第六届日本算术奥林匹克决赛试题与解答
广西南宁市西乡塘区第三十七中学2024-2025学年八年级上学期开学考数学试题

广西南宁市西乡塘区第三十七中学2024-2025学年八年级上学期开学考数学试题一、单选题1.下列各数中,是无理数的是( ) A .1-B .0C .πD .22.“水是生命之源,滋润着世间万物”国家节水标志由水滴,手掌和地球变形而成.寓意:像对待掌上明珠一样,珍惜每一滴水!以下通过平移节水标志得到的图形是( )A .B .C .D .3.在平面直角坐标系中,点M (2,3)在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.如图,直线AB ,CD 相交于点O ,140AOD ∠=︒,则AOC ∠的度数是( )A .40︒B .50︒C .60︒D .70︒5.下列调查中,适合普查的是( ) A .了解全国中学生的睡眠时间 B .了解一批灯泡的使用寿命 C .调查长江中下游的水质情况D .对乘坐飞机的乘客进行安检6.下列各对数值中是方程25x y +=的解的是( ). A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =-⎧⎨=-⎩D .51x y =⎧⎨=⎩7.下列四个选项中,∠1与∠2是同位角的是( )A .B .C .D .8.埃菲尔铁塔是巴黎城市地标之一,也是巴黎最高的建筑物,总高324米,如图所示,在埃菲尔铁塔的设计中运用了大量的三角形的结构,你能从中推断出其运用的数学原理是( )A .三角形的不稳定性B .三角形的稳定性C .三角形两边之和大于第三边D .两点之间线段最短9.已知m n >,则下列结论正确的是( ) A .55m n -<- B .66m n <C .44m n +>+D .1133m n ->-10.将方程24x y +=改写成用含x 的式子表示y 的形式,结果是( )A .42y x =+B .42y x =-C .122x y =+D .122x y =-11.如图,正方形ABCD 的面积为7,顶点A 在数轴上表示的数为1,若点E 在数轴上(点E 在点A 的左侧),且AD AE =,则点E 所表示的数为( )A B .2-C .1D .112.图1是长方形纸条,DEF α∠=,将纸条沿EF 折叠成折叠成图2,则图中的GFC ∠的度数是( )A .2αB .902α︒+C .1802α︒-D .1803α︒-二、填空题13.16的算术平方根是. 14.四边形的内角和为.15.如图,直线a ,b 被直线c 所截,请添加一个条件,使得a b ∥.(只添一种情况即可)16.点()3,24P m m ++在y 轴上,则m =.17.已知x ,y 是二元一次方程组31238x y x y +=⎧⎨+=⎩的解,那么x y +的值是.18.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙均由点()2,0A 同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2024次相遇地点的坐标为.三、解答题19()11+-20.解不等式组:211841x x x x ->+⎧⎨+<-⎩,并利用数轴确定不等式组的解集.21.如图,在边长均为1个单位长度的小正方形网格中,ABC V 的顶点均在格点(网格线的交点)上,若记点A 的坐标为 1,4 ,点B 的坐标为()2,0-.(1)请在图中画出平面直角坐标系;(2)把ABC V 向上平移1个单位长度,再向右平移3个单位长度,得到A B C '''V ,画出平移后的图形,并写出点C '的坐标; (3)求A B C '''V 的面积.22.为了解曲靖市某校1200名全体初中生对安全知识的掌握情况,随机抽取了60名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制了如下不完整的频数统计表和频数直方图:请结合图表完成下列各题:(1)频数表中的a=_______,b=______;(2)将频数分布直方图补充完整;(3)若测试成绩不低于80分定为“优秀”,请估计该校的全体初中生对安全知识掌握情况为“优秀”等级的大约有多少人?23.某服装厂给某中学用同样的布料生产A,B两种不同款式的服装,每套A款服装所用布料的米数相同,每套B款服装所用布料的米数相同.若1套A款服装和2套B款服装需用布料5米,3套A款服装和1套B款服装需用布料7米.(1)求每套A款服装和每套B款服装需用布料各多少米;(2)该中学需要A,B两款服装共100套,所用布料不超过168米,那么该服装厂最少需要生产多少套B款服装?24.如图,在ABC⊥.V中,AB BC(1)若62∠=︒BAC ,AD 是ABC V 的角平分线,求ADC ∠的度数;(2)请在图中画出ABC V 边AC 上的高BE ,若5cm,12cm,13cm AB BC AC ===,求BE 的长度.25.根据下列信息,探索完成任务:26.如图1,直线,AB CD 被直线EF 所截,FH EF ⊥,交AB 于点H .(1)若50FEH ∠=︒,则EHF ∠的度数为__________︒(2)若90FEH HFD ∠+∠=︒,判断直线AB 与CD 的位置关系,并说明理由;(3)在(2)的条件下,点M 在射线FD 上运动,连接,HM FMH ∠的角平分线交AB 于点P ,交FH 于点O ,如图2,当三角形MOH 的边与直线EF 平行时,求出HFD ∠与MHA ∠的数量关系.。
全等三角形的提高拓展训练全等三角形经典题型50题(含答案)

全等三角形的提高拓展训练知识点睛全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等. 全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 (06年北京中考题)已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB AD【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC ∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?【例3】 已知:如图,ABCD 是正方形,∠F AD =∠F AE . 求证:BE +DF =AE .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠.NC D EB M A F E DCB A O ED CA【例5】 (北京市、天津市数学竞赛试题)如图所示,ABC ∆是边长为1的正三角形,BDC∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°, 求证:AD 平分∠CDE板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.D CB ANM D CB AC EDBA【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【例9】(“勤奋杯”数学邀请赛试题) 如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【例10】 在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【例11】 (日本算术奥林匹克试题) 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.CDBADCBAANMCBA【例12】 (河南省数学竞赛试题) 在正ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【例13】 (北京市数学竞赛试题) 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.M CA B全等三角形证明经典50题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD延长AD到E,使DE=AD,则三角形ADC全等于三角形EBD即BE=AC=2 在三角形ABE中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD是整数,则AD=52.已知:D是AB中点,∠ACB=90°,求证:12 CD ABADB C3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
2020年小学数学奥林匹克决赛试题(含答案)-

2020年小学数学奥林匹克决赛试题1、计算:4131313360.250.625660.12517171717+⨯+⨯+⨯=____________.2、计算:76×65-65×54+54×43-43×32+32×21-21×10=。
3、自然数N=123456789101112…2008是一个位数。
4、人们常常喜欢使用自己的生日数码作为密码。
例如,某人的生日是1997年3月24日,他的六位数生日数码就是970324,其中97是出生年号的十位数字和个位数字,老师说:这种数码很容易重复,因为它只占六位数字数码的很小一部分。
那么,如果不计闰年二月的29日,六位数生日数码占六位数码总数的﹪。
5、如图,小张的家是一个建在10m×10m的正方形地面上的房子,房子正好位于一个嗯40m×40m的正方形草地的正中,他们家喂了一只羊,用15m长的绳子拴在房子一边的中点处,取π=3,那么羊能吃到草的草地面积是平方米。
6、有两个2位数,它们的乘积是1924,如果它们的和是奇数,那么它们的和= 。
7、小王和小张玩拼图游戏,他们各用若干个边长为1的等边三角形拼成一个尽可能大的等边三角形,小王有1000个边长为1的等边三角形,但是无论怎样努力,小王拼成的大等边三角形的边长都比小张拼的等边三角形的边长小,那么,小张用的边长为1的等边三角形至少有个。
8、某工厂甲、乙二车间去年计划完成税利800万元,结果,甲车间超额20﹪完成任务,乙车间超额10﹪完成任务,两车间共完成税利925万元,那么,乙车间去年完成的税利是万元。
9、一只装了若干水的水桶,我们把它的水倒出一半,然后再加入一升水,这算一次操作,第二次操作是把经过第一次操作的水桶里的水倒出一半,然后再加入一升水,如果经过7次操作后,桶里还有3升水,那么,这只水桶原来有水升。
10、n正整数,D某个数字,如果n/810=0.9D5=0.9D59D5…,那么n= 。
初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。
两个单项式x²,2x2之和为3x2是单项式,排除B。
两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。
6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。
中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

∈ Z.
1 3 2n+1 (2n + 1)ϕ = (2l + 3 = 2t + 3 2 )π (l ∈ Z). ∴ (2n + 1)(2k + 6 ) = 2l + 2 , 6 2 , n = 6t + 4(t ∈ Z). 5(2n+1) 5 ) = 2l + 3 = 2t + 3 或(2n + 1)(2k + 6 2, 6 2 , 5|4t + 3, t ≡ 3 (mod 5)(t ∈ Z).
+1 ∴ cos(n + 1)θ − cos nθ − 1 = −(2 sin 2n2 θ sin θ 2 + 1) = 0. +1 sin(n + 1)θ − sin nθ = 2 cos 2n2 θ sin θ 2 = 0. +1 +1 1 θ ∴ cos 2n2 θ = 0, sin 2n2 θ = ±1, sin θ 2 = ± 2 , 设 2 = ϕ. π (1)sin ϕ = 1 2 ,sin(2n + 1)ϕ = −1. ϕ = 2kπ + 6 或2kπ + 5π 6 ,k
设t = 5s + 3,则n = 6s + 4,总有6|n + 2. (2)sin ϕ = − 1 2 ,sin(2n + 1)ϕ = 1.显然以−ϕ代ϕ即有(1).所以6|n + 2.证毕. 2.把边长为1的正三角形ABC 的各边都n等分,过各分点平行于其它两边的直线, 将这三角形分成若干个 小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知: (1)A, B, C 三点上放置的数分别为a, b, c. (2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等. 试求:(1)放置最大数的点和放置最小数的点之间的最短距离. (2)所有结点上数的总和S . 解:(1)不难证明同一直线上相邻三个结点上放置的数中间一个为两边的等差中项,所以同一直线上的数 按顺序成等差数列. 若两端的数相等,则所有的数都相等.否则两端的数为最大的和最小的. 若a, b, c相等,显然所有数都相等,最短距离显然为0. 若a, b, c两两不等,最大的数与最小的数必出现在A, B, C 上,最短距离为1. 若a, b, c有两个相等但不与第三个相等,不妨设a = b > c,最小的数为c,最大的数出现在线段AB 的任意 结点上. 当n为偶数时,与C 最近的为AB 中点,最短距离为
小学奥数教程逻辑推理 全国通用含答案

逻辑推理教学目标掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等1. 培养学生的逻辑推理能力,掌握解不同题型的突破口2. 能够利用所学的数论等知识解复杂的逻辑推理题3.知识点拨逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。
对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。
本讲我们主要从各个角度总结逻辑推理的解题方法。
一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。
有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。
四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲模块一、列表推理法【例1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理【难度】2星【题型】解答【解析】因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.小红小英小丽小红小丽小英刘刚×√×刘刚×马辉×√马辉×××√×李强×李强×刘刚与小红、马辉与小英、李强与小丽分别是兄妹.【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运【巩固】请根据上述情况判断动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生. 王文、张贝、李丽各是什么运动员?【题型】解答【难度】2星【考点】逻辑推理“×”表示是,列出下表,在表中“√”为【解析】了能清楚地找到所给条件之间的关系,我们不妨运用列表法,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【巩固】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴顾锋最年轻;⑵李波喜欢与体育老师、数学老师交谈;⑶体育老师和图画老师都比政治老师年龄大;⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?【考点】逻辑推理【难度】2星【题型】解答【解析】李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【答案】顾锋教数学和政治,刘英教音乐、体育,李波教图画、语文【巩固】王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【考点】逻辑推理【难度】2星【题型】解答【解析】根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【答案】王平【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【题型】解答星2【难度】【考点】逻辑推理.【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表,由条件⑵、⑶得到表,21由条件⑷得到表.3可填全为表.因为各表中,每行每列只能有一个“√”,所以表52由表知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表可填全完为表541由表和表知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.54方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。
【机构秘籍思维导引】数学六年级第14讲计数综合三(教师版+学生版,含详细解析)全国通用

第14讲 计数综合三兴趣篇1. 一个楼梯共有10级台阶,规定每步可以迈一级台阶或二级台阶。
走完这10级台阶,一共可以有多少种不同的走法? 【分析】 例如登上一级台阶有1种走法,登上第二级台阶有2种走法(一步走两级或者走两步每步走一级);由此得出登上第三级台阶的走法数为123+=.又知道走上第四级台阶的走法总数也等于登上第三级和第二级台阶的走法总数之和,又可以算出登上235+=2. 小悦买了10块巧克力,她每天最少吃一块,最多吃3块,直到吃完,共有多少种吃法? 【分析】 递推法。
吃1块只有1种吃法,吃2块有11+和2两种吃法,吃3块有1+1+1,1+2,2+1,3共4种吃法,吃4块有:1+1+1+1;1+1+2;1+2+1;2+1+1;2+2;1+3;3+1共7种;吃5块有2+4+7=13种吃法,吃6块有4+7+13=24种吃法……事实上,吃n 块巧克力,吃最后一块前,吃掉的块数是在第1n -块或2n -块或n -3块上,所以吃n 块巧克力的吃法数相当于吃第1n -块和第2n -块以及第n -3块的总和。
依照这一规律,列表写出吃1到10块各块的吃法数。
最后递推得到吃第10块巧克力有274种吃法。
3. 用⨯12的小方格覆盖⨯27的长方形,共有多少种不同的覆盖方法?【分析】 递推法.若用12⨯的小长方形去覆盖2n ⨯的方格网,设方法数为n A ,那么11A =,22A =.当3n ≥时,对于最左边的一列有两种覆盖的方法:⑴用1个12⨯的小长方形竖着覆盖,那么剩下的()21n ⨯-的方格网有1n A -种方法;⑵用2个12⨯的小长方形横着覆盖,那么剩下的()22n ⨯-的方格网有2n A -种方法,根据加法原理,可得12n n n A A A --=+.递推可得到3123A =+=,4235A =+=,5358A =+=,65813A =+=,781321A =+=,所以覆盖27⨯的方格网共有21种不同方法.4. 如果在一个平面上画出4条直线,最多可以把平面分成几个部分?如果画20条直线,最多可以分成几个部分? 【分析】 一条直线时,分平面内为2个部分;增加一条直线,即2条时,显然它应该与原来那条直线相交才能把平面分的多,这是增加了2部分,总数2+2;再增加1条时,同理应该与前两条都相交,这时增加了3部分,总数2+2+3; 增加到4条时,分平面增加4部分,总数2+2+3+4;由此我们发现,每增加一条直线,多分平面部分逐个递增,即n 条直线最多分平面(1)223412n n n ++++++=+。
国际数学奥林匹克试题分类解析—A数论_A5整数综合问题

A5 整数综合问题A5-002在n³n(n为奇数)的方格表里的每一个方格中,任意填上一个+1或-1,在每一列的下面写上该列所有数的乘积;在每行的右边写上该行所有数的乘积,证明:这2n个乘积的和不等于0.【题说】1962年全俄数学奥林匹克八、九年级题5.【证】设p1,p2,…,p n是各行数字乘积,q1,q2,…,q n是各列数字乘积,它们都是+1或-1,而应有p1p2…p n=q1q2…q n,所以p1、p2、…、p n、q1、q2…、q n中应有偶数个-1.设为2k个,则其中+1的个数为2(n-k).由于n为奇数,k≠n-k,所以p1+p2+…+p n+q1+q2+…+q n≠0A5-003已知任意n个整数a1,a2,…,a n,由此得到一列新的数.由这n个数依同样法则又得到一列新数,并如此做下去.假如所有这些新数都是整数,证明原来所给各数a i(i=1,2,…,n)都相等.【题说】1964年全俄数学奥林匹克八年级题4.n为偶数时有一种例外情况使结论不成立.【证】对于任给的n个数x i(1≢i≢n),如果它们不全相等,那么施行如上运算若干次后得的新数中,最大值要变小,最小值要变大,因此,如若不能得出一组n个相同的数的话,其中最大数不能永远是整数.假设从一组n个数z1,z2,…,z n得到n个相同的数那么,当n是奇数时,易知z1=z2=…=z n;当n是偶数时,z1,…,z n中奇数项相等,偶数项相等.若z i(1≢i≢n)由y i(1≢i≢n)经运算得出,且设则有 2(y1+y2+…+y n)=2na及 2(y2+y3+…+y n+y1)=2nb从而 2na=2nb,a=b由此得出z1=z2=…=z n=a因此,我们的命题成立.仅当n为偶数时,有一种例外情况:n个整数a,b,a,b,…,a,b,(a与b的奇偶性相同,a ≠b)满足题中条件,但结论不成立.A5-004某整数集合A既含有正整数,也含有负整数,而且如果a和b是它的元素,那么2a 和a+b也是它的元素,证明:集合A包含它的任意两个元素之差.【题说】1967年匈牙利数学奥林匹克题1.【证】不难证明:如果整数c是集合A的元素,而n是自然数,那么nc也属于集合A.因为集合A既含有正整数,也含有负整数,根据最小数原理,集合A存在最小的正整数a和绝对值最小的负整数b.这两个数的和a+b也应该属于集合A,而且满足不等式.b<a+b<a但是集合A不含有小于a的正数和大于b的负数,所以a+b只能等于0.因此,数0属于集合A,且b=-a.根据前面所证,集合A包含数a的所有整数倍.设x∈A,则由带余数除法,存在整数q、r,使x=qa+r(0≢r<a).于是r=x+(-qa)∈A.由于0≢r<a,必有r=0.即A中的数均为a的整数倍.既然集合A的元素都是a的整数倍,因此集合A的任意两个元素之差也是元素a的整数倍,因而属于集合A.A5-005证明:任何不大于n!的自然数,都能表示成不多于n个数的和,在这些加数中,没有两个是相同的,而且任何一个都是n!的因数.【题说】第二届(1968年)全苏数学奥林匹克九年级题5.【证】对n用数学归纳法,n=1时,显然.设n时结论真.对a≢(n+1)!,将a除以n+1得a=d(n+1)+r,这里d≢n!,0≢r<n+1.由归纳假设,d=d1+d2+…+d l,l≢n.且所有d i是n!的不同因数(i=1,2,…,l).于是 a=d1(n+1)+…+d l(n+1)+r这个和中的加数不多于n+1个,其中每一个都是(n+1)!的因数,且全不相等.A5-006找出具有下列性质的所有正整数n:设集合{n,n+1,n+2,n+3,n+4,n+5}可以划分成两个无公共元素的非空子集,使得一个子集中所有元素的乘积等于另一子集中所有元素的乘积.【题说】第十二届(1970年)国际数学奥林匹克题4.本题由捷克斯洛伐克提供.【解】假定n具有所述性质,那么六个数n,n+1,n+2,n+3,n+4,n+5中任一个素因数p 必定还整除另一个数(在另一个子集中).因而p整除这两个数的差,所以p只能为2,3,5.再考虑数n+1,n+2,n+3,n+4.它们的素因数不能为5(否则上面的六个数中只有一个被5整除),因此只能为2与3.这四个数中有两个为连续奇数.它们必须是3的正整数幂(因为没有其它因数),但这样两个幂的差被3整除,决不能等于2.矛盾!这就说明具有所述性质的n是不存在的.A5-007证明:任何一个正的既约真分数m/n可以表示成两两互异的自然数的倒数之和.【题说】1972年~1973年波兰数学奥林匹克三试题5.【证】对m用数学归纳法.m=1时,显然成立.假设对小于m的自然数命题成立,我们证明它对m>1也成立.为此,设n=qm+r(0≢r<m) (1)因为m/n是正的既约真分数,所以q>0,r>0.又因0<m-r<m,所以由归纳假设,其中t1<t2<…<t k为自然数.因为n>m,所以由(3)知:t1>q+1,将(3)代入(2)得所以,命题对任何自然数m都成立.A5-008 8分和15分的邮票可以无限制地取用.某些邮资额数,例如7分、29分,不能够刚好凑成.求不能凑成的最大额数n,即大于n的额数都能够凑成,并证明你的答案.【题说】第六届(1974年)加拿大数学奥林匹克题6.【解】因为98=8²1+15²699=8²3+15²5100=8²5+15²4101=8²7+15²3102=8²9+15²2103=8²11+15²1104=8²13+15²0105=8²0+15²7比105大的数,可用以上8数加上8的适当倍数而得到.而97不能用8与15凑成.故所求的n 值为97.【注】一般地,当正整数p、q互质时,不能用p、q凑成的最大整数pq-p-q.A5-009若整数n可表示成n=a1+a2+…+a k (1)其中a1,a2,…,a k是满足的正整数(不一定相异),那么,我们称n是好数,已知整数33至73是好数,证明:每一个不小于33的整数都是好数.【题说】第七届(1978年)英国数学奥林匹克题3.【证】我们改证命题p n:整数n,n+1,…,2n+7都是好数.已知p33为真.假设p n成立,那么n是好数,即存在正整数a1,a2,…,a k使(1)、从而这表明 2(a1+a2+…+a k)+4+4=2n+82(a1+a2+…+a k)+3+6=2n+9也是好数,因此P n成立.根据数学归纳法,对所有正整数n≣33,P n成立,原命题因而得证.A5-010设f(x)=x2-x+1.证明:对任意的m个自然数(m>1),f(m),f(f(m)),…两两互素.【题说】第十二届(1978年)全苏数学奥林匹克十年级题1.【证】因f(0)=1,所以多项式的常数项p n(0)=1.因而,对于任意的整数m,p n(m)除以m,余数等于1.用m'=p k(m)代替m,就得到p n+k(m)=p n(m')与m'=p k(m)互素.A5-011自然数n的数字和用S(n)来表示.(1)是否存在一个自然数n,使得n+s(n)=1980;(2)证明:在任意两个连续的自然数之中,至少有一个能表示成n+S(n)的形式,其中n为某个自然数.【题说】第十四届(1980年)全苏数学奥林匹克八年级题6.【解】(1)当n=1962时,n+S(n)=1980.(2)令S n=n+S(n),如果n的末位数字是9,则S n+1<S n;否则S n+1=S n+2.对任意两个连续的自然数m(m≣2),m+1,在S n<m的n中,选择最大的,并用N表示.这时S N+1≣m>S N,所以N 的末位数字不是9,从而S N+1=S N+2.由m≢S N+1=S N+2<m+2,即得S N+1=m或S N+1=m+1.A5-012设n为≣2的自然数.证明方程x n+1=y n+1在x与n+1互质时无正整数解.【题说】1980年芬兰等四国国际数学竞赛题3.本题由匈牙利提供.【证】x n=y n+1-1=(y-1)(y n+y n-1+…+1).如果质数p是y-1与y n+y n-1+…+1的公因数,则p整除x n,从而p是x的因数.但y除以p余1,所以y n+y n-1+…+1除以p与n+1除以p 的余数相同,即n+1也被p整除,这与x、n+1互质矛盾.因此y-1与y n+y n-1+…+1互质,从而y-1=s n,y n+y n-1+…+1=t n,其中s、t为自然数,st=x.但y n<y n+y n-1+…+1<(y +1)n,所以y n+y n-1+…+1≠t n,矛盾,原方程无解.A5-013设a、b、c是两两互素的正整数,证明:2abc-be-ac-ab是不能表示为xbc+yac +zab形式的最大整数(其中x、y、z是非负整数).【题说】第二十四届(1983年)国际数学奥林匹克题3.【证】熟知在a、b互素时,对任意整数n有整数x、y,使ax+by=n.当n>ab-a-b时,首先取0≢x<b(若x>b则用x-b、y+a代替x、y),我们有by=n-ax>ab-a-b-ax≣ab-a-b-a(b-1)=-b所以y>-1也是非负整数.即n>ab-a-b时,有非负整数x、y使ax+by=n.因为a、b、c两两互素,所以(bc,ac,ab)=1.令(bc,ac)=d.则(ab,d)=1,所以方程abz+dt=n (1)有整数解,并且0≢z<d(若z>d则用z-d、t+ab代替z、t).设 bc=da1,ac=db1,那么(a1,b1)=1.在n>2abc-bc-ca-ab时,即 t>a1b1-a1-b1从而方程a1x+b1y=t (2)有非负整数解(x,y).由(1)与(2)消去t可得bcx+acy+abz=n有非负整数解.另一方面,若有非负整数x、y、z使2abc-bc-ac-ah=xbc+yac+zab则 bc(x+1)+ac(y+1)+ab(z+1)=2abc于是应有,a整除bc(x+1),因(a,bc)=1.所以,a整除x+1,从而c≢x+1.同理有,b≢y+1,c≢z+1.因此3abc=bca+acb+abc≢bc(x+1)+ac(y+1)+ab(z+1)=2abc由于a、b、c都是正整数,这是不可能的,故2abc-bc-ca-ab不能表成xbc+yca+zab(x、y、z为非负整数)的形式.A5-014能否选择1983个不同的正整数都不大于105,且其中没有三个正整数是算术级数中的连续项,并证明你的论断.【题说】第二十四届(1983年)国际数学奥林匹克题5.本题由波兰提供.【解】考虑三进制表示中,不含数字2并且位数≢11的数所成的集合M.显然|M|=211-1>1983.M中最大的数为若x、y、z∈M并且x+z=2y,则由于2y的各位数字为0或2,所以x+z的各位数字也为0或2.从而x、z在同一位上的数字同为0或同为2,即x=z.因此M中任三个互不相同的数不成等差数列.于是回答是肯定的,M即是一例.A5-015将19分成若干个正整数之和,使其积为最大.【题说】1984年上海市赛一试题2(9).【解】由于分法只有有限种,其中必有一种分法,分成的各数的积最大.我们证明这时必有:(1)分成的正整数只能是2和3.因为4=2+2,且4=2³2,若分出的数中有4,拆成两个2其积不变;若分出的数中有数a≣5.则只要把a拆成2与a-2,由2(a-2)>a知道积将增大.(2)分成的正整数中,2最多两个.若2至少有3个,则由3+3=2+2+2及3³3>2³2³2可知,将3个2换成2个3,积将增大.所以,将19分成5个3与2个2的和,这些数的积35³22=972是最大的.A5-016设a、b、c、d是奇整数,0<a<b<c<d,且ad=bc.证明:如果对某整数k和m有a+d=2k和b+c=2m,那末a=1.【题说】第二十五届(1984年)国际数学奥林匹克题6.【证】因为a[(a+d)-(b+c)]=a2+ad-ab-ac=a2+bc-ab-ac=(a-b)(a-c)>0所以a+d>b+c,即2k>2m,k>m.又由ad=bc,有 a(2k-a)=b(2m-b)2m(b-2k-m a)=b2-a2=(b+a)(b-a)可知2m整除(b+a)(b-a).但b+a和b-a不能都被4整除(因为它们的和是2b,而b是奇数),所以2m-1必整除b+a或b-a之一.因为b+a<b+c=2m,所以b+a=2m-1或b-a=2m-1.因为a、b是奇数,它们的公因数也是奇数,且是b+a和b-a的因数,从而是2m-1的奇因数,即1.所以a与b互质,同理a与c也互质.但由ad=bc,知a能整除bc,故a=1.A5-017对正整数n≣1的一个划分π,是指将n分成一个或若干个正整数之和,且按非减顺序排列(如n=4,划分π有1+1+1+1,1+1+2,1+3,2+2及4共5种).对任一划分π,定义A(π)为划分π中数1出现的个数;B(π)为π中出现不同的数的个数(如对n=13的一个划分π:1+1+2+2+2+5而言,A(π)=2,B(π)=3).求证:对任意正整数n,其所有划分π的A(π)之和等于B(π)之和.【题说】第十五届(1986年)美国数学奥林匹克题5.【证】设p(n)表示n划分的个数.那么第一个位置是1的划分有p(n-1)个,第二个位置上是1的(当然它第一个位置上也是1)的划分有p(n-2)个.等等.第n-1个位置上是1的划分有P(1)=1个,第n个位置上是1的只有1种.若令P(0)=1.则所有划分中含1的数A(π)之和等于P(n-1)+P(n-2)+…+P(1)+P(0).另一方面,从含有1的每个划分中拿去一个1,都成为一个(n-1)的划分,共拿去P(n-1)个1.再从含有2的每个划分中拿去一个2,都成为n-2的划分,共拿去P(n-2)个2.…从含有(n-1)的划分(只有一个:1+(n-1),拿去(n-1),即拿去了P(1)=1个1.再加上含有n的一个划分,n为P(0)=1个,故B(π)总和也等于P(n-1)+P(n-2)+…+P(1)+P(0).因此,A(π)=B(π).A5-018在直角坐标系xoy中,点A(x1,y1)和点B(x2,y2)的坐标均为一位正整数.OA与x轴正方向的夹角大于45°,OB与x轴正方向的夹角小于45°,B在x轴上的射影为B',A在y轴上的射影为A',△OB'B的面积比△OA'A的面积大33.5.由x1、求出所有这样的四位数,并写出求解过程.【题说】1985年全国联赛二试题1.>67.又由于x2、y2均为一位正整数,所以x2y2=72或x2y2=81.因为∠BCB'<45°,所以x2>y2.故由x2y2=72可知x2=9,y2=8.此时x1y1=5.同样可求得x1=1,y1=5.综上可知,1985为符合条件的唯一的四位数.A5-019设n、k为互素自然数,0<k<n,在集合M={1,2,…,n-1}(n≣3)中的各数,要么着蓝色,要么着白色,已知(1)对于各i∈M,i和n-i同色;(2)对于各i∈M,i≠k, i和|i-k|同色.证明:在M中的所有数均同色.【题说】第二十六届(1985年)国际数学奥林匹克题2.本题由澳大利亚提供.【证】设lk=nq l+r l(l=1,2,…,n-1;1≢r l≢n-1).若r l=r l',则(l-l')k被n整除,但n、k互素,所以n|(l-l')这表明在l=1,2…,n-1时,r1,r2,…,r n-1互不相同,所以M={r1,r2,…,r n-1}.若r l<n-k,即r l+k<n,则r l+1=r l+k,由条件(2),r l+1与r l+1-k=r l同色.若r l≣n-k,即r l+k≣n,则r l+1=r l+k-n,于是r l+1与k-r l+1=n-r l同色.再由条件(1)n-r l与r l同色.综上所述,r i+1与r l同色(l=1,2,…,n-2),因此M中所有数同色.A5-020如n是不小于3的自然数,以f(n)表示不是n的因数的最小自然数(例如f(12)=5).如果f(n)≣3,又可作f(f(n)).类似地,如果f(f(n))≣3,又可作f(f(f(n)))果用L n表示n的长度,试对任意的自然数n(n≣3),求L n并证明你的结论.【题说】第三届(1988年)全国冬令营赛题6.【解】很明显,若奇数n≣3,那么f(n)=2,因此只须讨论n为偶数的情况,我们首先证明,对任何n≣3,f(n)=p s,这里P是素数,s为正整数.假若不然,若f(n)有两个不同的素因子,这时总可以将f(n)表为f(n)=ab,其中a、b是大于1的互素的正整数.由f的定义知,a与b都应能整除n,因(a,b)=1,故ab也应整除n,这与f(n)=ab矛盾.所以f(n)=p s.由此可以得出以下结论:(1)当n为大于1的奇数时,f(n)=2,故L n=1;(2)设n为大于2的偶数,如果f(n)=奇数,那么f(f(n))=2,这时L n=2;如果f(n)=2s,其中自然数s≣2,那么f(f(n))=f(2s)=3,从而f(f(f(n)))=f(3)=2,这时L n=3.A5-021一个正整数,若它的每个质因数都至少是两重的(即在这数的分解式中每个质因数的幂指数都不小于2),则称该正整数为“漂亮数”.相邻两个正整数皆为“漂亮数”,就称它们是一对“孪生漂亮数”,例如8与9就是一对“孪生漂亮数”.请你再找出两对“孪生漂亮数”来.【题说】1989年北京市赛高一题5.【解】设(n,n+1)是一对“孪生漂亮数”,则4n(n+1)是漂亮数,并且4n(n+1)+1=4n2+4n+1=(2n+1)2是平方数,而平方数必为漂亮数.所以,(4n(n+1)、4n(n+1)+1)也是一对“孪生漂亮数”.于是,取n=8,得一对“孪生漂亮数”(288,289).再取n=288,得另一对“孪生漂亮数”(332928,332929).两个自然数的平方差,则称这个自然数为“智慧数”比如16=52-32,16就是一个“智慧数”.在自然数列中从1开始数起,试问第1990个“智慧数”是哪个数?并请你说明理由.【题说】1990年北京市赛高一复赛题4.【解】显然1不是“智慧数”,而大于1的奇数2k+1=(k+1)2-k2,都是“智慧数”.4k=(k+1)2-(k-1)2可见大于4且能被4整除的数都是“智慧数”而4不是“智慧数”,由于x2-y2=(x+y)(x-y)(其中x、y∈N),当x,y奇偶性相同时,(x+y)(x-y)被4整除.当x,y奇偶性相异时,(x+y)(x -y)为奇数,所以形如4k+2的数不是“智慧数”在自然数列中前四个自然数中只有3是“智慧数”.此后每连续四个数中有三个“智慧数”.由于1989=3³663,所以2656=4³664是第1990个“智慧数”.A5-023有n(≣2)名选手参加一项为期k天的比赛,每天比赛中,选手的可能得分数为1,2,3,…,n,且没有两人的得分数相同,当k天比赛结束时,发现每名选手的总分都是26分.试确定数对(n,k)的所有可能情况.【题说】第二十二届(1990年)加拿大数学奥林匹克题1.【解】所有选手得分总和为kn(n+1)/2=26n,即k(n+1)=52(n,k)取值可以是(3,13),(12,4),(25,2)及(51,1),但最后一种选择不满足要求.当(n,k)=(3,13)时,3名选手13天得分配置为(1,2,3)+2(2,3,1)+2(3,1,2)+3(1,3,2)+2(3,2,1)+3(2,1,3)=(26,26,26).当(n,k)=(12,4)时,12名选手4天得分配置为2(1,2,…,11,12)+2(12,11,…,2,1)=(26,26,…,26).当(n,k)=(25,2)时,25名选手两天得分配置为(1,2,…,24,25)+(25,24,…,2,1)=(26,26,…,26).A5-024设x是一个自然数.若一串自然数x0=1,x1,x2,…,x t-1,x t=x,满足x i-1<x i,x i -1|x i,i=1,2,…,t.则称{x0,x1,x2,…x t}为x的一条因子链,t为该因子链的长度.T(x)与R(x)分别表示x的最长因子链的长度和最长因子链的条数.对于x=5k³31m³1990n(k,m,n是自然数)试求T(x)与R(x).【题说】第五届(1990年)全国冬令营赛题2.【解】设x的质因数分解式为其中p1、p2、…、p n为互不相同的质数,α1、α2、…、αn为正整数.由于因子链上,每一项至少比前一项多一个质因数,所以T(x)≢α1+α2+…+αn.将α1+α2+…+αn个质因数(其中α1个p1,α2个p2,…,αn个p n)依任意顺序排列,每个排列产生一个长为α1+α2+…+αn的因子链(x1为排列的第一项,x2为x1乘排列的第二项,x3为x2乘第三项,…),因此T(x)=α1+α2+…+αn,R(x)即排列对于x=5k³31m³1990n=2n³5k+n³31m³199n,T(x)=3n+k+mA5-025证明:若则为整数.【题说】1990年匈牙利阿拉尼²丹尼尔数学竞赛低年级普通水平题1.【证】若x+y+z+t=0,则由题设条件可得于是此时(1)式的值等于-4.若x+y+z+t≠0,则由此可得x=y=z=t.于是(1)式的值等于4.A5-026课间休息时,n个学生围着老师坐成一圈做游戏,老师按顺时针方向并按下列规则给学生们发糖:他选择一个学生并给一块糖,隔一个学生给下一个学生一块,再隔2个学生给下一个学生一块,再隔3个学生给下一个学生一块….试确定n的值,使最后(也许绕许多圈)所有学生每人至少有一块糖.【题说】1991年亚太地区数学奥林匹克题4.【解】问题等价于确定正整数n,使同余式1+2+3+…+x=a(modn) (1)对任意正整数a都有解.我们证明当且仅当n是2的方幂时,(1)式总有解.若n不是2的方幂,则n有奇素因数p.由于1,1+2,1+2+3,…,1+2+…+(p-1),1+2+…+p至多表示mod p的p-1个剩余类(最后两个数在同一个剩余类中),所以1+2+…+x也至多表示mod p的p-1个剩余类,从而总有a使1+2+…+x≡a(mod p)无解,这时(1)也无解.若n=2k(k≣1),考察下列各数:0³1,1³2,2³3,…,(2k-1)2k (2)设x(x+1)≡y(y+1)、(mod 2k+1),其中0≢x,y≢2k-1,则x2-y2+x-y≡(x-y)(x+y+1)≡0(mod 2k+1)因为x-y,x+y+1中,一个是奇数,一个是偶数,所以x-y≡0(mod2k+1)或x+y+1≡0(mod 2k +1)由后者得:2k+1≢x+y+1≢2k-1+2k-1+1=2k+1-1矛盾.故 x≡y(mod 2k+1),即x=y.因此(2)中的2k个偶数mod 2k+1互不同余,从而对任意整数a,方程x(x+1)≡2a(mod 2n)有解,即(1)有解.A5-027设S={1,2,3,…,280}.求最小的自然数n使得S的每个有n个元素的子集都含有5个两两互素的数.【题说】第三十二届(1991年)国际数学奥林匹克题3.本题由中国提供.【解】令A i={S中一切可被i整除的自然数},i=2,3,5,7.记A=A2∪A3∪A5∪A7,利用容斥原理,容易算出A中元素的个数是216.由于在A中任取5个数必有两个数在同一个A i之中,从而他们不互素.于是n≣217.另一方面,令B1=(1和S中的一切素数}B2=(22,32,52,72,112,132}B3={2³131,3³89,5³53,7³37,11³23,13³19}B4={2³127,3³83,5³47,7³31,11³19,13³17}B5={2³113,3³79,5³43,7³29,11³17}B6={2³109,3³73,5³41,7³23,11³13}易知B1中元素的个数为60.令B=B1∪B2∪B3∪B4∪B5∪B6,则B中元素的个数为88,S-B中元素的个数为192.在S中任取217个数,由于217-192=25>4³6,于是存在i(1≢i≢6),使得这217个数中有5个数在Bi中.显然这5个数是两两互素的,所以n≢217.于是n=217.A5-028对于每个正整数n,以s(n)表示满足如下条件的最大正整数:对于每个正整数k≢s(n),n2都可以表示成k个正整数的平方之和.1.证明:对于每个正整数n≣4,都有s(n)≢n2-14;2.试找出一个正整数n,使得s(n)=n2-14;3.证明:存在无限多个正整数n,使得s(n)=n2-14.【题说】第三十三届(1992年)国际数学奥林匹克题6.本题由英国提供.【解】用反证法证明如下:假设对某个n≣4,有s(n)≣n2-14,则存在k=n2-13个正整数a1,a2,…,a k,使得于是就有从而3b+8c=13 这表明c=0或1;但相应的b不为整数,矛盾.2.每个大于13的正整数m可以表为3b+8c,其中b、c为非负整数.事实上,若m=3s+1,则s≣5,m=3(s-5)+2³8.若m=3s+2,则s≣4,m=3(s-2)+8.由即知n2可表为n2-m个平方和,从而n2可表为n2-14,n2-15,…,对于n=13,有n2=122+52=122+42+32=82+82+52+42由于82可表为4个42的和,42可表为4个22的和,22可表为4个12的和,所以132=82+82+52+42可表为4,7,10,...,43个平方的和,又由于52=42+32,132可表为5,8,11, (44)平方的和.由于122可表为4个62的和,62可表为4个32的和,所以132=122+42+32可表为3,6,9,…,33个平方的和.为18+2³9=36,18+2³12=42个平方的和.再由42为4个22的和,132也可表为39个平方的和.综上所述,132可表为1,2,…,44个平方的和.3.令n=2k³13.因为132可表为1,2,…,155个平方的和,22可表为4个平方的和,所以132³22可表为1,2,…,155³4个平方的和,132³24可表为1,2,…,155³42个平方的和,…,n2=132³22k可表为1,2,…,155³4k个平方的和.s(n)=n2-14A5-029每个正整数都可以表示成一个或者多个连续正整数的和.试对每个正整数n,求n有多少种不同的方法表示成这样的和.【题说】第一届(1992年)中国台北数学奥林匹克题2.【解】设m为n的正的奇因数,m=nd,则若(1)的每一项都是正的,则它就是n的一种表示(表成连续正整数的和).若(1)式右边有负数与0,则这些负数与它们的相反数抵消(因以略去,这样剩下的项是连续的正整数,仍然得到n的一种表示,其项数为偶数(例如7=(-2)+(-1)+0+1+2+3+4=3+4)于是n的每一个正奇因数产生一个表示.反过来,若n有一个表示,项数为奇数m,则它就是(1)的形式,而m是n的奇因数,若n有一个表示,项数为偶数,最小一项为k+1,则可将这表示向负的方向“延长”,增加2k+1项,这些项中有0及±1,±2,…,±k.这样仍成为(1)的形式,项数是n的奇因数.因此,n的表示法正好是n的正奇因数的个数,如果n的标准分解A5-030 x、y为正整数,x4+y4除以x+y的商是97,求余数.【题说】1992年日本数学奥林匹克预选赛题7.【解】由题知x4+y4<98(x+y),不妨设x≣y,则x4<98³2x,所以x≢5.注意到14=1,24=16,34=81,44=256,54=625.对x,y∈{1,2,3,4,5},x4+y4>97(x+y)的仅有54+44=881=(5+4)³97+8,所以所求的余数为8.A5-031设p=(a1,a2,…,a17)是1,2,…,17的任一排列,令k p是满足不等式a1+a2+…+a k<a k+1+…+a17的最大下标k,求k p的最大值和最小值,并求所有不同的排列p相应的k p的和.【题说】1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题1.【解】若k p≣12,则这与k p的定义相矛盾,所以k p≢11.又当p=(1,2,…,17)时,1+2+…+11=66<87=12+13+…+17,故此时k p=11.所以,k p的最大值为11,并且kp的最小值为5,此时p=(17,16,…,2,1).设p=(a1,a2,…,a17)是1,2,…,17的任一排列,由kp的定义,知且但(2)的等号不可能成立,否则矛盾.所以由(1)和(3)可知,对排列p=(a1,a2,…,a17)的反向排列p'=(a17,a16,…,a1),k p'=17-(k p+2)+1=16-k p所以k p+k p'=16.于是可把1,2,…,17的17!个不同排列与它的反向排列一一配对.所求之和为A5-032确定所有正整数n,使方程x n+(2+x)n+(2-x)n=0有整数解.【题说】1993年亚太地区数学奥林匹克题4.【解】显然,n只能为奇数.当n=1时,x=-4.当n为不小于3的奇数时,方程左边是首项系数为1的非负整系数多项式,常数项是2n+1,所以它的整数解只能具有-2t的形式,其中t为非负整数.若t=0,则x=-1,它不是方程的解;若t=1,则x=-2,也不是方程的解;当t≣2时,方程左边=2n[-2n(t-1)+(1-2t-1)n+(1+2t -1)n],而-2n(t-1)+(1-2t-1)n+(1+2t-1)n≡2(mod 4),从而方程左边不等于零.综上所述,当且仅当n=1时,原方程有一个整数解x=-4.A5-033每一个大于2的自然数n都可以表示为若干个两两不等的正整数之和.记这些相加数个数的最大值为A(n),求A(n).【题说】1993年德国数学奥林匹克(第一轮)题1.【解】对任意自然数n(n≣3),存在自然数m,使-1)之和,所以A(n)=m.A5-034完全平方数对(a,b)满足:(1)a和b的十进制表示位数相同;(2)将b的十进制表示续写在a的十进制表示之后,恰好构成一个新的完全平方数的十进制表示,例如a=16,b=81,1681=412.求证:这样的数对(a,b)有无穷多对.【题说】1993年德国数学奥林匹克(第一轮)题3.【证】取a1=42,a2=492,…,a n=(5³10n-1-1)2,…;b1=92,b2=992,…,b n=(10n-1)2,….其中n为正整数.显然,a n,b n均为2n位数,且=25³104n-2-103n+2³102n-2³102n+1=(5³102n-1-10n+1)2即对任意正整数n,(a n,b n)均满足条件.A5-035证明:对于任意整数x,是一个整数.【题说】1994年澳大利亚数学奥林匹克一试题2.由于连续n个整数中必有一个是n的倍数,所以上式为整数.A5-037设n=231²319.n2有多少个小于n,但不能整除n的正整数因子?【题说】第十三届(1995年)美国数学邀请赛题6.【解】n2的因子必为2α²3β形,其中0≢α≢62,0≢β≢38.于是(α,β)是属于图中矩形的格点,显然对I、IV中的格点(α,β),2α.3β不满足要求(2α²3β|n 或2α²3β≣n),II中任一格点(约定β=19或α=31的点属于I或IV,不属于II或III)(α,β),若2α²3β≣n,则对III中格点(62-α,31-β),有262-α²331-β<n.反之,对III中格点(α,β),若2α²3β≣n,则对II中格点(62-α,31-β),有262-α²331-β<n.因此II、III 中恰有一半的格点(α,β),使2α²3β满足要求.即所求的正整数因子个数为19³31=589A5-038在满足y<x≢100的有序正整数对(x,y)中,有【题说】第十三届(1995年)美国数学邀请赛题8.=49+16+8+4+3+2+1+1+1=85A5-039对于每个正整数n,将n表示成2的非负整数次方的和,令f(n)为正整数n的不同表示法的个数.如果两个表示法的差别仅在于它们中各个数相加的次序不同,这两个表示法就被视为是相同的.例如,f(4)=4,因为4恰有下列四种表示法:4;2+2;2+1+1;1+1+1+1.【题说】第三十八届(1997年)国际数学奥林匹克题6.本题由立陶宛提供.【证】对于任意一个大于1的奇数n=2k+1,n的任一表示中必含一个1.去掉这个1就得到2k 的一个表示.反之,给2k的任一表示加上一个1就得到2k+1的一个表示.这显然是2k+1和2k的表示之间的一个一一对应.从而有如下递归式:f(2k+1)=f(2k) (1)对于任意正偶数n=2k,其表示可以分为两类:含有1的与不含1的.对于前者,去掉一个1就得到2k-1的一个表示;对于后者,将每一项除以2,就得到k的一个表示.这两种变换都是可逆的,从而都是一一对应.于是得到第二个递归式:f(2k)=f(2k-1)+f(k) (2)(1)、(2)式对于任意k≣1都成立.显然f(1)=1.定义f(0)=1,则(1)式对于k=0也成立.根据(1)、(2)式,函数f是不减的.由(1)式,可以将(2)式中的f(2k-1)换成f(2k-2),得到f(2k)-f(2k-2)=f(k),k=1,2,3,…,给定任一正整数n≣1,将上式对于k=1,2,…,n求和,得到f(2n)=f(0)+f(1)+...+f(n),n=1,2,3, (3)下面先证明上界,在(3)式中,右端所有的项都不大于最后一项,对于n≣2,2=f(2)≢f(n).于是有f(2n)=2+(f(2)+…+f(n))≢2+(n-1)f(n)≢f(n)+(n-1)f(n)=nf(n)n=2,3,4,…从而得到f(2n)≢2n-1²f(2n-1)≢2n-1²2n-2²f(2n-1)≢2n-1²2n-2²2n-3²f(2n-3)≢…≢2(n-1)+(n-2)+…+1²f(2)=2n(n-1)/2²2为了证明下界,我们先证明对于具有相同奇偶性的正整数b≣a≣0,有如下不等式成立:f(b+1)-f(b)≣f(a+1)-f(a) (4)事实上,如果a、b同为偶数,则由(1)式知上式两端均等于0.而当a、b同为奇数时,由(2)式知f(b+1)-f(b)=f(b+1)/2),f(a+1)-f(a)=f((a+1)/2).由函数f是不减的即得不等式(4)成立.任取正整数r≣k≣1,其中r为偶数,在(4)式中依次令a=r-j,b=r+j,j=0,1,…,k-1.然后将这些不等式加起来,得到f(r+k)-f(r)≣f(r+1)-f(r-k+1)因为r是偶数,所以f(r+1)=f(r).从而f(r+k)+f(r-k+1)≣2f(r),k=1,…,r对于k=1,…,r,将上述不等式相加,即得f(1)+f(2)+…+f(2r)≣2rf(r)根据(3)式,上式左端等于f(4r)-1.从而对于任意偶数r≣2,f(4r)>2rf(r)+1>2rf(r).取r=2m-2即得f(2m)≣2m-1f(2m-2) (5)要使r=2m-2为偶数,m须为大于2的整数,但是(5)式对于m=2也成立.因此对一切n≣2下界成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六届日本算术奥林匹克决赛试题与解答
第一试
1.用一个尽可能小但比1大的整数乘以1997,使其乘积中出现5个连续的9。
求这个乘积。
(本题17分)
2.如图,有六边形ABCDEF,已知∠A=∠B=∠C=∠D=∠E=∠F=120°,AB=BC=CD,AF=DE,三角形FCE的面积为60m2,∠x=60度。
求六边形ABCDEF的面积,并请标明必要的记号及角度。
(答案8分,必要的记号及角度7分)
3.在一次马拉松长跑比赛中,有100位选手参加。
大会准备了100块标有整数1到100的号码布,分发给每位选手。
选手们被要求在比赛结束时,将自己号码布上的数字与到达终点时的名次数相加,并将这个和数交上去。
问这交上来的100个数字的末2位数字是否可能都不相同?请回答可能或不可能,并清楚地说明理由。
注:没有同时到达终点的选手。
(本题16分)
简答
1.我们可利用如下的关系式:
1997×(某个数)=2000×(某数)-3×(某数)如果后五位数是99990时,应有
2000 ×(某数)=×××□000
3 ×(某数)=×□001
××9 9 999
那么这时所求会很大。
如果除去个位外,后五位数是99999,那么应用:
2000 ×(某数)=×××□000
3 ×(某数)=×□00?
?9 9 9 99?
经试算可得某数为2003。
即 2003×1997=3999991为最小。
2.过点B作D'B∥CD,使D'B=DE,连D'F,D'C。
∴可证明△D'BC≌△DEC,△D'BF'≌△FAF'
∴所求面积为120cm2。
3.不可能。
因为已知没有同时到达的选手,所以名次是从第1名排到第100名,共100个名次,100位选手,编号为1~100,不管哪位选手得到名次如何,交上来的100个数字的末两位数字肯定是00,01,……99,它们的和的末两位数字为50。
而各位选手的编号加上各位选手名次的和为(1+2+…,100)+(1+2+…+100)=9900,末两组数字为00,即00≠50,所以交上来的100个数字的末两位数不可能都不相同。
第二试
1.有一个立方体,它的六个面被分别涂上了不同的颜色,并且在每个面上至少贴有一张纸条。
用不同的方法来摆放这个立方体,并从不同的角度拍下照片。
(1)洗出照片后,把所拍摄的面的颜色种类不同的照片全部挑选出来,请问最多可以选出多少张照片?(4分)
(2)观察(1)中选出的照片,发现各张照片里的纸条数各不相同,问整个立方体最少贴有多少张纸条?(15分)
2.如图1,用125个1cm×1cm×1cm的小立方体堆成一个5cm×5cm×5cm的大立方体。
现在通过A、B、C三点的平面切断这个大立方体,请回答下面两个问题:
(1)切断面是什么形状?回答出名称。
(3分)
(2)这个平面切到了多少个小立方体?
注:如图2,以下三种情况只接触到了小立方体的顶点、边和面,不计入在内。
(10分)
3.有从一年级到六年级的儿童各一人,排成一列领取糖果。
如果一个高年级的儿童站在低年级的儿童前面,那么高级年儿童后面所有比他年级低的儿童都会各有一次“怨言”。
在一种排列顺序里,我们把所有“怨言”的总数叫“怨言数”。
(注:一个人可以有两次以上的“怨言”。
)
例如:下面的排列,其“怨言数”就是4。
(前)“怨言”
1年级生0次
4年级生0次
3年级生1次
2年级生2次
6年级生0次
5年级生1次
“怨言数”…4次
问:“怨言数”为7的排列顺序有几种?
(答案请写在解答纸上)(20分)
简答
1.(1)1面的6种,2面的12种,3面的8种,即共6+12+8=26(张)
(2)∵单独拍的1种,拍2面的2种,拍3面的4种,共计9种拍摄方法。
∴26张上的字条合计为:
1+2+3+…+26=351,
∴351÷9=39。
即最低需要39张纸条。
2.(1)正六边形。
(2)55个。
3.2人进怨言数为“0,1”,排列为“1,1”。
3人时怨言数为“0,1,2,3”,排列为“1,2,2,1”。
即:
即6人时怨言数为7的排列有101种。