近世代数基础
近世代数基础1

S
1 p
gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。
近世代数基础知到章节答案智慧树2023年哈尔滨工程大学

近世代数基础知到章节测试答案智慧树2023年最新哈尔滨工程大学第一章测试1.在一个有限群里阶大于0的元的个数一定是偶数参考答案:错2.循环群一定不是交换群参考答案:错3.同构的两个群有相同的阶数参考答案:对4.整数环存在零因子参考答案:错5.设Z11是整数模11的剩余类环,则Z11的特征是1参考答案:错第二章测试1.参考答案:错2.参考答案:对3.参考答案:对4.在一个有限群里阶大于2的元的个数一定是偶数参考答案:对5.一个有限群的每一个元素的阶都是有限的参考答案:对6.参考答案:错7.参考答案:;8.循环群一定是交换群参考答案:对9.参考答案:对10.参考答案:对第三章测试1.参考答案:对2.参考答案:对3.参考答案:错4.参考答案:对5.参考答案:对6.正规子群的交仍是正规子群。
参考答案:对7.参考答案:对8.参考答案:对9.参考答案:错10.参考答案:对第四章测试1.参考答案:32.参考答案:3.参考答案:P仅有平凡因子4.参考答案:5.参考答案:欧式环6.若Q是一个域,不正确的是参考答案:Q对乘法成群7.参考答案:8.参考答案:9.数域P上的n阶可逆上三角矩阵的集合关于矩阵的乘法()参考答案:构成一个群10.在高斯整数环Z[i]中,可逆元的个数为()参考答案:4个11.参考答案:12.参考答案:R的理想一定是子环13.参考答案:有单位元的交换环14.参考答案:1第五章测试1.参考答案:错2.参考答案:对3.参考答案:对4.参考答案:对5.参考答案:对6.参考答案:错7.参考答案:错8.参考答案:;;9.参考答案:;;10.参考答案:对第六章测试1.有限域F 的非零元作成的乘群是一个循环群参考答案:对2.每个有限扩展不一定是代数扩张参考答案:错3.域一定是整环,但整环却不一定是域参考答案:对4.整数环Z是域.参考答案:错5.若R是一个可交换的除环,则称R为域参考答案:对6.有限整环不是域参考答案:错7.参考答案:对8.参考答案:对9.下面是无限域的是参考答案:全体复数构成域;全体实数构成域10.参考答案:;;。
近世代数知识点

近世代数知识点近世代数,又称抽象代数,是数学的一个重要分支,它为许多其他数学领域提供了基础和工具。
下面让我们一起来了解一些近世代数的关键知识点。
首先是群的概念。
群是近世代数中最基本的结构之一。
简单来说,一个群就是一个集合 G 以及定义在这个集合上的一种运算“”,满足一些特定的条件。
比如,对于集合中的任意两个元素 a 和 b,运算的结果ab 仍然属于这个集合;存在一个单位元 e,使得对于任意元素 a,都有ae = ea = a;对于每个元素 a,都存在一个逆元 a^(-1),使得 aa^(-1) = a^(-1)a = e。
群的例子在生活中也有不少,比如整数集合在加法运算下构成一个群。
环也是近世代数中的重要概念。
一个环 R 是一个集合,上面定义了两种运算:加法“+”和乘法“·”。
加法满足交换律、结合律,有零元,每个元素都有相反数;乘法满足结合律;乘法对加法满足分配律。
常见的环有整数环、多项式环等。
接下来是域。
域是一种特殊的环,它要求非零元素对于乘法运算构成一个群。
比如有理数域、实数域和复数域。
同态和同构是近世代数中用来比较不同代数结构的重要工具。
同态是指两个代数结构之间存在一种保持运算的映射。
如果这个映射还是一一对应的,那就是同构。
同构的两个代数结构在本质上可以看作是相同的。
在近世代数中,子群、子环和理想也具有重要地位。
子群是群的一个子集,在原来的运算下也构成群;子环是环的一个子集,在原来的两种运算下也构成环;理想则是环中的一个特殊子集,对于环中的乘法和加法有特定的性质。
再来说说商群和商环。
以商群为例,给定一个群 G 和它的一个正规子群N,就可以构造出商群G/N。
商群中的元素是由N 的陪集构成的。
近世代数中的重要定理也不少。
比如拉格朗日定理,它对于理解群的结构和性质非常有帮助。
该定理指出,子群的阶整除群的阶。
最后,我们谈谈近世代数的应用。
在密码学中,群和环的理论被广泛用于加密和解密算法的设计。
近世代数发展简史

近世代数发展简史引言概述:近世代数是数学中一个重要的分支,它的发展可以追溯到16世纪。
近世代数的发展不仅对数学本身产生了深远的影响,也在其他科学领域中发挥了重要作用。
本文将介绍近世代数的发展历程,分为五个部份,分别是:1. 代数基础的奠定;2. 方程论的发展;3. 群论的兴起;4. 环论的发展;5. 近世代数的应用。
一、代数基础的奠定:1.1 古希腊代数的起源:古希腊数学家毕达哥拉斯和欧几里得等人奠定了代数的基础,提出了平方数和立方数的概念,并研究了它们的性质。
1.2 文艺复兴时期的代数发展:文艺复兴时期,数学家卡尔丹诺和维埃塔等人开始研究代数方程,并提出了求解一元二次方程的方法。
1.3 笛卡尔的坐标系:17世纪,笛卡尔引入了坐标系的概念,将代数问题转化为几何问题,为代数的发展开辟了新的道路。
二、方程论的发展:2.1 代数方程的分类:18世纪,数学家拉格朗日将代数方程分为代数方程和超越方程,并研究了它们的性质和解法。
2.2 高次方程的解法:19世纪初,数学家阿贝尔和伽罗瓦等人独立地证明了五次及以上的代数方程无法用根式解出,这一结果被称为“阿贝尔-伽罗瓦定理”。
2.3 线性代数的发展:19世纪,数学家凯莱和哈密尔顿等人提出了线性代数的概念,研究了线性方程组和线性变换等内容。
三、群论的兴起:3.1 群的定义与性质:19世纪,数学家狄利克雷和凯莱等人提出了群的定义,并研究了群的性质,如封闭性、结合律和逆元等。
3.2 群论的应用:群论不仅在代数中有广泛应用,还在物理学、化学和密码学等领域中发挥了重要作用。
3.3 群论的扩展:20世纪,数学家冯·诺伊曼和埃米·诺特等人进一步发展了群论,提出了正规子群、商群和群同态等概念。
四、环论的发展:4.1 环的定义与性质:20世纪初,数学家费罗和诺特等人提出了环的定义,并研究了环的性质,如加法和乘法的封闭性、结合律和分配律等。
4.2 环论的应用:环论在代数几何、代数编码和数论等领域中有广泛应用,为解决实际问题提供了有力的工具。
近世代数基础课件

第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
近世代数基础知识点总结

近世代数基础知识点总结近世代数是数学中的一个重要分支,它研究的是代数结构及其性质。
本文将对近世代数的基础知识点进行总结,包括群、环、域和向量空间等的定义和性质。
一、群群是近世代数的基础概念,它是一个集合和一个二元运算构成的代数结构。
群的定义包括四个要素:集合、封闭性、结合律和单位元,还需要满足可逆性。
群的性质有唯一性、消去律、幂等性和逆元的唯一性等。
二、环环是在群的基础上引入了乘法运算的代数结构。
环的定义包括三个要素:集合、封闭性和满足环公理。
环的性质有零元的唯一性、加法逆元的唯一性、分配律和幂等性等。
三、域域是在环的基础上引入了除法运算的代数结构。
域的定义包括四个要素:集合、封闭性、满足域公理和乘法逆元的存在性。
域的性质有乘法单位元的唯一性、乘法逆元的唯一性和消去律等。
四、向量空间向量空间是线性代数的基础概念,它是一个集合和一个数域上的向量运算构成的代数结构。
向量空间的定义包括十个要素:集合、封闭性、加法单位元、加法逆元、加法交换律、加法结合律、标量乘法结合律、标量乘法分配律、标量乘法单位元和标量乘法结合律。
向量空间的性质有零向量的唯一性、加法逆元的唯一性和标量乘法的分配律等。
五、同态映射同态映射是近世代数中的一个重要概念,它是保持代数结构之间运算关系的映射。
同态映射的定义要求保持运算的封闭性、满足运算关系和保持单位元。
同态映射的性质有保持运算的封闭性、满足运算关系和保持单位元等。
六、理想理想是环和域中的一个重要概念,它是一个子集,并且满足加法逆元、封闭性和分配律。
理想的性质有加法单位元的存在性、加法逆元的存在性和分配律等。
七、同余关系同余关系是环中的一个重要概念,它是一种等价关系,表示两个元素具有相同的余数。
同余关系的性质有自反性、对称性和传递性等。
八、域的扩张域的扩张是域论中的一个重要概念,它是在一个域上构造出一个更大的域。
域的扩张可以通过添加一个或多个元素来实现,使得新的域仍然满足域公理。
第1章近世代数基本概念汇总

引言 近世代数理论的两个来源
有理运算以及开方的方法求出它的所有根,什么条件之下不能 求根。 最终解决这一问题的是法国年青数学家Galois(1811-
1832),Galois引入了扩域以及群的概念,并采用了一种全新 的理论方法发现了高次代数方程可解的法则。在Galois之后群 与域的理论逐渐成为现代化数学研究的重要领域,这是近世代 数产生的一个最重要的来源。
An到D的一个n元映射。 一的d D,则称 是A1 A2
d叫做(a1 , a2 ,
an )在之下的象; (a1, a2 ,
an ) d (a1, a2 ,
an )叫做d 在下
an )
的一个逆象(原象). 用符号表示:
: (a1, a2 ,
2018/10/13
§2 映射
A1 , A2 ,, An 的并和交分别记为:
n i 1
Ai A1
n
A2
n
An ,
i 1
Ai A1
A2
An .
x x
2018/10/13
i 1 n i 1
Ai Ai , x Ai . Ai Ai , x Ai .
§1 集合
集合的差运算: A B {x | x A但x B} 即A-B是由一切属于A但不属于B 的元素所组成。
则 不是一个A B到D的映射.
例5 设A=D=R. 定义
: a a, 若是 a 1
1 b, 这里 b2 1 则不是一个A到D的映射.
§2 映射
映射定义要注意以下几点:
1) 集合 A 1, A 2,
2) A1 , A2 ,
, An , D 可以相同;
高等学校教材·近世代数基础

高等学校教材·近世代数基础
近世代数学是现代数学的基础,由西方古希腊数学家贝叶斯等人发掘、深入研究而成。
它可以帮助我们更好地理解复杂的数学问题,也可以帮助我们通过数学原理来求解问题,并发现规律。
因此,熟悉近世代数学基础是一门课必须掌握的知识。
近世代数学基础包括代数、几何与微积分三大部分。
其中,代数是最基础的一部分。
它重要探索和描述不同元素之间关系,从而可以解决数学关系上的问题,建立方程式对数学问题进行描述,并且运用高级数学技巧解决数学问题。
几何是一种可视化思维,它不仅能够帮助我们更好地理解空间结构,同时也能够解决大量几何实际问题。
最后,微积分是一种可以探究数字的变化的技术,可以描述不同的函数在给定的范围内的变化,从而了解不同的系统的变化。
熟悉近世代数学基础不仅有助于我们掌握数学思想,而且也有助于我们深入理解更多的科学知识,从而加深我们对其原理的理解。
同时,它还能帮助我们预测未来,从而更好地解决问题。
例如,由于拥有微积分知识,我们可以利用微积分方法来测量物体在加速运动中的速度、位移等,并且在求解问题中发挥作用。
总而言之,近世代数学基础的学习和掌握是一门课程的必备知识,同时也是理解数学思想和深入科学知识的基础,它不仅能够为我们理解复杂的数学概念奠定坚实的基础,而且还能够帮助我们探究解决问题的方法,实现未来的可能性。
- 1 -。