指纹识别技术基本原理介绍

合集下载

指纹识别的原理

指纹识别的原理

指纹识别的原理指纹识别,又称指纹辨识、指纹鉴定,是一项技术,多用于身份鉴定,能根据人类指纹结构特征来识别个人身份。

指纹识别是以人指纹特征为样本,将静态图像变成数字模式,以此来识别人身份的一种生物特征识别技术。

它是利用人体指纹中不仅表面细节,而且还包括指纹内部细微凹凸等特征,采用指纹扫描仪扫描指纹,快速准确地完成身份识别,并结合现代计算机技术,可将指纹特征翻译成数字、字母的信息,作为身份识别的重要依据。

指纹识别的原理是将侧滑模板指纹图像,与指纹对比原理图像相比,通过电子比较来识别个人身份。

电子复原技术允许精确识别指纹,有助于破解人脸识别技术在性别、年龄、种族或社会变化下出现的误差。

指纹识别技术工作原理如下:(1)采集指纹:首先,将你的手指放在指纹采集装置(指纹扫描仪)上,采集器可以按照指定的标准,对比全掌的指纹纹理及其他信息,将得出的结果存储在计算机内供后续分析。

(2)数字化指纹:在采集到指纹图像后,指纹识别系统会将指纹采集仪拍摄的指纹参数进行数字化处理。

(3)指纹特征提取:指纹特征提取算法是识别指纹特征的核心部分,它能从指纹图像中提取出指纹的安全性、可靠性和可比性更高的特征参数,并将其保存在指纹模板中。

(4)指纹核验:利用计算机技术和数字指纹处理技术,可以快速准确地进行指纹核验,验证指纹模板的精确性。

(5)指纹识别:指纹识别是根据特定的指纹特征提取算法,从指纹图像中进行特征提取,建立指纹索引库,从而实现个体指纹识别的一个过程。

最后,指纹识别技术具有高效快速、识别准确率高、多媒体综合管理稳定可靠等特点,在人脸识别技术已无法准确识别的情况下,指纹识别技术可以准确快速的辨识特定的个体,对于提高身份安全性,实现数字资源管理具有重要作用。

指纹识别的工作原理和流程

指纹识别的工作原理和流程

指纹识别的工作原理和流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!指纹识别技术是一种生物特征识别技术,通过分析人体指纹图像中的各种特征信息来进行识别和验证。

指纹识别技术的原理

指纹识别技术的原理

指纹识别技术的原理
指纹识别技术的原理是通过分析和比对指纹图案的特征来进行身份验证或身份识别的一种生物特征识别技术。

具体来说,指纹识别技术的原理主要包括以下几个步骤:
1. 采集指纹图像:使用指纹采集设备(例如指纹扫描仪)获取被识别人员的指纹图像。

2. 图像预处理:对采集到的指纹图像进行预处理,包括图像增强、去噪等操作,以减少图像中的干扰和噪声。

3. 特征提取:从预处理后的指纹图像中提取特定的特征信息,常用的特征包括指纹纹线的形状、方向、分叉点等。

4. 特征匹配:将提取到的指纹特征与已存储在数据库中的指纹特征进行比对,通常采用匹配算法(如Minutiae算法)进行比对。

5. 决策判断:根据比对结果,判断是否匹配成功,即是否为同一人的指纹。

如果匹配成功,则认定为同一人;如果匹配失败,则认定为不同的人。

总体来说,指纹识别技术的原理是通过提取和比对指纹特征,以确定指纹的唯一
性和特定性,并进而进行身份验证或身份识别的过程。

指纹识别技术由于其高度可靠性和广泛应用性,在安全领域、边境管理、企事业单位门禁控制等方面得到了广泛应用。

指纹识别技术原理

指纹识别技术原理

指纹识别技术原理指纹识别技术是一种常用的生物识别技术,通过分析和比对人体指纹的纹线图案,来确认个体身份的一种方法。

它基于指纹的独特性和不可伪造性,被广泛应用于安全门禁、手机解锁、身份认证等领域。

本文将介绍指纹识别技术的原理和应用。

一、指纹的特点指纹是人体皮肤的一部分,每个人的指纹纹线图案都是独一无二的,即使是同卵双胞胎也有所不同。

这是因为在胎儿发育过程中,指纹形成是由遗传因素和胚胎发育过程中的随机变化共同决定的。

指纹的特点主要表现在以下几个方面:1. 独特性:每个人的指纹纹线图案都是独特的,没有两个人的指纹是完全相同的。

2. 持久性:指纹纹线图案在个体成长过程中基本保持不变,即使受到外界因素的干扰,也只会发生微小的变化。

3. 可测性:指纹纹线图案可以通过科学方法进行测量和记录,形成指纹图像。

4. 可分类性:指纹纹线图案可以按照一定的规则和特征进行分类,便于比对和识别。

二、指纹识别技术的原理指纹识别技术主要包括指纹采集、特征提取和特征匹配三个步骤。

1. 指纹采集指纹采集是指通过指纹传感器或指纹采集仪器将个体指纹的纹线图案转化为数字信号。

传感器通常采用光学、电容或超声波等技术,将指纹的形状、纹线和纹谷等特征转化为电信号或图像。

2. 特征提取特征提取是指从采集到的指纹图像中提取出有代表性的特征信息,以便进行后续的比对和识别。

常用的特征提取方法包括细节增强、边缘检测、脊线提取等。

其中,脊线是指指纹图案中的主要纹线,通过提取脊线可以得到指纹的核心点、三角点等特征。

3. 特征匹配特征匹配是指将待识别的指纹特征与已存储的指纹特征进行比对,通过计算相似度或距离来确定是否匹配。

常用的匹配算法有相似性度量法、模式匹配法和神经网络法等。

其中,相似性度量法通过计算指纹特征之间的相似度来判断是否匹配,模式匹配法则是将指纹特征与已有的模板进行比对,神经网络法则是通过训练神经网络来实现指纹识别。

三、指纹识别技术的应用指纹识别技术在安全门禁、手机解锁、身份认证等领域有着广泛的应用。

指纹识别的工作原理

指纹识别的工作原理

指纹识别的工作原理指纹识别是一种常见且可靠的生物识别技术,通过分析人类指纹上的纹线、纹型及特征点等信息来识别和验证个体身份。

本文将介绍指纹识别的工作原理及其在现代技术中的应用。

一、指纹的基本特征指纹是人体皮肤上形成的一种独特纹路,它包含了凹凸纹线、纹型和特征点等基本特征。

凹凸纹线由汗腺分泌的汗液、油脂和角质层等形成,它们在指纹上呈现出分岔、回环、弯曲等形态。

纹型是指纹凹凸纹线在整个指纹中形成的排列方式,包括环型、螺旋型、拱桥型等多种类型。

特征点是指纹上相对较为明显的特征,主要包括起始点(ridge ending)、分叉点(bifurcation)以及岔点(dot)等。

二、指纹识别的原理指纹识别系统主要包括采集、预处理、特征提取和匹配四个关键步骤。

1. 采集:指纹采集是指通过传感器将人指放置在指纹采集器上,利用光学、电容、热传导等方法将指纹的图像信息转化为电子信号。

光学采集技术是最常用的方法,它利用光源照射指纹,通过指纹表面的反射来采集图像。

2. 预处理:在采集到的指纹图像中,可能存在一些噪点、污渍或者模糊不清的情况,因此需要对图像进行预处理,包括滤波、增强和细化等操作。

滤波可以消除噪点和污渍,增强技术可以提高图像的对比度和清晰度,细化操作可以将指纹图像中的纹线细节进行增强。

3. 特征提取:在预处理后,需要从指纹图像中提取出能够代表指纹特征的信息。

常用的特征提取方法包括细节点提取、方向图提取和特征描述符等。

细节点提取是指提取指纹图像中的特征点,主要包括起始点和分叉点等。

方向图提取是分析指纹图像中纹线的走向,它可以用来描述指纹的整体结构信息。

特征描述符是基于指纹图像的细节点和方向图等信息,构建一个用于表示指纹特征的向量或模型。

4. 匹配:在特征提取后,将提取到的特征与数据库中已存储的指纹特征进行比对,判断是否匹配。

匹配过程通常包括特征对齐、相似度计算和决策等步骤。

特征对齐是将待比对的指纹特征和数据库中的指纹特征进行对齐,以便进行比较。

指纹识别技术基本原理介绍(PPT36页)

指纹识别技术基本原理介绍(PPT36页)
有学者推论: 以全球60亿人口计算,300
年内都不会有两个相同的指纹 出现。指纹被称为“物证之 首”,安全可靠。
指纹识别的基本原理
• 目前的识别指纹算法主要从总体特征和局部特征这两个方面入手 分辨指纹。网赚导航/daohang
指纹的总体特征
总体特征是指那些用人眼直接就可以观察到的特征。
指纹识别技术基本原理介绍(PPT36页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
指纹图像采集
指纹采集方式
➢ 电容式:通过皮肤和屏幕的接触, 识别指纹的纹路来记录和验证指纹 。
➢ 光学式:通过光反射成像来记录和 验证指纹。
指纹识别技术基本原理介绍(PPT36页 )培训 课件培 训讲义 培训ppt教程管 理课件 教程ppt
指纹识别技术的应用
指纹考勤系统
在很多企业中往往需要进行考勤,传统的考勤方式基本上有两种,一种是卡片形式的,另一种是 IC卡形式,但这两种考勤方式都无法杜绝代人打卡的现象,使考勤失去了意义。如果利用指纹来作 为个人身份的标识,以此来进行考勤,则可以很好地避免代人打卡这种现象.
指纹识别技术的应用
电脑领域
指纹的局部特征
➢三角点(Delta): 三角点位于从核心点开始的第一个分叉点或者断点、或者两 条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了指纹 纹路的计数和跟踪的开始之处。
➢纹数(Ridge Count): 纹数是指模式区内指纹纹路的数量。在计算指纹的 纹数时,一般先连接核心点和三角点,这条连线与指纹纹路相交的数量即可 认为是指纹的纹数。
指纹识别让人们无需输入繁琐的密码,只需手指的轻轻触碰 就能对个人信息进行解锁。
这项技术在近几年普及以来深受欢迎。

指纹识别工作原理

指纹识别工作原理

指纹识别工作原理
指纹识别是一种生物特征识别技术,常用于身份验证和访问控制。

其工作原理基于每个人指纹纹理和特征的独特性。

指纹识别的过程分为三个步骤:采集、特征提取和匹配。

1. 采集:首先,通过指纹传感器采集用户手指表面的指纹图像。

传感器可以是光学传感器或者是电容传感器。

光学传感器使用光学成像技术来获取指纹图像,而电容传感器则通过测量指纹的电容变化来获得图像。

2. 特征提取:接下来,从采集到的指纹图像中提取出关键特征。

常用的特征提取方法是将指纹图像转换为特征向量或者提取关键点。

常见的特征包括细纹和细节,如弓形、斗角、螺旋等。

3. 匹配:最后,提取到的指纹特征与已存储的指纹特征进行比对和匹配。

比对通常使用一种叫做“模式匹配”的算法,比如Minutia点匹配算法。

该算法将采集到的指纹特征与数据库中
的指纹模板进行比对,计算它们之间的相似度,确定是否匹配。

指纹识别的工作原理基于指纹的不可复制性和稳定性。

每个人的指纹纹线、岭和谷的位置、形状和排列方式都是独特的,不同于其他人。

这使得指纹识别能够高度准确地识别个体。

此外,指纹的纹路不易受外界环境影响,如年龄、伤痕或疾病,因此具有良好的稳定性和可靠性。

手机指纹识别原理

手机指纹识别原理

手机指纹识别原理
手机指纹识别是通过采用光学传感器或者超声波传感器来感知和记录用户指纹的细节特征,然后将其转化为数字信号并与事先保存在系统中的指纹模板进行比对,从而完成指纹的识别过程。

具体的工作原理如下:
1. 光学传感器原理:光学传感器通过光学器件和光电传感器组成,其工作过程大致分为两个步骤。

首先,光学器件发出特定的光源照射到指纹表面,指纹的皮肤与起纹槽形成的深浅对光的反射或吸收具有不同的特性。

其次,光电传感器将接收到的光变换为电信号,通过对信号的分析和处理,提取指纹的特征信息,进而实现指纹的识别。

2. 超声波传感器原理:超声波传感器通过发射和接收超声波来实现指纹的采集和识别。

首先,超声波传感器发射超声波信号,这些超声波信号被指纹上的凹凸纹理反射回来。

然后,超声波传感器接收到反射回来的超声波信号,根据信号的时间延迟和振幅变化等信息来判断指纹的特征。

通过对接收到的信号进行处理并与预先存储的指纹模板进行比对,完成指纹的识别过程。

无论是光学传感器还是超声波传感器,其核心原理都是基于指纹的物理特征,如起纹槽的形状、深浅以及纹线间的距离等。

这些细节特征是每个人都独一无二的,可以作为个体身份的标识。

因此,通过手机指纹识别技术,能够方便快捷地进行用户的身份认证和手机解锁等操作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特征值提取
特征值提取
特征提取的任务是通过算法检测特征点的数量及每个特征点的类型、位置和所在区域的纹线方 向。特征提取的结果一般保存为特征模板,它包括终结点或分叉点类型、坐标及方向信息。 一般的指纹图像提取的特征点在10~100个之间,大多数文献均认为至少应该有12个特征点才 能进行自动识别。
指纹细化图像
• 指纹可以被盗取,复制,进而威胁用户信息安全。 • 上传云端的指纹可能被一些不法分子盗取利用。
1) 首先需要有初始的指纹,比较好的载体是玻璃杯、门把手和光面纸。
2) 指纹的主要成分是油脂和汗水,要用法医鉴定的方法来获取指纹,洒上一 些带颜色的石墨粉,它们会粘在油脂上,指纹就会显现出来。
3) 然后要用到氰基丙烯酸酯,这是超强力胶水的主要成分。倒一些在瓶盖上, 再压到指纹上。
指纹识别技术基本原理介绍
指纹识别技术的应用
手机领域 Touch ID
如今手机成了人们日常生活中不可缺少的一部分,由于使用次数频繁,反复输入密码也让人感觉 很不方便,有了指纹识别系统,只需1秒钟就可轻松完成身份确认,让用户感觉更方便快捷。
指纹识别技术的应用
指纹考勤系统
在很多企业中往往需要进行考勤,传统的考勤方式基本上有两种,一种是卡片形式的,另一种是 IC卡形式,但这两种考勤方式都无法杜绝代人打卡的现象,使考勤失去了意义。如果利用指纹来作 为个人身份的标识,以此来进行考勤,则可以很好地避免代人打卡这种现象.
4) 之后指纹会变成白色固态状
5) 把指纹数字化
6) 经过后期处理后,打印在透明薄片上
7) 涂上木胶
8) 等干了之后,取下来就可以用了
指纹图像采集
指纹采集方式
电容式:通过皮肤和屏幕的接触, 识别指纹的纹路来记录和验证指纹 。
光学式:通过光反射成像来记录和 验证指纹。
压感式:是通过感知半导体压敏材 质来感知指纹凹凸而成像。
指纹图像预处理
在指纹自动识别过程中, 输入的指纹图像由于各种原因的影响, 是一幅含噪音较多的灰度图象,这 些噪声对指纹特征信息的提取造成一定的影响,甚至会产生许多伪特征点。预处理的目的就是 去除图象中的噪音, 把它变成一幅清晰的点线图, 便于提取正确的指纹特征。预处理主要包括图 像分割、图像增强、二值化和细化四部分。
指纹的局部特征
三角点(Delta): 三角点位于从核心点开始的第一个分叉点或者断点、或者两 条纹路会聚处、孤立点、折转处,或者指向这些奇异点。三角点提供了指纹 纹路的计数和跟踪的开始之处。 纹数(Ridge Count): 纹数是指模式区内指纹纹路的数量。在计算指纹的 纹数时,一般先连接核心点和三角点,这条连线与指纹纹路相交的数量即可 认为是指纹的纹数。
有学者推论: 以全球60亿人口计算,300 年内都不会有两个相同的指纹 出现。指纹被称为“物证之 首”,安全可靠。
指纹识别的基本原理
• 目前的识别指纹算法主要从总体特征和局部特征这两个方面入手 分辨指纹。
指纹的总体特征
总体特征是指那些用人眼直接就可以观察到的特征。
基本纹路图案: 包括环型(Loop),弓型(Arch)和螺旋型(Whorl).其他的指纹图案都基于这3种基本图案。 仅依靠图案类型来分辨指纹是远远不够的,这只是一个粗略的分类,但通过分类使得在大数据库中搜 寻指纹更为方便。 模式区(Pattern Area): 是指指纹上包括了总体特征的区域,即从模式区就能够分辨出指纹是属于 那一种类型的。 核心点(Core Point): 位于指纹纹路的渐进中心,它用于读取指纹和比对指纹时的参考点。
原始图像
增强后图像
指纹图像预处理
图像二值化是提取经增强处理的指纹图像的脊线,用”1”表示脊线上的点,”0”表示背 景和谷线,从而把原始灰度图像转化为二值图像。
是进一步把二值指纹脊线细化为单像素宽度的骨架线,这是为了方便以后的特 征提取。
原始图像
细化后的图像
特征值提取
指纹的局部特征
局部特征是指指纹上节点的特征,两枚指纹经常会具有相同的总体特征,但 它们的细节特征,却不可能完全相同。 节点(Minutia Points)指纹纹路并不是连续的、平滑笔直的,而是经常出 现中断、分叉或转折。这些断点、分叉点和转折点就称为特征点。就是这些 节点提供了指纹惟一性的确认信息。
指纹识别技术的应用
指纹门禁系统
在居民楼、智能大厦和宾馆中往往需要门禁系统来限制没有权限的人进入。如果采用传统的钥匙 +锁的方式,一些人只在一段时间内有权限,这样钥匙很容易被人复制,并且携带也不方便,还 容易丢失,这都给用户带来了一些额外的负担。 如果采用指纹门禁系统,则可以方便地解决以上 问题。
指纹识别让人们无需输入繁琐的密码,只需手指的轻轻触碰 就能对个人信息进行解锁。 这项技术在近几年普及以来深受欢迎。
那么问题来了,这项技术真的足够安全吗?
让我们了解这项技术并开始分析它的安全性。
每个人的指纹皮肤纹路在图案、断点和交叉点上各不相同,也就 是说,指纹是唯一的,并且终生不变。依靠这种唯一性和稳定性, 我们就可以把一个人同他的指纹相对应起来,通过比较他的指纹 和预先保存的指纹,就可以验证他的真实身份。这就是指纹识别 技术。
全局特征
全局特征描述了指纹的总体结构,主要包括指纹的纹形和模式区。指纹的纹形主要分为环形、弓 形、螺旋形三种基本类型。模式区包含中心点、三角点、和纹线数。此种分法只用在分类检索方 面,以减少数据库的搜索空间。
局部特征
两枚指纹经常会具有相同的总体特征,但它们的局部特征(特征点)却不可能完全相同。局部特 征即指纹上细节点的特征,。典型的细节点分为分叉点,终结点,还有孤立点、环、岛、毛刺、桥 等。
指纹识别技术的应用
电脑领域
电脑开机输密码让人感到麻烦,不输密码又不能保障信息安全,Thinkpad自带的指 纹识别系统完美解决了这一方案,这一技术也成了Thinkpad电脑的一大亮点。
指纹识别技术的应用
指纹识别ATM
把指纹识别技术同IC卡结合起来,是目前最有前景的一个方向之一。该技术把卡的主人的指纹 (加密后)存储在IC卡上,通过比对就可以确认持卡者的是否卡的真正主人,从而进行下一步的 交易。 目前ATM提款机加装指纹识别功能在美国已经开始使用。持卡人可以取消密码 (避免老人和孩子 记忆密码的困难)或者仍旧保留密码。
指纹图像采集
指纹图像预处理
特征值提取
特征匹配
指纹图像采集
早期的指纹图像采集主要运用油墨按印等物理方式,如果油墨及纸张质量有问题,或按压压力不均, 按压位置、方向差异,手指损伤、变形等,都会导致采集的指纹图像质量不理想。
随着指纹识别技术的发展,光学传感器、半导体传感器、超声波传感器、射频RF传感器的出现 对获取高质量指纹图像提供了良好的技术保障。同时,更先进的指纹图像传感器亦在研发,目的是 获得足够的指纹细节,并使指纹图像达到较高分辨力,提高指纹识别准确性、可靠性。
图像分割
图像增强 二值化 细化
指纹图像预处理
图像分割是将要处理的有效图像部分从整个指纹图像中分离出来,这样一方面减少了后续处理 的步骤的数据量,另一方面也避免了因为部分图像区域不可靠而导致伪特征的产生。
图像增强包括两个部分,首先对原始图像上模糊但有可能恢复的部分进行增强,然后再对整幅 图像滤波,消除指纹脊线间的断裂和粘连。
指纹的局部特征 ---- 细节点类型
指纹的四类局部特征
细节点类型 方向(Orientation) 每个节点都有一定的方向。 曲率(Curvature) 描述纹路方向改变的速度。 位置(Position)
指纹识别技术
指纹识别技术主要涉及指纹图像采集、图像预处理、特征提取、特 征值匹配等过程。
指纹图像特征点
指纹匹配
应用系统利用指纹识别技术可以分为2类,即验证和辨识。
验证就是通过把现场采集到的指纹与己经登记的指纹进行一对一的比对,来确认身份的过程。 辨识则是把现场采集到的指纹同指纹数据库中的指纹逐一对比,从中找出与现场指纹相匹配的指 纹。
• 指纹录入清晰度已经有保证。 • 指纹识别算法也很高效和准确。
相关文档
最新文档