初中数学八年级下册菱形的判定

合集下载

人教版数学八年级下册18.2.2菱形菱形的性质优秀教学案例

人教版数学八年级下册18.2.2菱形菱形的性质优秀教学案例
(三)学生小组讨论
1.教师将学生分成小组,让他们合作探究菱形的性质。
2.教师设计具有探究性的任务,如让学生通过实际操作,发现菱形的性质,培养学生的合作意识和沟通能力。
3.教师引导学生进行小组讨论,分享他们的发现和思考,让学生在交流中互相启发,提高他们的解决问题的能力。
(四)总结归纳
1.教师引导学生总结菱形的性质,如对角线互相垂直平分、四条边相等。
3.教师设计具有挑战性的问题,如“如何判定一个四边形是菱形?如何计算菱形的面积?”引导学生进行深入思考,提高他们的解决问题的能力。
(三)小组合作
1.教师将学生分成小组,让他们在小组内进行合作交流,共同探究菱形的性质。
2.教师设计具有探究性的任务,如让学生通过实际操作,发现菱形的性质,培养学生的合作意识和沟通能力。
3.教师引导学生进行小组讨论,分享他们的发现和思考,让学生在交流中互相启发,提高他们的解决问题的能力。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,如“我在学习菱形的过程中遇到了哪些问题?我是如何解决的?”
2.教师设计评价量表,让学生对自己的学习成果进行评价,如对菱形的性质的理解程度、解决问题的能力等。
教学案例以小组合作探究的形式展开,让学生在动手实践、合作交流的过程中,发现菱形的性质,体会数学的乐趣。同时,结合生活实际,让学生感受菱形在生活中的应用,提高他们的实践能力。在教学过程中,我注重启发诱导,让学生循序渐进地掌握菱形的性质,培养他们的逻辑思维能力。
本节课结束后,学生对菱形的性质有了更加深刻的理解,教学效果显著。在接下来的学习中,他们将更好地应用菱形的性质,解决实际问题,为后续学习打下坚实基础。
3.教师提出问题:“什么是菱形?你们认为菱形有哪些性质?”让学生猜测和思考,激发他们的学习兴趣。

5.2菱形-2024-2025学年初中数学八年级下册(浙教版)上课课件

5.2菱形-2024-2025学年初中数学八年级下册(浙教版)上课课件
.
典例2 如图,在菱形 中,对角线 , 相交于点 ,点 为 的中点.若 ,则菱形 的周长为( )
C
A. B. C. D.
[解析] ∵四边形 为菱形,,.,点 为 的中点, . .
另解∵四边形 是菱形, , ,又∵点 是 的中点, 是 的中位线, , .
选择题、解答题
考点2:菱形的判定,通常会和菱形的性质一起考查.
选择题、解答题
考点3:菱形的性质与判定与图形变换结合,考查难度较大,较综合.
填空题、解答题
考点1 菱形的性质
典例7 [衢州中考] 已知:如图,在菱形 中,点 , 分别在边 , 上,且 ,连结 , .求证: .
证明:∵四边形 是菱形, , .在 与 中, , .
考点2 菱形的判定
典例8 [2022·嘉兴中考] 小惠自编一题:“如图,在四边形 中,对角线 , 交于点 , , .求证:四边形 是菱形”,并将自己的证明过程与同学小洁交流.
小惠:证明: , , 垂直平分 . , ,四边形 是菱形.
B
A.矩形 B.菱形 C.正方形 D.等腰梯形
[解析] 根据作图方法可得 ,因此四边形 一定是菱形.
典例6 如图, <m></m> 的对角线 <m></m> , <m></m> 相交于点 <m></m> ,点 <m</m> , <m></m> , <m></m> 分别是 <m></m> , <m></m> , <m></m> , <m></m> 的中点,若要使四边形 <m></m> 成为菱形,则 <m></m> 应满足的条件是_________(写出一种即可).

1.1.1菱形形的性质与判定(教案)

1.1.1菱形形的性质与判定(教案)
在实践活动环节,分组讨论和实验操作让学生们积极参与,课堂氛围活跃。但我也注意到,有些小组在讨论时容易偏离主题,需要我及时引导回到正轨。此外,在实验操作中,学生们对测量工具的使用还不够熟练,这也影响了他们对菱形判定方法的掌握。
在学生小组讨论环节,我发现学生们在交流过程中能够互相启发,共同解决问题。但也有一些学生在讨论中较为被动,需要我更多地关注并给予鼓励。在今后的教学中,我要设法让每个学生都能积极参与讨论,提高他们的自信心和表达能力。
1.1.1菱形形的性质与判定(教案)
一、教学内容
本节课选自《初中数学》八年级下册第四章第一节“1.1.1菱形的性质与判定”。教学内容主要包括以下两部分:
1.菱形的性质:菱形的定义、对角线互相垂直平分、对角线长度关系、对角线所形成的角为直角、四边相等、对边平行。
2.菱形的判定:根据定义判定、四边相等的四边形是菱形、对角线互相垂直平分的四边形是菱形、对角线长度相等的平行四边形是菱形。
在今后的教学中,我会努力做到以下几点:
1.精心设计教学活动,让每个学生都能参与到课堂中来。
2.注重培养学生的几何直观和空间观念,提高他们的逻辑思维能力。
3.加强课堂反馈,及时了解学生的学习情况,调整教学策略。
4.拓展学生的知识视野,让他们看到几何在现实生活中的广泛应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

《19.22菱形的判定》作业设计方案-初中数学华东师大版12八年级下册

《19.22菱形的判定》作业设计方案-初中数学华东师大版12八年级下册

《菱形的判定》作业设计方案(第一课时)一、作业目标通过本次作业设计,旨在让学生熟练掌握菱形的基本概念及其判定的基本方法。

加强学生运用菱形判定的原理分析并解决问题的能力,提高数学学习的实践操作水平,巩固所学知识。

二、作业内容(一)理论巩固1. 回顾课本内容,梳理菱形的定义、性质和判定条件。

2. 完成课本及参考书中相关的练习题,如根据已知条件判断图形是否为菱形。

(二)实际操作1. 绘制菱形:学生需在纸上用直尺和圆规绘制一个标准菱形,并在每个内角标注度数。

2. 探究式实践:以小组形式开展活动,探究生活中常见的菱形实例及其判定的实际运用,例如交通标志中的菱形标志等。

(三)综合应用1. 编写问题:学生需根据所学知识,编写至少两道关于菱形判定的数学问题。

2. 解答问题:选择并解答同学编写的问题,尝试不同的解题方法,增强理解与运用能力。

三、作业要求1. 独立完成:本作业以个人完成为主,不依赖他人帮助,培养自主学习的能力。

2. 细心书写:对所有练习题、图形及文字说明均需认真书写,做到整洁清晰。

3. 小组合作:对于探究式实践部分需小组合作完成,记录活动过程及结论。

4. 时间管理:本作业要求在教师指定的时间内完成,并确保高质量的提交。

5. 标注题号及答题步骤:编写并解答问题需清晰标注题号及答题步骤,便于检查与理解。

四、作业评价1. 教师评价:根据学生提交的作业情况,给予详细的批改与评语,对优秀作品进行展示。

2. 互评与自评:学生之间相互评价作品,同时要求学生进行自评,促进相互学习与反思。

3. 作业难度与质量评价:对本次作业的难度、完成质量及学生掌握情况进行综合评价。

五、作业反馈1. 及时反馈:教师需在规定时间内完成批改,并及时将作业反馈给学生。

2. 个性化指导:针对学生在作业中出现的错误或不足,给予个性化的指导与建议。

3. 总结与改进:教师需根据学生作业的完成情况,总结教学中的优点与不足,并作出相应的教学改进措施。

初中数学菱形的性质及判定

初中数学菱形的性质及判定

初中数学菱形的性质及判定1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质菱形是特殊的平行四边形,它具有平行四边形的所有性质,? 还具有自己独特的性质:①边的性质:对边平行且四边相等.②角的性质:邻角互补,对角相等.③对角线性质:对角线互相垂直平分且每条对角线平分一组对角.④对称性:菱形是中心对称图形,也是轴对称图形.菱形的面积等于底乘以高,等于对角线乘积的一半.点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半.3.菱形的判定判定①:一组邻边相等的平行四边形是菱形.判定②:对角线互相垂直的平行四边形是菱形.判定③:四边相等的四边形是菱形.4.三角形的中位线中位线:连结三角形两边的中点所得的线段叫做三角形的中位线.也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线.以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质.定理:三角形的中位线平行第三边且长度等于第三边的一半.重点是菱形的性质及判定定理。

菱形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。

菱形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

难点是菱形性质的灵活应用。

由于菱形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。

如果得到一个平行四边形是菱形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

板块一、菱形的性质菱形的两条对角线将菱形分成全等三角形的对数为考点】菱形的性质及判定题型】填空难度】2 星关键词】解析】根据菱形的性质可知:共有8 对答案】8在平面上,一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】根据菱形的性质可知:应当旋转至少180【答案】180如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离AB BC16cm ,则1 度.考点】菱形的性质及判定题型】填空难度】2 星关键词】2009 年,江西中考解析】由题意可知:构成三角形为等边三角形答案】120如图,在菱形ABCD 中,A 60 ,E 、F 分别是AB 、AD 的中点,若EF 2 ,则菱形ABCD 的边长是______________________ .AC【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】2009 年,漳州中考【解析】省略【答案】4如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB与EF 互相平分.考点】菱形的性质及判定,平行四边形的性质和判定题型】解答难度】3 星关键词】解析】省略答案】连接BD、AF、EB菱形ABCD 中BD AC ,EF AC ,∴ BD ∥ EF∵ AD ∥ FC ,∴四边形BDEF 是平行四边形,∴ ED FB 又∵ AE∥FB,∴四边形AFBE 是平行四边形∴ AB 与EF 互相平分如图1 所示,菱形ABCD 中,对角线AC 、BD 相交于点O,H 为AD 边中点,菱形ABCD 的周长为24 ,则OH 的长等于AE ED ,∴ AE FB考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】 2009 年,本溪中考 解析】省略 答案】 3如图,已知菱形 ABCD 的对角线 AC 8cm ,BD 4cm ,DE BC 于点 E ,则 DE 的长 为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 【解析】省略 【答案】8 5cm 5菱形周长为 52cm , 一条对角线长为 10cm ,则其面积为 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星 【关键词】D图1【解析】菱形的边长为52 4 13 cm ,由勾股数和菱形对角线的性质得另一对角线长为24 cm ,故面积为120 cm2【答案】120菱形的周长为20cm ,两邻角度数之比为2:1 ,则菱形较短的对角线的长度为【考点】菱形的性质及判定【题型】填空【难度】2 星【关键词】【解析】省略【答案】5如图2,在菱形ABCD 中,AC 6,BD 8,则菱形的边长为()A.5 B .10 C .6 D .8考点】菱形的性质及判定题型】选择难度】2 星关键词】2009 年,重庆江津中考解析】由菱形的对角线互相垂直平分及勾股数可知选A答案】A如图3,在菱形ABCD 中,A 110 ,E 、F 分别是边AB 和BC 的中点,EP 于点P ,则FPC ()A.35 B .45 C .50 D .55CDD考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,杭州市中考 解析】省略 答案】 D如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一 个锐角为 60 的菱形,剪口与折痕所成的角 的度数应为( ) 考点】菱形的性质及判定 题型】选择 难度】 2 星 关键词】 2009 年,绵阳市中考 解析】省略 答案】 D菱形 ABCD 中, E 、F 分别是 BC 、CD 的中点,且 AE BC ,AF CD , 那么 等于 . 【考点】菱形的性质及判定 题型】填空 难度】 2 星 关键词】A . 15 或 30B . 30 或 45C . 45 或 60DEAFE BP C图330解析】省略 答案】 60已知菱形的一个内角为 60 ,一条对角线的长为 2 3 ,则另一条对角线的 长为 _________________ . 【考点】菱形的性质及判定 【题型】填空 【难度】 2 星【关键词】 2009 年,辽宁朝阳中考 【解析】省略 【答案】 2 或 6如图,将一个长为 10cm ,宽为 8cm 的矩形纸片对折两次后,沿所得矩形 两邻边中点的连线 (虚线)剪下,再打开, A . 10cm 2B . 20cm 2C . 40cm 2考点】菱形的性质及判定 题型】选择 难度】 3 星 关键词】 2009 年,南宁市中考 解析】省略 答案】 A已知菱形 ABCD 的两条对角线 AC ,BD 的乘积等于菱形的一条边长的平方, 则菱形的一个钝角的大小是 【考点】菱形的性质及判定得到的菱形的面积为 ( ) D . 80cm 2C2【题型】填空 【难度】 4 星【关键词】希望杯邀请赛【解析】如图,过点 A 作 AE BC 于 E ,则 1AC BD BC AE ,又 AC BD AB 2,2得AE 1AB , ABC 30 , BAD 1502答案】 150如图,菱形花坛 ABCD 的周长为 20m , ABC 60 , ? 沿着菱形的对角线修 建了两条小路 AC 和 BD ,求两条小路的长和花坛的面积.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】 ∵四边形 ABCD 是菱形∴ AB BC CD DA 5 ∵ABC 60∴ ABC 和 ADC 都是等边三角形 ∴ AC 5 又∵ AC BD在 Rt ABO 和 Rt ADO 中可得53BO DODA图2∴BD 5 3∴ S ABCD1 AC BD 25 3 ABCD 2 2点评:内角为60 和120 的菱形学生必须掌握,这是考试的热点模型.【答案】见解析如图,在菱形ABCD 中,AB 4a ,E 在BC 上,BE 2a ,BAD 120 ,P 点在BD 上,则PE PC 的最小值为【考点】菱形的性质及判定【题型】填空【难度】3 星【关键词】【解析】A,C 关于BD对称,连AE 交BD 于P ,且AE BC ,BAE 30 ,PE PC AE 4a 2 2a 2 2 3a 为最小值【答案】2 3a已知,菱形ABCD中,E、F 分别是BC 、CD上的点,若AE AF EF AB,求C的度数.考点】菱形的性质及判定题型】解答难度】4 星关键词】解析】∵ AE AB ∴ B AEBD同理D AFD∵四边形 ABCD 是菱形考点】菱形的性质及判定 题型】解答 难度】 4 星 关键词】 解析】连接 AC ,∵ 四边形 ABCD 为菱形AB BC CD AD△ABC 和 △ ACD 为等边三角形AB AC , B ACD BAC 60 EAF 60 BAE CAF△ ABE ≌△ ACF AE AFEAF 60△AEF 为等边三角形AEF 60∵AEC B BAE AEF CEF∴ CEF 18 分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题 转∴ AD ∥ BC , B D , BAD C , AEB AFDB D ∴ BAE DAFDE EF AF ,∴ △ AEF 是等边三角形,∴EAF 60AD ∥BC ,xB BAD 180 ,∴ 90 60 2x 1802∴x 20 ∴C【答案】 100BAD 60 2 x 100已知,菱形 ABCD 中, E 、 F 分别是 BC 、 BAE 18 .求: CEF 的度数.CD 上的点,且B EAF 60 ,化为三角形问题.【答案】18板块二、菱形的判定如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是.考点】菱形的性质及判定题型】填空难度】2 星关键词】2007 年,四川成都解析】AB AD,AC BD 等;答案】AB AD,AC BD如图,在ABC 中,BD 平分ABC ,BD 的中垂线交AB 于点E ,交BC 于点F ,求证:四边形BEDF 是菱形考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】∵ EF 是BD 的中垂线∴BE DE ,BF DF ,∴DBE BDE∵ EBD DBF∴ DBF EDB ,所以BC∥ DE 同理AB∥ DF 所以四边形BEDF 是菱形如图,在ABC 中,AB AC ,D是BC 的中点,连结AD,在AD 的延长线上取一点E,连结BE ,CE .当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2009 年,娄底中考【解析】当AE 2AD (或AD DE 或DE 1 AE )时,四边形ABEC 是菱形2理由如下:∵ AE 2AD ,∴ AD DE又点D 为BC 中点,∴ BD CD∴四边形ABEC 为平行四形边∵ AB AC∴四边形ABEC 为菱形【答案】见解析已知:如图,平行四边形ABCD 的对角线AC的垂直平分线与边AD 、BC 分别相交于E 、F . 求证:四边形AFCE 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】2006 年,盐城中考【解析】省略【答案】∵ EF 垂直平分AC,∴ EF AC,AO CO .o∴ AOE COF 90o.又∵ ABCD 平行四边形,∴ EAO FCO .∴ AOE ≌COF .∴OE OF .∴四边形AECF 是平行四边形.又由AC EF 可知,四边形AECF 是菱形.如图,在梯形纸片ABCD 中,AD //BC ,AD CD ,将纸片沿过点D 的直线折叠,使点C 落在AD上的点C处,折痕DE交BC于点E,连结CE. 求证:四边形CDC E 是菱形.考点】菱形的性质及判定题型】解答难度】3 星关键词】2007 年,云南双柏解析】省略答案】根据题意可知CDE C'DE则CD C'D,C'DE CDE ,CE C'E .∵ AD / /BC ,∴ C DE CDE .∴ CDE CED ,∴ CD CE .∴ CD C D CE CE ,∴四边形CDC E为菱形.如图,E 是菱形ABCD 的边AD 的中点,EF AC 于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分【考点】菱形的性质及判定,平行四边形的性质和判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】连结BD,AF ,EB,因为菱形ABCD 中BD AC ,又因为EF AC ,所以BD ∥ EF ,因为AD ∥ FC ,所以四边形BDEF 是平行四边形,可得ED FB ,因为AE ED,所以AE FB,从而AE∥ FB ,AE FB ,因此四边形AFBE 是平行四边形,所以AB与EF互相平分已知:如图,在平行四边形ABCD 中,AE 是BC边上的高,将ABE沿BC 方向平移,使点E与点C重合,得GFC .若B 60 ,当AB与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.B E F C考点】菱形的性质及判定题型】解答难度】3 星关键词】2009 年,山东青岛市解析】省略答案】当BC 3AB 时,四边形ABFC 是菱形.2AB∥GF ,AG∥ BF 四边形ABFG 是平行四边形∵ Rt ABE 中, B 60∴ BAE 30∴ BE1 AB2∵ BE CF ,BC3 AB2∴ EF1 AB2∴ AB BF∴四边形ABFG是菱形如图,在ABC 中,AB AC ,M 是BC 的中点.分别作MD AB于D ,ME AC 于E,DF AC 于F ,EG AB 于G.DF、EG 相交于点P .求证:四边形DMEP 是菱形.【考点】菱形的性质及判定【题型】解答【难度】3 星【关键词】【解析】省略【答案】∵ MD AB,EG AB.∴ MD ∥ EG ,同理ME ∥ DF ,∴四边形MFPD 是平行四边形AB AC ,BCo∵ BM MC , BDM CEM 90o,∴ BDM ≌ CEM ∴ DM EM ,∴四边形 DMEP 是菱形如图, ABC 中, ACB 90 ,AD 是 BAC 的平分线, 交 BC 于 D ,CH 是 AB 边上 的高,交 AD 于 F , DE AB 于 E ,求证:四边形 CDEF 是菱形.考点】菱形的性质及判定 题型】解答 难度】 3 星 关键词】 解析】省略 答案】 ∵ CH AB ,∴ HAF AFH 90ACB 90 ,∴ CAD ADC 90AD 平分 CAB ,∴ CAD HAF ,∴ AFH CDF AFH CFD ,∴ CDF CFD ,∴ CF CD AD 平分 CAB , DC AC , DE AB∴CD DE ,∴ CF DE 又∵ CH AB ,DE AB∴ CF ∥ DE , 故四边形 ABCD 是平行四边形∵ CD DE , ∴四边形 ABCD 是菱形 如图, M 是矩形 ABCD 内的任意一点,将 MAB 沿 AD 方向平移,使 AB 与 DC 重合,点 M 移动到点 M '的位置 ⑴画出平移后的三角形;⑵连结 MD ,MC ,MM ' ,试说明四边形 MDM 'C 的对角线互相垂直,且长度分 别等于AB ,AD 的长;⑶当 M 在矩形内的什么位置时, 在上述变换下, 四边形 MDM 'C是菱形?为什么?AD AM D M'BC【考点】菱形的性质及判定 【题型】解答 【难度】 3 星【关键词】 【解析】省略 【答案】⑴如图, DCM '就是所要作的三角形⑵因为 AM 平移到 DM ' ,所以 AM ∥DM '且AM DM ',四边形 DAMM' 是平行四边形,所以AD ∥MM ',矩形 ABCD 中,AD CD , 所以 MM ' CD ,又因为 AD MM ' , CD AB ,所以四边形 MDM 'C 的对角线互相垂直, 且长度分别等于 AB ,AD 的 长⑶当点 M 是 AC ,BD 的交点时,四边形 MDM 'C 是菱形,理由:如 图,矩形ABCD 中,AM BM MC MD , 又因为 AM D'M ,BM CM ' , 可得 MD MC CM ' DM ' , 所以 四边形 MDM 'C 是菱形 如图, ACD 、 ABE 、 BCF 均为直线 BC 同侧的等边三角形.已知 ABAC . ⑴ 顺次连结 A 、D 、F 、 E四点所构成的图形有哪几类?直接写出构成 图形的类型和相应 的条件.⑵ 当 BAC 为度时,四边形 ADFE 为正方形.考点】菱形的性质及判定题型】解答【难度】 3 星【关键词】 2008 年,佛山市中考改编DBC【解析】省略【答案】⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ ABC不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC= 60°(或A与F重合、△ ABC为正三角形).⑵ 150 .三、与菱形相关的几何综合题已知等腰△ABC 中,AB AC ,AD 平分BAC交BC 于D点,在线段AD 上任取一点P(A点除外),过P点作EF ∥ AB ,分别交AC 、BC于E 、F点,作PM∥AC,交AB于M 点,连结ME .⑴求证四边形AEPM 为菱形⑵当P 点在何处时,菱形AEPM 的面积为四边形EFBM 面积的一半?M考点】菱形的性质及判定题型】解答难度】3 星关键词】解析】省略答案】⑴∵ PM ∥AC,EF∥ AB∴四边形AEPM 为平行四边形∵ AB AC ,AD平分CAB∴ CAD BADAD BC,BAD EPACAD EPAEA EPS 四边形 EFBM2 ∵四边形 AEPM 为菱形, ∴ AD EM∵AD BC ∴EM ∥BC 又 EF ∥AB ∴四边形 EFBM 为平行四边形问题:如图 1,在菱形 ABCD 和菱形 BEFG 中,点 A ,B ,E 在同一条直线上, P 是线段 DF 的中点,连结 PG ,PC .若 ABC BEF 60 ,探究 PG 与 PC 的位置 关系及 PG的值.PC小聪同学的思路是:延长 GP 交 DC 于点 H ,构造全等三角形,经过推理 使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题: ⑴ 写出上面问题中线段 PG 与 PC 的位置关系及 PG的值;PC⑵ 将图 1 中的菱形 BEFG 绕点 B 顺时针旋转,使菱形 BEFG 的对角线 BF 恰 好与菱形ABCD 的边 AB 在同一条直线上,原问题中的其他条件不变(如 图 2).你在⑴中得到的两个结论是否发生变化?写出你的猜想并加以 证明. ⑶ 若图 1 中 ABC BEF 2 0 90 ,将菱形 BEFG 绕点 B 顺时针旋转任【考点】菱形的性质及判定,全等三角形的性质和判定,旋转的性 质 题型】解答 难度】 5 星【关键词】 2008 年,北京中考 【解析】省略【答案】⑴ 线段 PG 与 PC 的位置关系是 PG PC ;PG3 .PC∴四边形 AEPM 为菱形 ⑵当 P 为 EF 中点时,S意角度,原问题中的其他条件不变,求 PG 的值(用含的式子表示) .F⑵ 猜想:⑴中的结论没有发生变化.证明:如图,延长 GP 交 AD 于点 H ,连结 CH ,CG .∵ P 是线段 DF 的中点, ∴ FP DP .由题意可知 AD ∥FG .∴ GFP HDP . 又∵ GPF HPD ,∴ GFP ≌ HDP ,∴ GP HP , GF HD .∵四边形 ABCD 是菱形,∴ CD CB , HDC ABC 60 . 由ABC BEF 60 ,且菱形 BEFG 的对角线 BF 恰好与菱形 ABCD 的边 AB 在同 一条直线上,可得 GBC 60 . ∴ HDC GBC . ∵四边形 BEFG 是菱形,∴ GF GB ,∴ HD GB .∴ HDC ≌ GBC ,∴ CH CG , DCHBCG . ∴ DCH HCB BCG HCB 120 ,即 HCG 120 .∵CHCG, PH PG , ∴ PG PC , GCP HCP 60 .∴ PG3.PC⑶PGtan 90 .证明过程略.PC本题是一道探究性的几何综合题,本题的题干是以阅读材料的形式呈 现,从而降低了题目的难度, 本题应该是在 05 年大连中考压轴题的基 础上改进而来的.四、中位线与平行四边形顺次连结面积为 20 的矩形四边中点得到一个四边形,再顺次连结新四 边形四边中点得到一个 ,其面积为 . 【考点】三角形的中位线 【题型】填空 【难度】 3 星【关键词】【解析】理由:由中位线得 EF FG GH HE 1AD 即可.2【答案】 AD BC .如图,在四边形 ABCD 中, AB CD , E 、 F 、 G 、 H 分别是 AB 、 BD 、 CD 、 AC 的中点,要使四边形 EFGH 是菱形,四边形 ABCD 还满足的一个条件 是 ,并说明理由.考点】菱形的性质及判定,三角形的中位线 题型】填空 难度】 3 星 关键词】2009 年,上海模拟 解析】理由:由中位线得 EF FG GH HE 1AD 即可.2 答案】 AD BC .在四边形 ABCD 中, AB CD , P , Q 分别是 AD 、 BC 的中点, M , N 分别是 对角线AC , BD 中点,证明:PQ 与MN互相垂直.考点】菱形的性质及判定,三角形的中位线题型】解答难度】4 星关键词】解析】连接PN , NQ , MQ , PM .证明PNQM 为菱形.答案】见解析四边形ABCD 中,R、P 分别是BC 、CD 上的点,点,当点P在CD上从C向D移动而点R不动时,()A.线段EF 的长逐渐增大B.线段EF 的长逐渐减小C.线段EF 的长不变D.线段EF 的长与点P的位置有关考点】三角形的中位线题型】选择难度】4 星关键词】解析】连结AR ,利用三角形的中位线可得答案】CE、F 分别是AP、RP的中那么下列结论成立的是EF 12 AR与点P无关.如图,ABC 中,AD 是BAC 的平分线,CE AD 于 E ,M 为BC 的中点,AB 14cm ,AC 10cm,则ME 的长为【考点】三角形的中位线【题型】填空【难度】3 星【关键词】【解析】延长CE 交AB 于点线可得14 10 2 cm .2【答案】2N .利用中位线的性质和直角三角形斜边中如图,四边形ABCD 中,AB长,分别交BA,CDCD ,的延长线于点的中点,连结EF 并延CHEBC,ADBGEE,F 分别是G ,H ,求证:【考点】三角形的中位线【题型】解答【难度】4 星【关键词】【解析】省略【答案】连结BD,取BD中点P ,连结PE,PF ,BDC ,DBA 的中位线,所以PE∥DC,PF ∥BA,且PE 所以PE PF ,所以PEF PFE ,由PE∥ DC 可得:所以BGE CHEPE PF ,PFEBGE ,由条件易得1DC ,PF2PEF1BA2CHEPE,PF 分别是,因为AB CD ,,同理可得如图,已知 BE 、 CF 分别为 ABC 中 B 、 C 的平分线, AM BE 于 M,AN CF 于 N ,求证:MN ∥ BC.【考点】三角形的中位线 【题型】解答 【难度】 4 星 【关键词】【解析】延长 AM 、 AN 交 BC 于点 Q 、 R . 由等腰三角形三线合一可得 AM QM 、 ANRN 再由三角形中位线可得 MN ∥ BC .【答案】见解析如图,四边形 ABCD 中,E ,F 分别是边 AB ,CD 的中点,【考点】三角形的中位线 【题型】选择 【难度】 3 星 【关键词】【解析】连结 BD ,取 BD 的中点 P ,连结 FP ,EP ,由三角形的中位线可知 选B 【答案】 B则 AD ,BC 和 EF 的关系是( )A . AD BC 2EFBC .AD BC 2EF DAD BC ≥ 2EF AD BC ≤ 2EF已知如图所示,E、F 、G 、H分别是四边形ABCD 的四边的中点,求证:四边形EFGH 是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】3 星【关键词】【解析】连接AC .∵ H 、G 分别为AD 、DC 中点∴ HG 1 AC ,HG ∥ AC2 又∵ E、F 分别为AB、BC 中点∴ EF 1 AC ,EF ∥ AC ,∴ HG EF ,HG ∥ EF2 ∴四边形EFGH 为平行四边形【答案】见解析如图,在四边形ABCD 中,E为AB 上一点,ADE 和BCE 都是等边三角形,AB、BC 、CD 、DA的中点分别为P、Q、M 、N ,证明四边形PQMN 为平行四边形且PQ PN .D考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】2009 年,兰州中考解析】如图,连结AC 、BD .∵ PQ 为 ABC 的中位线 ∴ PQ ∥ AC 且 PQ 1AC2同理 MN ∥ AC 且 MN 1AC2∴ MN ∥ PQ 且 MN PQ∴四边形 PQMN 为平行四边形. 在 AEC 和 DEB 中AE DE , EC EB , AED 60 CEB 即 AEC DEB ∴ AEC ≌ DEB∴AC BD ∴ 1 1.∴ PQ AC BD PN .22【答案】见解析如图,四边形 ABCD 中,AB CD ,E ,F ,G ,H 分别是 AD ,BC ,BD ,AC 的中点,求证: EF ,GH相互垂直平分【考点】菱形的性质及判定,三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】连结 EG ,GF ,FH ,HE ,根据题意, EG ,HF 分别是 DAB , CAB 的中位线, 所 以 EG HF 1AB , 同 理 可 证 : GF EH 1CD , 因为 AB CD , 所以 22EG HF GF EH , 则四边形 EGFH 是菱形,所以 EF ,GH 相互垂直 【答案】见解析ABC 的三条中线分别为 AD 、BE 、CF ,H 为 BC 边外一点,且 BHCF 为平行 四边形,求证: AD ∥ EH.C考点】平行四边形的性质和判定,三角形的中位线题型】解答难度】4 星关键词】【解析】此题解法很多,仅供两种解法参考.方法一:连结DE 、DH .(如图1)∵四边形BHCF 为平行四边形∴CH BF AF 且CH ∥ AF由中位线可得DE 12 AB AF∴ CH DE∴四边形DECH 为平行四边形∴DH ∥ CE 且DH CE AE∴四边形DHEA 为平行四边形∴ AD ∥ EH方法二:连结DE .(如图2)通过中位线和平行四边的性质可得DE HC ,AB∥ DE ∥HC∴ AED ECH 又∵ AE EC显然ADE ≌EHC ∴DAE HEC ∴ AD ∥ EH 【答案】见解析在平行四边形ABCD 的对角线BD上取一点 E ,使BE1 DE ,连接AE 并延长3与DC 的延长线交于F ,则CF 2 AB .OR ∥CD ∥ AB,【考点】三角形的中位线 【题型】解答 【难度】 5 星 【关键词】【解析】法 1:如图 2,取 BD 之中点 O ,由 O 引 OM ∥ AF 交 DF 于 M ,再由 C 引CG ∥FE交BD 于 G .∵ AB CD , ABE CDG , BAE DCG ,∴ ABE ≌ CDG , BE DG , 则 O 为 EG 的中点, ∴ EO OG . 又∵ DG BE 1DE ,3 1∴ EO OG DE ,3即 G 、 O 是 DE 的三等分点. ∵ CG ∥ OM ∥ AF ,∴C 、M 是 DF 的三等分点,有 CF 2CD . 而 CD AB ,∴ CF 2AB .法 2 :如图 3,连接 AC 交 BD 于 O ,则 O 为 AC 、BD 的中点,取 AF 的中点 R , 连接 AC 交 BD 于 O ,则 O 为 AC 、 BD 的中点,取 AF 的中点 R ,连接 OR ,则 1 OR ∥ CF .2图3∴ABE ROE ,BAE ORE.又∵ BE OE OD ,BE 1 DE 1 (OE OD),33由此可得BE 1OD,OE 1DE ,23BE OE ,ABE ≌ROEAB OR.即AB1OR CF ,∴CF2AB.2法3:如图1,∵AB∥DF ,AB BE 1,DF DE 3即DF3AB.又AB CD ,CF DF CD 3 AB AB,即CF2AB.答案】见解析如图,ABC中,E、F分别是AB 、BC的中点,G、H是AC的三等分点,连结并延长EG 、FH交于点D.求证:四边形ABCD是平行四边形.【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】4 星【关键词】【解析】连接BG 、BH 、BD ,设BD 与AC 相交与点O∵E、F 分别是AB 、BC 的中点,∴ EG ∥ BH ,同理FH ∥ BG ∴四边形BHDG 是平行四边形,∴ OB OD ,OG OH∵ AG HC ,∴ OA OC∴四边形ABCD 是平行四边形【答案】见解析如图,在四边形 ABCD 中, M 、 N 分别为 AD 、BC 的中点, BD AC ,BD 和 AC 相交于点O , MN 分别与 AC 、 BD 相交于 E 、 F ,求证 : OE OF .【考点】三角形的中位线 【题型】解答 【难度】 3 星 【关键词】【解析】取 AB 中点 P ,连结 MP 、 NP . 利用中位线可得MP 1BD NP 1AC22∴PMN PNM ∵ MP ∥BD ,NP ∥ AC∴ OFE OEF ∴ OE OF【答案】见解析 如图,线段 AB ,CD 相交于点 O ,且 AB CD , 连结 AD ,BC , E ,F 分别是 AD ,BC的中点, EF 分别交 AB ,CD 于 M ,N ,求证: OM ON考点】三角形的中位线 题型】解答 难度】 4 星关键词】解析】连结 BD ,取 BD 中点 P ,连结 PE ,PF ,由条件易得 PE ,PF 分别是答案】见解析 如图,梯形 ABCD 中,AD ∥ BC ,AB CD ,对角线 AC ,BD 相交于点 O , AOD 60 ,E ,F ,G 分别是 OA ,OB ,CD 的中点,求证 : EFG 是等边三角形【考点】三角形的中位线,直角三角形斜边上的中线等于斜边的一 半,等腰梯形的性质和判定 【题型】解答 【难度】 4 星 【关键词】【解析】省略【答案】 连结 DE ,由等腰梯形对角线相等, 且 AOD 60 ,可证 AOD 是等 边三角形,因为 E 是 OA 中点,所以 DE AC , 在 Rt DCE 中, G 是 DC 中点, 所以 EG 1DC ,同理可证 FG 1DC ,因为 E ,F 分别是 OA ,OB 的中点,所以 22 EF 1AB ,因为 AB DC , 所以 EG FG EF ,即 EFG 是等边三角形2如图,求证:四边形两组对边中点连线与两对角线中点连结这三条线 共点.DBA , BDC 的中位线,所以 PE ∥ BA ,PF ∥ DC , 且 PE 1 BA ,PF 2所以 PE PF ,所以 PEFPFE ONM , 所以 OMNPFE ,由 PE ∥ BA 可得ONM , 所以 OM ONPEF1DC , 因为 AB CD ,2OMN ,同理可得DLD【考点】三角形的中位线【题型】解答 【难度】 5 星 【关键词】【解析】方法一:设 N ,H ,M ,L ,F ,E 分别为 AB ,BC ,CD ,DA ,AC ,BD 的中点, 要证明 EF ,LH ,及MN 三线共点.因为 LF ∥DC 且 LF 1DC ,2所以 EF ∥ DC 且 EF 1DC ,2LF ∥ EH 且 LF EH ,从而四边形 EHFL 为平行四边形,故 LH 与EF 互相平分.设 LH 与 EF 的交点为 O ,则 LH 经过 EF 中点 O (当然也是 LH 中点).同理, MN 也过EF 中点 O .所以, EF ,LH ,MN 三线共点于 O .说明:本题证明的关键是平行四边形 EHFL 的获得(它是通过三角形中 位线定理来证明的) .由此可见,在某些四边形的问题中,通过构造平行四边形去解题是一 种常用的技巧. 请看下例.方法二:应用中点公式法 可设 A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4 ,y 4 那 么 AC 线 段 的 中 点 坐 标 为 Fx1 x3,y1 y3, BD 线 段 的 中 点 坐 标 为 22Ex 2 x 4 ,y 2 y 4E2 ,2 那么 EF 线段的中点坐标为 x 1 x 2 x3 x4,y 1 y 2 y 3 y422同理可得: MN ,LH的中点坐标也为x1 x2 x3 x4,y1 y2 y3 y422 所以可知: EF , LH , MN 三线共点于 O【答案】见解析如图, O 是平行四边形 ABCD 内任意一点, E , F , G , H 分别是 OA , OB ,OC , OD 的中点.若 DE , CF 交于 P ,DG ,AF 交于 Q , AH , BG 交于 R ,BE ,CH 交 于 S ,求证 :A ENOFHPQ SR .【考点】平行四边形的性质和判定,三角形的中位线【题型】解答【难度】6 星【关键词】【解析】设法证明四边形PORS 为平行四边形.因为F ,G 分别为OB ,OC 的中点,所以FG∥BC,且FG 21BC,FG ∥ AD ,且FG 1 AD ,2从而F 是AQ 中点.同理可证,F 是PC 的中点(EF 是PCD 的中位线).所以四边形APQC 为平行四边形,PQ∥AC,PA AC.同理,RS∥ AC,RS = AC.因此PQ ∥ RS,PQ =RS,即四边形PQRS 为平行四边形,故PQ RS .说明本题证明显示了用平行四边形证题的技巧,平行四边形PQRS ,APQC ,ACRS 像三座互相连接的桥梁一样沟通了条件与结论之间的道路.事实上,由于PQRS 为平行四边形,我们还可得到PQ∥SR,PS∥QR,PS QR,SQ与PR互相平分等等一系列结论.F为AQ的中点(同样G 为DQ 的中点)的断言可以证明于下:取AD 中点M ,连MF ,则FG ∥ MD 且FG MD ,所以四边形MFGD 为平行四边形,MF ∥ DG .因此F 为AQ 的中点.答案】见解析。

自学初中数学资料-菱形的性质及判定(资料附答案)

自学初中数学资料-菱形的性质及判定(资料附答案)

自学资料一、菱形及其性质【知识探索】1.有一组邻边相等的平行四边形叫做菱形.【说明】菱形的面积还可用对角线乘积除以2求得.2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角.【说明】(1)菱形具有平行四边形的所有性质;(2)菱形既是中心对称图形,又是轴对称图形.1个对称中心,对称中心是其对角线的交点;2条对称轴,对称轴是其对角线所在的直线.【错题精练】第1页共16页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例1.(2002•杭州)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD等于()A. 4B. 3C. 2D. 1【解答】C【答案】C【举一反三】1.菱形在平面直角坐标系中的位置如图所示,若,,则点的坐标是__________。

【解答】二、菱形的判定【知识探索】1.菱形的判定:(1)对角线互相垂直的平行四边形是菱形;(2)四条边都相等的四边形是菱形.第2页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【错题精练】例1.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A. AB=CDB. AD=BCC. AB=BCD. AC=BD【解答】C【答案】C例2.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH 是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.例3.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.第3页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训【答案】例4.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE.(1)如图(a)所示,当点D在线段BC上时.①求证:△AEB≌△ADC;②探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;第4页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.【解答】此题要熟练多方面的知识,特别是全等三角形和平行四边形和菱形的判定.证明:(1)①∵△ABC和△ADE都是等边三角形,∴AE=AD,AB=AC,∠EAD=∠BAC=60°.(1分)又∵∠EAB=∠EAD-∠BAD,∠DAC=∠BAC-∠BAD,∴∠EAB=∠DAC,∴△AEB≌△ADC(SAS).(3分)②方法一:由①得△AEB≌△ADC,∴∠ABE=∠C=60°.又∵∠BAC=∠C=60°,∴∠ABE=∠BAC,∴EB∥GC.(5分)又∵EG∥BC,∴四边形BCGE是平行四边形.(6分)方法二:证出△AEG≌△ADB,得EG=AB=BC.(5分)∵EG∥BC,∴四边形BCGE是平行四边形.(6分)(2)①②都成立.(8分)(3)当CD=CB (∠CAD=30°或∠BAD=90°或∠ADC=30°)时,四边形BCGE是菱形.(9分)理由:方法一:由①得△AEB≌△ADC,∴BE=CD(10分)又∵CD=CB,∴BE=CB.(11分)由②得四边形BCGE是平行四边形,∴四边形BCGE是菱形.(12分)方法二:由①得△AEB≌△ADC,∴BE=CD.(9分)又∵四边形BCGE是菱形,∴BE=CB(11分)∴CD=CB.(12分)方法三:∵四边形BCGE是平行四边形,∴BE∥CG,EG∥BC,∴∠FBE=∠BAC=60°,∠F=∠ABC=60°(9分)∴∠F=∠FBE=60°,∴△BEF是等边三角形.(10分)第5页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训又∵AB=BC,四边形BCGE是菱形,∴AB=BE=BF,∴AE⊥FG(11分)∴∠EAG=30°,∵∠EAD=60°,∴∠CAD=30度.(12分)例5.如图,四边形ABCD中,AD∥BC,AD=DC=BC,过AD的中点E作AC的垂线,交CB的延长线于F.求证:(1)四边形ABCD是菱形.(2)BF=DE.【解答】(1)有一组邻边相等的平行四边形为菱形,AD和BC既平行又相等,所以四边形ABCD为平行四边形,而AD=DC=BC,所以平行四边形ABCD为菱形;(2)要证BF=DE,而在原题中已知AE=DE,所以证明的方向就变为证BF=AE,而证BF=AE则可以通过证△FBM≌△EAM来实现.证明:(1)∵AD∥BC,AD=BC(已知),∴四边形ABCD为平行四边形.又邻边AD=DC,∴四边形ABCD为菱形;(3分)(2)证法一:如图:记EF与AC交点为G,EF与AB的交点为M.由(1)证得四边形ABCD为菱形,所以对角线AC平分∠A,即∠BAC=∠DAC.又∵EF⊥AC,AG=AG,∴△AGM≌△AGE,∴AM=AE.(6分)又∵E为AD的中点,四边形ABCD为菱形,∴AM=BM.∠MAE=∠MBF.又∵∠BMF=∠AME,∴△BMF≌△AME.∴BF=AE.第6页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴BF=DE.(8分)证法二:如图:连接BD∵四边形ABCD为菱形∴BD⊥AC∵EF⊥AC∴EF∥BD∵BF∥DE∴四边形BDEF是平行四边形∴BF=DE(8分)【举一反三】1.如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A. ①③B. ②③C. ③④D. ①②③【答案】A2.(2002•咸宁)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=1,BC=3,CD=4.梯形的高DH与中位线EF交于点G,则下列结论中:①△DGF≌△EBH;②四边形EHCF是菱形;③以CD为直径的圆与AB相切于点E.正确的有()A. 1个B. 2个C. 3个第7页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训D. 0个【解答】C【答案】C3.如图,在等腰梯形ABCD中,AD∥BC,BD⊥CD,点E是BC的中点且DE∥AB,则∠BCD的度数是__________.【解答】首先根据BD⊥CD,点E是BC的中点可知DE=BE=EC=BC,又知DE∥AB,AD∥BC,可知四边形ABED是菱形,于是可得到AB=DE,再根据四边形ABCD是等腰梯形,可得AB=CD,进而得到DC=BC,然后可求出∠DBC=30°,最后求出∠BCD=60°.4.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是__________.【解答】菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.据此四边形ABCD还应满足的一个条件是AD=BC.等.答案不唯一.5.如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求△ABC所扫过的图形的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.第8页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】(1)根据题意:易得△ABC≌△EFA,BA∥EF,且BA=EF,进而得出S平行四边形ABFE=2S△EAF,故可求出△ABC扫过图形的面积为S平行四边形ABFE;(2)根据平移的性质,可得四边形ABFE为菱形,故AF与BE互相垂直且平分;(3)根据题意易得:所以∠AEB=∠ABE=15°,BD•AC=3,可得AC•AC=3,进而可得AC的长度.6.如图,在∠ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【解答】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)7.如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E.DF平分∠ADC交BC于F.第9页共16页自学七招之预习轻身术:预习习惯培养好,课堂轻松没烦恼非学科培训(1)求证:△ABE≌△CDF;(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.【解答】(1)由平行四边形ABCD可得出的条件有:①AB=CD,②∠A=∠C,③∠ABC=∠CDA;已知BE、CD分别是等角∠ABD、∠CDA的平分线,易证得∠ABE=∠CDF④;联立①②④,即可由ASA 判定所求的三角形全等;(2)由(1)的全等三角形,易证得DE=BF,那么DE和BF平行且相等,由此可判定四边形BEDF是平行四边形,根据对角线垂直的平行四边形是菱形即可得出EBFD的形状.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,∠ABC=∠ADC,∵BE平分∠ABC,DF平分∠ADC,∴∠ABE=∠CDF(2分),∴△ABE≌△CDF(ASA);(4分)(2)1.如图,在菱形ABCD中,BC=3,点是BD的中点,延长BD到点E,使得BD=DE=2,连结CE,点M是CE的中点,则OM=.【答案】√17.22.如图,将矩形ABCD沿对角线BD翻折,点C落在C′处,BC′交AD于点E,DF∥BE交BC于点F.第10页共16页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训(1)求证:四边形BEDF是菱形.(2)若AB=4,AD=8,请求出菱形BEDF的边长.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠C=90∘,AD∥BC,∵DF∥BE,∴四边形BEDF是平行四边形,由折叠,得∠Capos;=∠C,DCapos;=DC,∴∠A=∠Capos;,AB=DCapos;,又∵∠AEB=∠Capos;ED,∴△AEB≌△C′ED(AAS),∴EB=ED,∴四边形BEDF是菱形;(2)解:设AE=x,则BE=8−x,在Rt△ABE中,由勾股定理,得42+x2=(8−x)2,解得x=3,∴BE=8−3=5,即菱形BEDF的边长为5.【答案】(1)略;(2)5.3.如图,菱形ABCD中,∠A是锐角,E为边AD上一点,△ABC沿着BE折叠,使点A的对应点F恰好落在边CD上,连接EF,BF,给出下列结论:①若∠A=70∘,则∠ABC=35∘;②若点F是CD的中点,则S△ABE=1S ABCD3下列判断正确的是()A. ①,②都对;B. ①,②都错;C. ①对,②错;D. ①错,②对.【答案】A4.如图,点E,F分别在▱ABCD的边BC,AD上.(1)若BE=DF,求证:四边形AECF是平行四边形;(2)请在图2中用圆规和直尺画出四边形AECF,使得四边形AECF是菱形.(不写作法,保留作图痕迹)【解答】(1)证明:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)解:如图,四边形AECF就是所求作的菱形.【答案】略.5.如图,在正三角形网格中,菱形M经过旋转变换能得到菱形N,下列四个点中能作为旋转中心的是()A. 点A;B. 点B;C. 点C;D. 点D.【答案】D6.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.;(2)略;(3)略.【答案】(1)837.如图,已知在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,BE平分∠ABC交AC于点E,EF⊥AB,垂足为F.(1)求EF的长度;(2)作CD⊥AB,垂足为D,CD与BE相交于G,试说明:CE=CG;(3)连接FG,试说明:四边形CEFG是菱形.【解答】(1)解:∵BE平分∠ABC,∠ACB=90∘,EF⊥AB,垂足为F,∴EF=CE.在△BFE与△BCE中,∠C=∠BFE=90∘,{BE=BE,EF=EC∴△BFE≌△BCE,∴BF=BC=8.∵在Rt△ABC中,∠ACB=90∘,AC=6,BC=8,∴AB=10,∴AF=AB−BF=2.设EF=x,则CE=x,AE=6−x,在直角△AEF中,由勾股定理,得AE2=EF2+AF2,∴(6−x)2=x2+22,解得x=8;3(2)证明:∵在△BCE中,∠CEB=90∘−∠CBE,∠CGE=∠DGB=90∘−∠DBG,,∴∠CEB=∠CGE,∴CE=CG;(3)证明:CD⊥AB,EF⊥AB,∴CD∥EF,∵EF=CE,CE=CG,∴EF=CG,∴四边形CEFG是平行四边形,又∵CE=CG,∴CEFG是菱形.【答案】(1)8;(2)略;(3)略.3● 矩形。

菱形的判定6种方法

菱形的判定6种方法

菱形的判定6种方法
菱形是一种常见的几何形状,它有许多应用,比如在数学中用于判定某些条件是否成立。

下面我们来介绍一下菱形的判定方法。

1. 对角线相等法:如果一个四边形的对角线相等,那么它就是一个菱形。

这是最基本的判定方法。

2. 边长相等法:如果一个四边形的四条边相等,那么它就是一个菱形。

这个方法比较容易理解,但是实际应用中不太常见。

3. 顶角相等法:如果一个四边形的相邻两个顶角相等,那么它就是一个菱形。

这个方法也比较容易理解,但是需要注意的是,只有相邻的两个顶角相等才行。

4. 垂直平分线相等法:如果一个四边形的对角线互相垂直,并且它们的交点处的两条垂直平分线相等,那么它就是一个菱形。

这个方法比较复杂,需要一定的几何知识。

5. 对角线平分线相等法:如果一个四边形的对角线互相平分,并且它们的交点处的两条对角线平分线相等,那么它就是一个菱形。

这个方法也比较复杂,需要一定的几何知识。

6. 内角相等法:如果一个四边形的内角都相等,那么它就是一个菱形。

这个方法比较特殊,只有在某些特殊情况下才能使用。

以上就是菱形的六种判定方法,它们各有优缺点,可以根据实际情况选择合适的方法。

在实际应用中,我们通常会结合多种方法来判定一个四边形是否为菱形,以提高判定的准确性。

人教八年级数学下册菱形的判定

人教八年级数学下册菱形的判定
第3页/共30页
命题:对角线互相垂直的平行四边形是菱形.
证明:
∵四边形ABCD是平行四边形
∴OA=OC
又∵AC⊥BD;
∴BA=BC
第4页/共30页
判定方法2:
对角线互相垂直的平行四边形是菱形
∵在□ABCD中,AC⊥BD
∴ □ABCD是菱形
数学语言
第5页/共30页
先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?说出你的理由
C
(3).下列条件中,不能判定四边形ABCD为菱形的是( ) A.AC⊥BD,AC与BD互相平分 B.AB=BC=CD=DA C.AB=BC,AD=CD,且AC⊥BD D.AB=CD,AD=BC,AC⊥BD
C
4、选择:
第14页/共30页
24㎝²
菱形


第15页/共30页
∴四边形ABCD是菱形.
第24页/共30页
3.如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形
B
C
N
第25页/共30页
4、如图,Rt△ABC中,∠ACB=900,∠BAC=600,DE垂直平分BC,垂足为D,交AB于E,又点F在DE的延长线上,且AF=CE,求证:四边形ACEF是菱形。
判定法三
四边相等的四边形是菱形
菱形的判定:
∵AB=BC=CD=DA
∴四边形ABCD是菱形
∵在□ABCD中
AC⊥BD
∴四边形ABCD是菱形
∵在□ABCD中
AB=AD
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时菱形的判定
教学目标:
1.掌握菱形的判定方法;(重点)
2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)
教学过程
一、情境导入
我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?
菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;
2.四条边都相等;
3.每条对角线平分一组对角.
这些性质,对我们寻找判定菱形的方法有什么启示呢?
二、合作探究
探究点一:菱形的判定
【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形
是菱形
如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.
求证:四边形BCFE是菱形.
解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.
证明:∵BE=2DE,EF=BE,∴EF =2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.
方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.
【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形
是菱形
如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:
(1)AC⊥BD;
(2)四边形ABCD是菱形.
解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD即可;(2)首先证得四边形ABCD 是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;
(2)∵△BAC是等腰三角形,∴AB =CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA=CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD是菱形.
方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.
【类型三】利用“四条边相等的
四边形是菱形”判定四边形是菱形
如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于
1
2
AC 的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.
(1)求证:△AED≌△CFD;
(2)求证:四边形AECF是菱形.
解析:(1)由作图知PQ为线段AC 的垂直平分线,从而得到AE=CE,AD =CD.然后根据CF∥AB得到∠EAC=∠FCA,∠CFD=∠AED,利用“AAS”证得两三角形全等即可;(2)根据(1)中全等得到AE=CF.然后根据EF为线段AC的垂直平分线,得到EC=EA,FC =FA.从而得到EC=EA=FC=FA,利用“四边相等的四边形是菱形”判定四边形AECF为菱形.
证明:(1)由作图知PQ为线段AC 的垂直平分线,∴AE=CE,AD=CD.∵CF∥AB,∴∠EAC=∠FCA,∠CFD =∠AED.在△AED与△CFD中,


⎧∠EAC=∠FCA,
∠AED=∠CFD,
AD=CD,
∴△AED≌△CFD(AAS);
(2)∵△AED≌△CFD,∴AE=
CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =FA ,∴EC =EA =FC =FA ,∴四边形AECF 为菱形.
方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.
探究点二:菱形的判定的应用 【类型一】 菱形判定中的开放性
问题
如图,平行四边形ABCD 中,
AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).
解析:∵AD ∥BC ,∴∠FAD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠FAD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .
方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的
四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.
【类型二】 菱形的性质和判定的
综合应用
如图,在四边形ABCD 中,AB
=AD ,CB =CD ,E 是CD 上一点,BE 交
AC 于F ,连接DF .
(1)求证:∠BAC =∠DAC ,∠AFD
=∠CFE ;
(2)若AB ∥CD ,试证明四边形ABCD 是菱形;
(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由.
解析:(1)首先利用“SSS”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件
AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .
(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,
∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,
⎩⎨⎧AB =AD ,
∠BAF =∠DAF ,AF =AF ,
∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;
(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;
(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在
△BCF 和△DCF 中,⎩⎨⎧BC =CD ,
∠BCF =∠DCF ,CF =CF ,
∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°,∴∠EFD =∠BCD .
方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合
全等三角形的性质证明线段和角相等的重要工具.
三、板书设计 1.菱形的判定
有一组邻边相等的平行四边形是菱形;
对角线互相垂直的平行四边形是菱形;
四条边相等的四边形是菱形. 2.菱形的性质和判定的综合运用
教学反思
在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.。

相关文档
最新文档