PCR扩增的原理和操作步骤

合集下载

PCR扩增原理及操作

PCR扩增原理及操作

PCR扩增原理及操作PCR(聚合酶链反应)是一种常用的分子技术,它能够在短时间内扩增特定DNA序列,从而使得微量的DNA可以被快速有效地检测和研究。

PCR的成功应用广泛,包括基因检测、病毒检测、遗传疾病诊断等等。

下面将详细介绍PCR的扩增原理及操作步骤。

PCR的扩增原理:PCR是一种体外合成DNA的方法,它需要三个关键组分:DNA模板、一种酶称为DNA聚合酶以及两段称为引物的DNA序列。

PCR的基本原理是通过重复进行三个温度环境的循环反应,以使得DNA链的扩增。

PCR的操作步骤:2.DNA提取:将DNA从样本中提取出来,以获得纯净的DNA样品。

常见的DNA提取方法包括蛋白酶消化、有机溶剂抽提、离心法等。

3.设计引物:引物是PCR的关键组成部分,它们能够指定目标DNA序列的区域。

引物一般由20-30个碱基组成,能够与目标DNA序列的两端部分互补配对。

4.准备PCR反应液:PCR反应液通常包括DNA模板、引物、dNTPs (即四种脱氧核苷酸)、聚合酶、缓冲溶液和镁离子。

引物的浓度一般为0.2-0.5μM,聚合酶的浓度为2.5-5.0U/μL。

5.PCR循环反应:PCR反应需要进行循环反应,即进行一系列的温度周期变化。

一般来说,PCR循环反应包括三个步骤:变性、退火和延伸。

-变性:将PCR反应液加热到94-98℃,将DNA模板的双链DNA变为单链。

此步骤有助于使DNA链分离以便于引物的结合。

-退火:将PCR反应液冷却到50-65℃,使得引物与DNA模板的目标序列互补配对。

-延伸:将PCR反应液加热到72℃,使得DNA聚合酶能够在引物的引导下在目标DNA序列上合成新的DNA链。

每个循环通常持续数十秒至数分钟,可由PCR仪自动控制。

6.PCR循环反应次数:PCR循环的次数通常是25-40次。

这些循环的重复会使所需扩增的目标DNA序列数量指数级增加。

7.凝胶电泳分析:通过凝胶电泳,可以确定PCR产物的大小、纯度和数量。

pcr扩增的原理和步骤

pcr扩增的原理和步骤

pcr扩增的原理和步骤PCR扩增的原理和步骤普通PCR1概述聚合酶链式反应(Polymerase Chain Reaction),简称PCR,是⼀种分⼦⽣物学技术,⽤于放⼤特定的DNA⽚段。

可看作⽣物体外的特殊DNA复制。

DNA 聚合酶(DNA polymerase I)最早于1955年发现,⽽较具有实验价值及实⽤性的Klenow fragment of E. Coli 则是于70年代的初期由Dr. H. Klenow 所发现,但由于此酶不耐⾼温,⾼温能使之变性, 因此不符合使⽤⾼温变性的聚合酶链式反应。

现今所使⽤的酶(简称Taq polymerase), 则是于1976年从温泉中的细菌(Thermus aquaticus)分离出来的。

它的特性就在于能耐⾼温,是⼀个很理想的酶,但它被⼴泛运⽤则于80年代之后。

PCR最初的原始雏形概念是类似基因修复复制,它是于1971年由Dr. Kjell Kleppe 提出。

他发表了第⼀个单纯且短暂性基因复制(类似PCR前两个周期反应)的实验。

⽽现今所发展出来的PCR则于1983由Dr. Kary B. Mullis发展出的,Dr. Mullis当年服务于PE 公司,因此PE公司在PCR界有着特殊的地位。

Dr. Mullis 并于1985年与Saiki 等⼈正式发表了第⼀篇相关的论⽂。

此后,PCR的运⽤⼀⽇千⾥,相关的论⽂发表质量可以说是令众多其它研究⽅法难望其项背。

随后PCR技术在⽣物科研和临床应⽤中得以⼴泛应⽤,成为分⼦⽣物学研究的最重要技术。

Mullis也因此获得了1993年诺贝尔化学奖。

2 PCR原理PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。

PCR由变性--退⽕--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热⾄93℃左右⼀定时间后,使模板DNA 双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退⽕(复性):模板DNA经加热变性成单链后,温度降⾄55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作⽤下,以dNTP 为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成⼀条新的与模板DNA 链互补的半保留复制链,重复循环变性--退⽕--延伸三过程就可获得更多的“半保留复制链”,⽽且这种新链⼜可成为下次循环的模板。

PCR扩增的原理和操作步骤

PCR扩增的原理和操作步骤

PCR扩增的原理和操作步骤PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,通过扩增DNA片段,能在短时间内从极少量的DNA样本中大量产生目标DNA片段。

PCR的原理和操作步骤如下:PCR原理:PCR是通过逐渐增加的方式在体外复制DNA片段的技术,它包括三个步骤:变性、退火和延伸。

1. 变性(Denaturation):将含有目标DNA的样本加热至94-96℃,使DNA双链解开,产生两个单链DNA。

2. 退火(Annealing):将温度降至50-65℃,引入一对寡核苷酸引物/引模,它们在目标DNA的两个末端特异性结合。

引物的设计与目标DNA的序列互补。

其中的一段是在目标DNA序列的正向链上引物,另一段是在反向链上的引物。

3. 延伸(Extension):将温度升至72℃,引入热稳定的DNA聚合酶,使其延伸引物,生成新的DNA链。

延伸的速度约为300-1000个碱基每分钟。

如此一来,经过一次PCR循环,两条由引物引导的DNA链将被复制一次,重复进行多次PCR循环,DNA量会呈指数增长。

PCR操作步骤:1.DNA模板制备:从细胞中提取DNA,常用方法有裂解法和酶切法。

通过这些方法获得的DNA片段可作为PCR的模板。

2.引物设计:根据所需扩增的DNA序列设计引物。

引物通常由15-30个核苷酸组成,选择引物时要注意避免二聚体形成和引物之间的副产物形成。

3.反应体系设置:将PCR反应液配置至PCR试管或96孔板中,反应体系一般包括PCR缓冲液、dNTPs、模板DNA、引物、Mg2+离子和聚合酶等成分。

4.PCR循环程序:通常包括初步变性程序、循环变性程序和末端延伸程序。

初步变性程序为94-96℃,1-3分钟;循环变性程序为94-96℃,10-30秒;退火温度为50-65℃,20-60秒;延伸温度为72℃,20-60秒,延伸时间根据目标片段的长度确定,每一循环的延伸时间通常为片段长度的1-2秒。

PCR扩增的原理和操作步骤

PCR扩增的原理和操作步骤

PCR扩增反应的操作第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。

PCR基本原理: 是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。

在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。

反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP 为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。

因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。

1.模板DNA的变性模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。

变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。

故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。

对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。

PCR扩增的原理和操作步骤

PCR扩增的原理和操作步骤

PCR扩增的原理和操作步骤PCR,即聚合酶链式反应(Polymerase Chain Reaction),是一种在分子生物学中广泛应用的技术,用于快速扩增特定的 DNA 片段。

这项技术的发明极大地推动了生物学、医学、遗传学等领域的研究和发展。

PCR 扩增的原理基于 DNA 的半保留复制机制。

简单来说,就是通过模拟细胞内 DNA 复制的过程,在体外实现特定 DNA 片段的大量扩增。

在 PCR 反应中,需要以下几个关键的要素:1、模板 DNA:这是我们想要扩增的目标 DNA 片段。

2、引物:是一小段与模板 DNA 两端特定序列互补的寡核苷酸,它们决定了扩增的起始位置和范围。

3、四种脱氧核苷酸(dNTPs):分别是 dATP、dTTP、dCTP 和dGTP,作为合成新 DNA 链的原料。

4、 DNA 聚合酶:能够催化新的 DNA 链合成。

5、缓冲液:提供适宜的反应环境,维持 pH 值和离子强度等条件的稳定。

PCR 扩增的过程通常包括三个主要步骤,即变性、退火和延伸,这三个步骤不断循环,使得 DNA 片段得以指数级扩增。

第一步是变性。

将反应体系加热至 94 98℃,使模板 DNA 的双链解开,变成两条单链。

第二步是退火。

降低温度至 50 65℃,引物与模板 DNA 单链上的互补序列结合。

第三步是延伸。

将温度升高到 72℃左右,DNA 聚合酶以引物为起点,按照碱基互补配对原则,将 dNTPs 逐个连接到引物的 3'端,合成新的 DNA 链。

经过一轮这样的循环,一个 DNA 分子变成了两个。

然后再重复这三个步骤,新合成的 DNA 分子又可以作为模板进行扩增,经过多次循环,目标 DNA 片段的数量就会呈指数级增长。

接下来,我们详细了解一下 PCR 操作的具体步骤。

首先是准备阶段。

1、设计引物:根据目标 DNA 片段的序列,使用专业的软件或在线工具设计合适的引物。

引物的长度一般在 18 25 个碱基之间,GC 含量适中,避免形成二级结构等。

pcr扩增的原理和步骤

pcr扩增的原理和步骤

pcr扩增的原理和步骤
PCR(聚合酶链反应)是一种用于体外扩增DNA的技术,它能够通过特定的引物和DNA聚合酶实现目标DNA序列的大量复制,使得微量的DNA可以在短时间内得到足够多的复制产物。

PCR的原理可以概括为三个主要步骤:变性、引物结合和延伸。

第一步是变性,即将所需扩增的DNA样本加热至94-98°C,使其双链DNA变为两条单链DNA。

此步骤会破坏氢键,使DNA分子解聚,并暴露出目标序列。

第二步是引物结合,通过在变性的DNA溶液中加入两个特异性的引物。

这两个引物的设计是相互互补的,并且定向分别与目标DNA序列的起始和终止位点结合。

引物与目标序列结合后,温度降低至50-65°C,使引物与带有目标序列的DNA分子发生特异性的酵素结合。

第三步是延伸,即在引物结合的条件下,通过在37-75°C之间的适宜温度下加入DNA聚合酶和适宜的核苷酸三磷酸,使DNA聚合酶从引物的3'末端起始位置开始合成新的DNA链。

在延伸过程中,DNA聚合酶沿着DNA模板链朝着反向方向进行复制,并合成与模板链互补的新链。

以上三个步骤构成了PCR扩增的基本过程,通过不断循环这三个步骤,可以使得目标DNA序列不断复制,并得到大量的
扩增产物。

每个PCR周期将使目标序列的数量成倍增加,因此,经过若干个PCR周期后,可以得到足够多的扩增产物用于后续的分析和应用。

pcr扩增的原理和步骤

pcr扩增的原理和步骤

pcr扩增的原理和步骤PCR扩增的原理和步骤。

PCR(Polymerase Chain Reaction)是一种分子生物学技术,用于扩增DNA片段,是现代生物学研究中不可或缺的重要工具。

PCR 扩增技术的原理和步骤对于理解和应用PCR技术具有重要意义。

本文将详细介绍PCR扩增的原理和步骤,帮助读者更好地理解和掌握这一技术。

一、PCR扩增的原理。

PCR扩增的原理基于DNA的复制和酶的作用。

PCR反应体系包括DNA模板、引物(primer)、四种dNTPs(dATP、dCTP、dGTP、dTTP)、DNA聚合酶和缓冲液。

PCR反应通过热循环的方式,使DNA 模板在不断变化的温度条件下进行DNA链的解旋、引物的结合和DNA聚合酶的合成,最终实现目标DNA片段的扩增。

二、PCR扩增的步骤。

1. 反应体系的准备。

将DNA模板、引物、dNTPs、DNA聚合酶和缓冲液按照一定比例混合,得到PCR反应体系。

反应体系中的DNA模板可以是基因组DNA、cDNA或其它DNA样本,引物是用于引导DNA聚合酶合成DNA链的短寡核苷酸序列。

2. Denaturation(变性)。

将PCR反应体系加热至94-98°C,使DNA双链解旋成两条单链。

3. Annealing(退火)。

将反应体系降温至50-65°C,使引物与目标DNA序列互补结合,形成引物-模板复合体。

4. Extension(延伸)。

将反应体系温度升至72°C,DNA聚合酶在引物的引导下合成新的DNA链,延伸至整个DNA模板。

5. 循环扩增。

通过以上三个步骤的循环,每个循环使目标DNA片段的数量翻倍,扩增出大量目标DNA片段。

三、PCR扩增的应用。

PCR扩增技术在生命科学研究、医学诊断、法医学鉴定、种群遗传学等领域有着广泛的应用。

例如,在基因克隆、基因突变分析、病原体检测、DNA指纹鉴定等方面发挥着重要作用。

总结,PCR扩增技术通过热循环反应,实现对DNA片段的快速扩增。

pcr扩增目的基因的原理

pcr扩增目的基因的原理

pcr扩增目的基因的原理PCR扩增目的基因的原理引言:PCR(聚合酶链式反应)是一种常用的分子生物学技术,可以扩增目的基因的DNA序列。

其原理基于DNA的双链结构和聚合酶的催化作用,在体外模拟DNA的复制过程,使得目的基因的DNA序列得以扩增。

本文将详细介绍PCR扩增目的基因的原理及其各个步骤。

一、PCR扩增原理:PCR扩增的原理基于DNA的双链结构和聚合酶的催化作用。

PCR 反应体系主要包括模板DNA、引物、核苷酸、酶和缓冲液等组分。

PCR反应通过不断循环的温度变化,使DNA的双链在高温下解链,然后在低温下引物与目的基因的互补序列结合,聚合酶在适温下催化新链的合成,从而实现目的基因的扩增。

二、PCR扩增步骤:1. 反应体系的准备:将PCR反应所需的核酸模板、引物、核苷酸、聚合酶和缓冲液按照一定比例混合,并搅拌均匀。

其中,核酸模板是待扩增的目的基因的DNA序列,引物是与目的基因的两端互补的短链DNA,核苷酸是DNA合成的原料,聚合酶是催化DNA合成的酶,缓冲液用于维持反应体系的pH值稳定。

2. Denaturation(变性):将反应体系置于高温条件(通常为94-98℃),使DNA的双链解开,形成两个单链的DNA模板。

这一步骤是为了使模板DNA的两条链分离,为后续的引物结合提供单链DNA的模板。

3. Annealing(退火):将反应体系降温至50-65℃,使引物与目的基因的DNA模板的互补序列结合。

引物的选择非常重要,它们必须与目的基因的两端互补,以确保引物能够特异性地结合到目的基因上。

4. Extension(延伸):将反应体系升温至72℃,使聚合酶在适温下催化新链的合成。

聚合酶以引物为模板,合成与目的基因DNA互补的新链。

这一步骤是PCR反应的关键步骤,也是目的基因扩增的过程。

5. 循环反应:将上述三个步骤循环重复,通常需要进行20-40个循环,以扩增足够数量的目的基因。

三、PCR扩增的影响因素:1. 引物的设计:引物的选择非常重要,它们必须与目的基因的两端互补,且长度适当。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCR扩增反应的操作第一节PCR扩增反应的基本原理一、聚合酶链式反应(PCR)的基本构成PCR是聚合酶链式反应的简称,指在引物指导下由酶催化的对特定模板(克隆或基因组DNA)的扩增反应,是模拟体内DNA复制过程,在体外特异性扩增DNA片段的一种技术,在分子生物学中有广泛的应用,包括用于DNA作图、DNA测序、分子系统遗传学等。

PCR基本原理: 是以单链DNA为模板,4种dNTP为底物,在模板3'末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。

在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适2+等。

反应时先聚合酶、MgdNTP溶液、耐热Taq DNA量的缓冲液、微量的DNA膜板、四种将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5'→3'方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。

因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成(见图)。

1.模板DNA的变性模板DNA加热到90~95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。

变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。

故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。

对于高G-C含量的模板DNA 在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。

2.模板DNA与引物的退火将反应混合物温度降低至37~65℃时,寡核苷酸引物与单链模板杂交,形成DNA 模板-引物复合物。

退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。

一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显着短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1~2min。

3.引物的延伸DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。

重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。

延伸所需要的时间取决于模板DNA的长度。

在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40~60个碱基/秒。

经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。

在以后的循环中,新合成的DNA 都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。

每完成一个循环需2~4min,一次PCR经过30~40次循环,约2~3h。

扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。

PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。

反应最终的DNA 扩增量n)均每次的扩Y表示平(X片段扩增后的拷贝数,DNA代表Y计算。

)X+1=(Y可用.,但在实际反应中平均效率达不n增效率,代表循环次数。

平均扩增效率的理论值为100%产物的逐渐积累,到理论值。

反应初期,靶序列DNA片段的增加呈指数形式,随着PCR片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,被扩增的DNA的种类和活性及非特异性产物的DNA聚合酶PCR这种效应称平台期数、PCR扩增效率及竟争等因素。

大多数情况下,平台期的到来是不可避免的。

扩增产物可分为长产物片段和短产物片段两部分。

短产物片段的长度严格地限定PCR端之间,是需要扩增的特定片段。

短产物片段和长产物片段是由于引物所在两个引物链5'结合的模板不一样而形成的,以一个原始模板为例,在第一个反应周期中,以两条互补的端则没有固定的止点,长短不端是固定的,3'端开始延伸,其5'3'为模板,引物是从DNA一,这就是“长产物片段”。

进入第二周期后,引物除与原始模板结合外,还要同新合成端序列是固定的链(即“长产物片段”)结合。

引物在与新链结合时,由于新链模板的5'端被固定了止点,保证了新片段的起点和止点都限定于引的,这就等于这次延伸的片段3'物扩增序列以内、形成长短一致的“短产物片段”。

不难看出“短产物片段”是按指数倍的反应产数增加,而“长产物片段”则以算术倍数增加,几乎可以忽略不计,这使得PCR片段供分析与检测用。

物不需要再纯化,就能保证足够纯DNA变性退火延伸的反应历程 PCR图二、PCR反应的五个元素2+。

Mg PCR反应的物质主要为五种:引物、酶、dNTP、模板和参与1.引物引物是PCR特异性反应的关键,PCR产物的特异性取决于引物与模板DNA互补的程度。

理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

引物设计有3条基本原则:首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。

引物的选择将决定PCR产物的大小、位置、以及扩增区域的Tm值这个和扩增物产量有关的重要物理参数。

好的引物设计可以避免背景和非特异产物的产生,甚至在RNA-PCR中也能识别cDNA或基因组模板。

引物设计也极大的影响扩增产量:若使用设计粗糙的引物,产物将很少甚至没有;而使用正确设计的引物得到的产物量可接近于反应指数期的产量理2+浓度,使Mg论值。

当然,即使有了好的引物,依然需要进行反应条件的优化,比如调整用特殊的共溶剂如二甲基亚砜、甲酰胺和甘油。

对引物的设计不可能有一种包罗万象的规则确保PCR的成功,但遵循某些原则,则有助于引物的设计。

(1)引物长度PCR特异性一般通过引物长度和退火温度来控制。

引物的长度一般为15-30bp,常用的是18~27bp,但不应大于38bp。

引物过短时会造成Tm值过低,在酶反应温度时不能与模板很好的配对;引物过长时又会造成Tm值过高,超过酶反应的最适温度,还会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应,而且合成长引物还会大大增加合成费用。

(2)引物碱基构成引物的G+C含量以40~60%为宜,过高或过低都不利于引发反应,上下游引物的GC含量不能相差太大。

其Tm值是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度,有效启动温度,一般高于Tm值5~10℃。

若按公式Tm=4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm值最好接近72℃以使复性条件最佳。

引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。

尤其3′端不应超过3个连续的G或C,因这样会使引物在G+C富集序列区错误引发。

(3)引物二级结构引物二级结构包括引物自身二聚体、发卡结构、引物间二聚体等。

这些因素会影响引物和模板的结合从而影响引物效率。

对于引物的3'末端形成的二聚体,应控制其ΔG大于-5.0 kcal/mol或少于三个连续的碱基互补,因为此种情形的引物二聚体有进一步形成更稳定结构的可能性,引物中间或5'端的要求可适当放宽。

引物自身形成的发卡结构,也以3'端或近3'端对引物-模板结合影响更大;影响发卡结构的稳定性的因素除了碱基互补配对的键能之外,与茎环结构形式亦有很大的关系。

应尽量避免3'末端有发卡结构的引物。

(4)引物3'端序列引物3'末端和模板的碱基完全配对对于获得好的结果是非常重要的,而引物3'末端最后5到6个核苷酸的错配应尽可能的少。

如果3'末端的错配过多,通过降低反应的退火温度来补偿这种错配不会有什么效果,反应几乎注定要失败。

引物3'末端的另一个问题是防止一对引物内的同源性。

应特别注意引物不能互补,尤其是在3'末端。

引物间的互补将导致不想要的引物双链体的出现,这样获得的PCR产物其实是引物自身的扩增。

这将会在引物双链体产物和天然模板之间产生竞争PCR状态,从而影响扩增成功。

引物3'末端的稳定性由引物3'末端的碱基组成决定,一般考虑末端5个碱基的ΔG。

?G值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性,此值的大小对扩增有较大的影响。

应当选用3'端?G值较低(绝对值不超过9),负值大,则3'末端稳定性高,扩增效率更高。

引物的聚合反应。

DNA值过高,容易在错配位点形成双链结构并引发?G端的3'.需要注意的是,如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增特异性与效率。

另外末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3'端使用碱基A。

(5)引物的5′端引物的5′端限定着PCR产物的长度,它对扩增特异性影响不大。

因此,可以被修饰而不影响扩增3+等;引入蛋白质结合端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu的特异性。

引物5′DNA序列;引入突变位点、插入与缺失突变序列和引入一启动子序列等。

对于引入一至两个酶切位点,应在后续方案设计完毕后确定,便于后期的克隆实验,特别是在用于表达研究的目的基因的克隆工作中。

(6)引物的特异性引物与非特异扩增序列的同源性不要超过70%或有连续8个互补碱基同源,特别是与待扩增的模板DNA之间要没有明显的相似序列。

2.酶及其浓度Taq DNA多聚酶是耐热DNA聚合酶,是从水生栖热菌(Thermus aquaticus)中分离的。

Taq DNA 聚合酶是一个单亚基,分子量为94 000 Da。

具有5'-->3的聚合酶活力,5'-->3'的外切核酸酶活力,无3'-->5'的外切核酸酶活力,会在3'末端不依赖模板加入1个脱氧核苷酸(通常为A,故PCR 产物克隆-4-5。

此酶的发现使PCR~10T载体),在体外实验中,Taq DNA聚合酶的出错率为10中有与之匹配的广泛的被应用。

相关文档
最新文档