
VFULL
1/2 LSB
0
2020/4/28
tC
t
8.2.2 典型D/A转换器
• DAC0832
CS
– 特性:
W R1
• 8位电流输出型D/A转换器 A G N D
• T型电阻网络
DI3
• 差动输出
• 对于慢速变化的信号,可省略采样保持电路
2020/4/28
采样保持电路(S/H)
• 由MOS管采样开关T、保持电容Ch和运放构成的跟随器三 部分组成。
• 放大、整形、滤波
• 多路转换开关(Multiplexer)
• 多选一
• 采样保持电路(Sample Holder,S/H)
• 保证变换时信号恒定不变
• A/D变换器(A/D Converter)
• 模拟量转换为数字量
2020/4/28
模拟量输出通道
• D/A变换器(D/A Converter)
DB
DAC 0830 0831 0832
VREF VFB IO U T 2 IO U T 1
+5 V
-
VO
+
2020/4/28
AG N D
(2) 双极性模拟电压输出。如果要输出双极性电压,则需
在输出端再加一级运算放大器作为偏移电路,如下图所示。当
数字量N从00H至FFH变化时,对应的模拟电压VO的输出范围
• 二进制数、十进制数
– 工业生产过程的闭环控制
传感器
模拟量
数字量
A/D
计算机
数字量 D/A 模拟量 执行元件
模拟量输入、输出通道

医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章模拟量输入输出与数据采集卡通过本章的学习,使考生掌握D/A,A/D转换的原理和典型芯片,在此基础上了解工业控制计算机常用模板的组成和应用。
要求:(1)了解D/A转换的工作原理和8位,12位D/A转换芯片;D/A转换器与总线的连接和应用方法。
(2)了解A/D转换器的工作原理和指标,熟悉A/D转换的典型芯片和多路转换器,采样保持器的工作原理。
(3)了解数据采集卡的组成和指标及其应用方法,了解工控机配套模板的概况。
一、重点提示本章重点是D/A,A/D转换器的工作原理,与总线的连接方法。
二、难点提示本章难点是利用这些芯片和多路开关、采样保持器组成数据采集卡的应用方法。
考核目的:考核学生对微型计算机的模拟通道的构成及工作原理的掌握。
1.数模转换器D/A(1)D/A转换的指标和工作原理/ (2)典型D/A转换器芯片(3)D/A转换器与总线的连接2.模数转换器A/D(1)A/D转换器的工作原理(双积分和逐次逼近型A/D转换),A/D转换器主要指标(2)典型A/D转换器芯片(ADC0809及.12位A/D芯片)的功能和组成,与总线的连接 3.多路开关(1)数据采集系统对多路开关的要求(2)几种多路开关芯片(3)几种多路开关的主要技术参数4.采样保持器(1)采样保持器的工作原理(2)常用的采样保持器芯片5.数据采集卡的组成及其应用本章知识结构如下:(一)D/A转换接口D/A转换器的作用是将二进制的数字量转换为相应的模拟量。
D/A转换器的主要部件是电阻开关网络,其主要网络形式有权电阻网络和R-2R梯形电阻网络。
集成D/A芯片类型很多,按生产工艺分有双极型、MOS型等;按字长分有8位、10位、12位等;按输出形式分有电压型和电流型。
另外,不同生产厂家的产品,其型号各不相同。
例如,美国国家半导体公司的D/A 芯片为DAC 系列,如DAC0832等;美国模拟器件公司的D/A 芯片为AD 系列,如AD558等。
使用时可参阅各公司提供的使用手册。
1.DAC0832DAC0832是美国国家半导体公司采用CMOS 工艺生产的8位D/A 转换集成电路芯片。
它具有与微机连接简单、转换控制方便、价格低廉等特点,因而得到了广泛的应用。
(1) DAC0832的结构与引脚DAC0832的逻辑结构框图如下图所示。
片内有R-2RT 型电阻网络,用于对参考电压提供的两条回路分别产生两个电流信号IOUT1和IOUT20 DAC0832采用8位输入寄存器和8位DAC 寄存器二次缓冲方式,这样可以在D/A 输出的同时,送入下一个数据,以便提高转换速度。
每个输入数据为8位,可以直接与微机的数据总线相连,其逻辑电平与TTL 电平兼容。
071~D DI 一一D /A 转换器的数字量输入引脚。
其中0DI 为最低位,71D 为最高位。
CS ——片选信号输入端,低电平有效。
1WR 一—输入寄存器的写信号,低电平有效。
ILE 一一输入寄存器选通信号,高电平有效。
II .E 信号和1WR CS 、共同控制选通输入寄存器。
当1WR CS 、均为低电平,而ILE 为高电平时,01=LE ,输入数据被送至8位输入寄存器的输出端;当上述三个控制信号任一个无效时,1L E 变高,输入寄存器将数据锁存,输出端呈保持状态。
XFER ——从输入寄存器向DAC 寄存器传送D/A 转换数据的控制信号,低电平有效。
2WR ……DAC 寄存器的写信号,低电平有效。
当XFER 和2WR 同时有效时,输入寄存器的数据装入DAC 寄存器,并同时启动一次D/A 转换。
CC V ——芯片电源,其值可在+5~+15 V 之间选取,典型值取+15 V 。
AGND-----模拟信号地。
DGND ——数字信号地。
FB R 一一内部反馈电阻引脚,用来外接D/A 转换器输出增益调整电位器。
REF v ——D/A 转换器的基准电压,其范围可在-lO ~+10 V 内选定。
该端连至片内的R-2RT 型电阻网络,由外部提供一个准确的参考电压。
该电压精度直接影响着D/A 转换精度。
1OUT I ——D/A 转换器输出电流1,当输入全l 时,输出电流最大,约为FBEF 256255R V R ⨯I 当输入为全O 时,输出电流最小,即为O 。
2O UT I ——D /A 转换器输出电流2,它与1OUT I 有如下关系:21OUT OUT I I +=常数D/A 转换没有形式上的启动信号。
实际上将数据写入第二级寄存器的控制信号就是D/A 转换器的启动信号。
另外,它也没有转换结束信号,D/A 过程很快,一般还不到一条指令的执行时间。
(2)DAC0832的工作方式DAC0832内部有两个寄存器,能实现三种工作方式:双缓冲、单缓冲和直通方式。
双缓冲工作方式是指两个寄存器分别受到控制。
当ILE 、CS 和WR 1信号均有效时,8位数字量被写入输入寄存器,此时并不进行A/D 转换。
当WR 2和XFER 信号均有效时,原来存放在输入寄存器中的数据被写入DAC 寄存器,并进入D/A 转换器进行D/A 转换。
在一次转换完成后到下一次转换开始之前,由于寄存器的锁存作用,8位D/A 转换器的输入数据保持恒定,,因此D/A 转换的输出也保持恒定。
单缓冲工作方式是指只有一个寄存器受到控制。
这时将另一个寄存器的有关控制信号预先设置成有效,使之开通,或者将两个寄存器的控制信号连在一起,两个寄存器作为一个来使用。
直通工作方式是指两个寄存器的有关控制信号都预先置为有效,两个寄存器都开通。
只要数字量送到数据输入端,就立即迸入D/A 转换器进行转换。
这种方式应用较少。
(3)电压输出电路的连接:DAC0832以电流形式输出转换结果,若要得到电压形式的输出;需要外加I/V 转换电路,常采用运算放大器实现I/V 转换。
对于单极性输出电路,输出电压为:REF OUT V D V ⨯-=256式中D 为输入数字量的十进制数。
因为转换结果OUTT I 接运算放大器的反向端,所以式中有一个负号。
若V V F R 5E +=,当 D---- 0~ 255 (00H ~FFH)时,V V OUT )98.4~0(-=。
通过调整运算放大器的调零电位器,可以对D/A 芯片进行零点补偿。
通过调节外接于反馈回路的电位器RP1,可以调整满量程。
对于双极性输出电路,输出电压的表达式为:REF OUT V D V ⨯-=128128若V V REF 5+=,当D=O 时,V V V OUT OUT 5,01-==;当D=128(80H)时,0,5.21=-=OUT OUT V V V ;当D=255(FFH)时,=-=OUT OUT V V V ,98.51 4.96 V 。
2.D/A 转换芯片与微处理器的接口计算机是通过输出指令将要转换的数字送到D/A 转换芯片来实现D/A 转换的,但由于输出指令送出的数据在数据总线上持续的时间很短,因而需要数据锁存器来锁存CPU 送来的数据,以便完成D/A 转换。
目前生产的DAC 芯片有的片内带有锁存器(如本节介绍的DAC0832),而有的则没有。
在实际中若选用了内部不带锁存器的D/A 转换芯片,就需要在CPU 和D/A 芯片之间增加锁存电路。
(二)A/D 转换接口A/D 转换器是模拟信号源与计算机或其他数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理。
在工业控制和数据采集及许多其他领域中,A/D 转换器是不可缺少的重要组成部分。
由于应用特点和要求的不同,需要采用不同工作原理的A/D 转换器。
A/D 转换器的主要类型有:逐位比较(逐位逼近)型、积分型、计数型、并行比较型、电压-频率型(即V/F 型)等。
在选用A/D 转换器时,主要应根据使用场合的具体要求,按照转换速度、精度、功能以及接口条件等因素决定选择何种型号的A/D 转换芯片。
1.ADC0809ADC0809是逐位逼近型8通道、8位A/D 转换芯片,CMOS 工艺制造,双列直插式28引脚封装。
给出了ADC0809芯片的内部结构框图及引脚图(图中给出的数据为对应的引脚号)。
ADC0809片内有8路模拟开关,可输入8个模拟量,单极性输入,量程为o ~+5V 。
典型的转换速度为lOOms 。
片内带有三态输出缓冲器,可直接与CPU 总线接口。
其性能价格比有明显的优势,是目前广泛采用的芯片之一,可应用于对精度和采样速度要求不高的数据采集场合或一般的工业控制领域。
(1)内部结构与转换原理如下图所示,ADC0809内部由三部分组成:8路模拟量选通输入部分,8位A/D 转换 器和三态数据输出锁存器。
ADC20809允许连接8路模拟信号(IN 7~IN 0),由8路模拟开关选通其中一路信号输入并进行A/D 转换,模拟开关受通道地址锁存和译码电路的控制。
当地址锁存信号ALE 有效时,3位地址ADDC 、ADDB 和ADDA(通常与地址总线12A A 、和0A 引脚相连)进入地址锁存器,经译码后使8路模拟开关选通某一路模拟信号。
输入的地址信息与所选通的模拟通道之间存在一一对应的关系。
如当ADDC 、ADDB 、ADDA=000时,0IN 选通;ADDC 、AD-DB 、ADDA 一001时,IN 0选通;ADDC 、ADDB 、ADDA= 111时,7IN 选通。
8位A/D 转换器是逐次逼近式,由256R 电阻分压器、树状模拟开关(这两部分组成一个D/A 转换器)、电压比较器、逐次逼近寄存器SAR 、逻辑控制和定时电路组成。
其工作原理是采用对分搜索方法逐次比较,找出最逼近于输入模拟量的数字量。
电阻分压器需外接正负基准电源)()(-+REF REF nv V 和。
CLOCK 端外接时钟信号。
A/D 转换器的启动由START 信号控制。
转换结束时控制电路将数字量送人三态输出锁存器锁存,并产生转换结束信号EOC 。
三态输出锁存器用来保存A/D 转换结果,当输出允许信号OE 有效时,将打开三态门,使转换结果输出。
(2)引脚定义70~IN IN ——8路模拟量输入端。
ADDC 、ADDB 和ADDA ——地址输入端,以选通07~IN IN 的8路中的某一路信号。
AIE ——地址锁存允许信号,有效时将ADDC 、ADDB 和ADDA 锁存。
CLOCK ——外部时钟输入端。
允许范围为10~1280kHz 。
时钟频率越低,转换速度就越慢。
START ——A/D 转换启动信号输入端。
有效信号为一正脉冲,,若在脉冲的上升沿,A/D 转换器内部寄存器均被清零,在其下降沿开始A/D 转换。
EOC ——A/D 转换结束信号。
在START 信号上升沿之后不久,EOC 变为低电平。
当A/D 转换结束时,EOC 立即输出一正阶跃信号,可用来作为A/D 转换结束的查询信号或中断请求信号。