离散数学》教案

合集下载

《离散》公开课教案

《离散》公开课教案

《离散》公开课教案
离散公开课教案
一、教学目标
- 了解离散数学的基本概念和应用领域。

- 掌握离散数学中常用的逻辑、集合论和图论等基础知识。

- 培养学生的逻辑思维和问题解决能力。

二、教学内容
1. 离散数学简介
- 离散数学的定义和作用
- 离散数学在计算机科学、信息技术等领域的应用
2. 逻辑与命题
- 逻辑与命题的基本概念
- 命题的逻辑运算(与、或、非)
- 命题的真值表和推理规则
3. 集合论
- 集合的定义和表示方法
- 集合的基本运算(交、并、差、补)
- 集合的性质和特征
4. 图论
- 图的基本概念和术语
- 图的表示方法(邻接矩阵、邻接表)
- 常见的图算法(深度优先搜索、广度优先搜索)
三、教学方法
1. 授课讲解:通过讲解离散数学的基本概念和原理,帮助学生建立起相关知识框架。

2. 例题演示:通过解析一些典型的例题,引导学生掌握离散数学的基本方法和技巧。

3. 小组讨论:组织学生进行小组讨论,让学生在合作中研究、思考和解决问题。

4. 实践应用:通过实际问题的应用,让学生将离散数学的知识应用到实际情境中去。

四、教学评价
1. 每节课结束后进行小测验,检查学生对当堂课程的掌握情况。

2. 课堂参与度:评估学生在讨论和实践环节中的积极参与度。

3. 作业完成情况:评估学生对作业内容的完成情况和质量。

五、参考资料
1. 《离散数学导论》
2. 《离散数学(第2版)》
3. 《离散数学及其应用》
注:以上教案仅供参考,具体教学内容和方法可根据实际情况
进行调整。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件第一章:离散数学简介1.1 离散数学的定义与意义离散数学的定义离散数学在计算机科学中的应用1.2 离散数学的基本概念集合逻辑函数图论1.3 离散数学的研究方法形式化方法归纳法构造法第二章:集合与逻辑2.1 集合的基本概念与运算集合的定义与表示方法集合的运算(并、交、差、补)2.2 逻辑基本概念命题与联结词逻辑推理规则(蕴涵、逆否、德摩根定律)2.3 命题逻辑与谓词逻辑命题逻辑的形式化表示与推理谓词逻辑的形式化表示与推理第三章:函数与图论3.1 函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性3.2 图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)3.3 树的基本概念与应用树与图的关系树的结构性质与应用(二叉树、堆、平衡树)第四章:组合数学4.1 组合数学的基本概念排列组合的定义与公式组合数学的应用(计数原理、图论)4.2 组合数学的计算方法直接法、间接法、递推法、函数法4.3 组合数学在计算机科学中的应用算法设计与分析(动态规划、贪心算法)程序语言中的组合类型(类型系统、类型检查)第五章:数理逻辑与计算复杂性5.1 数理逻辑的基本概念命题逻辑的数学模型(布尔代数、逻辑函数)谓词逻辑的数学模型(一阶逻辑、描述逻辑)5.2 计算复杂性的基本概念与分类计算复杂性的定义与度量(时间复杂性、空间复杂性)计算复杂性的分类(P与NP问题、整数分解问题)5.3 离散数学在算法设计与分析中的应用算法设计与分析的基本原则离散数学在算法优化与分析中的作用第六章:关系与映射6.1 关系的基本概念关系的定义与性质关系的类型(对称性、传递性、反身性)6.2 关系的闭包与简化关系的闭包概念关系的简化与规范化6.3 函数与二元关系函数与关系的联系与区别二元组与二元关系的应用第七章:代数结构7.1 代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用7.2 群与群作用群的定义与运算群作用与群同态7.3 环与域环的定义与性质域的特殊性质与应用第八章:数理逻辑与计算理论8.1 数理逻辑的进一步应用命题逻辑与谓词逻辑的推理规则数理逻辑在计算机科学中的应用8.2 计算理论的基本概念计算模型的定义与分类计算复杂性的理论基础8.3 离散数学在计算理论中的应用计算理论中的逻辑与证明离散数学在算法设计与分析中的作用第九章:组合设计与计数原理9.1 组合设计的基本概念组合设计的定义与类型组合设计在编码理论中的应用9.2 计数原理的基本概念鸽巢原理、包含-排除原理函数的方法与应用9.3 图论与网络流图的遍历与路径问题网络流与最优化问题第十章:离散数学的综合应用10.1 离散数学在计算机科学中的应用算法设计与分析数据结构与程序语言设计10.2 离散数学在数学与应用数学中的作用组合数学在概率论与数论中的应用图论在网络科学与社会网络分析中的应用10.3 离散数学在未来科技发展中的展望量子计算与离散数学与逻辑推理重点和难点解析重点环节一:集合的基本概念与运算集合的表示方法(列举法、描述法)集合的运算(并、交、差、补)重点环节二:逻辑基本概念与推理命题与联结词(且、或、非)逻辑推理规则(蕴涵、逆否、德摩根定律)重点环节三:函数的基本概念与性质函数的定义与表示方法函数的单调性、连续性、奇偶性重点环节四:图的基本概念与运算图的定义与表示方法图的运算(节点、边、路径、连通性)重点环节五:组合数学的基本概念与计数原理排列组合的定义与公式组合数学的应用(计数原理、图论)重点环节六:关系与映射关系的定义与性质关系的类型(对称性、传递性、反身性)重点环节七:代数结构的基本概念群、环、域的定义与性质代数结构在计算机科学中的应用重点环节八:数理逻辑与计算理论数理逻辑的推理规则计算理论的基本概念(计算模型、计算复杂性)重点环节九:组合设计与计数原理组合设计的定义与类型计数原理的应用(鸽巢原理、包含-排除原理)重点环节十:离散数学的综合应用离散数学在计算机科学中的应用(算法设计与分析、数据结构与程序语言设计)离散数学在数学与应用数学中的作用(组合数学在概率论与数论中的应用、图论在网络科学与社会网络分析中的应用)全文总结和概括:本《离散数学教案》课件涵盖了离散数学的基本概念、逻辑推理、函数与图论、组合数学、数理逻辑与计算理论、组合设计与计数原理等多个重要环节。

《离散数学》-教案.doc

《离散数学》-教案.doc
而,朴素集合论中包含着悖论。第一个悖论是布拉利-福尔蒂的最大序数悖论。1901年罗素发现了有名的罗素悖论。1932年康脱也发表了关于最大基数的悖论。集合论的现代公理化开始于1908年策梅罗所发表的一组公理,经过弗兰克尔的加工,这个系统称
为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。另外一种系统是冯·诺伊曼-伯奈斯-哥德尔集合论。 公理集合论中一个有名的猜想是连续统假设
B
A。
例如N
Z
Q R
C,但Z
N。显然对任何集合
A都有A
A。
注意:属于关系和包含关系都是两个集合之间的关系,
对于某些集合可以同时成立
这两种关系。例如
A={a,{a}}和{a},既有{a}∈A,又有{a}
A。前者把它们看成是
不同层次上的两个集合,后者把它们看成是同一层次上的两个集合,都是正确的。
定义1.1.2
集合的元素是无序的:如{1,2,3}={3,1,2}。
1.1.2集合间的关系
定义1.1.1
设A,B为集合,如果B中的每个元素都是A中的元素,则称
B是A的
子集合,简称 子集。这时也称B被A包含 ,或A包含B,记作B A。称B是A的扩集。
包含的符号化表示为:
B
A
x(x∈B→x∈A)。如果
B不被A包含,则记作
0元子集,也就是空集,只有一个:
;1元子集,即单元集:
{1}
,{2}
,{3}

2元子集:
{1,2}
,{1,3}
,{2,3}

3
元子集:
{1,2,3}

一般地说,对于
n元集
A,它的
0元子集有

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件第一章:离散数学简介1.1 离散数学的定义与意义介绍离散数学的基本概念和特点解释离散数学在计算机科学和数学领域的应用1.2 离散数学的基本概念介绍集合、图、逻辑、关系等基本概念1.3 离散数学的重要性强调离散数学在计算机科学中的关键作用第二章:集合论2.1 集合的基本概念介绍集合的定义、表示方法和性质2.2 集合的基本运算介绍并集、交集、补集等集合运算2.3 集合的属性与关系探讨集合的无限性、可数性和可序性等属性第三章:逻辑与布尔代数3.1 逻辑的基本概念介绍命题、逻辑联结词和逻辑运算符3.2 命题逻辑探讨命题逻辑的推理规则和真值表3.3 谓词逻辑介绍谓词逻辑的基本概念和推理规则第四章:图论4.1 图的基本概念介绍图的定义、表示方法和基本术语4.2 图的性质与分类探讨图的连通性、路径和圈等性质4.3 图的应用介绍图在网络、社会关系等领域中的应用第五章:组合数学5.1 组合数学的基本概念介绍排列、组合、计数原理等基本概念5.2 组合数学的运算与性质探讨组合数的计算方法和性质5.3 组合数学的应用介绍组合数学在图论、密码学等领域中的应用《离散数学教案》课件第六章:关系与函数6.1 关系的基本概念介绍关系的定义、表示方法和性质6.2 关系的性质与分类探讨关系的对称性、传递性和兼容性等性质6.3 函数的基本概念介绍函数的定义、表示方法和性质第七章:数理逻辑7.1 数理逻辑的基本概念介绍逻辑联结词、命题函数和真值表7.2 命题逻辑的推理规则探讨蕴含式、等价式和逻辑蕴含等推理规则7.3 谓词逻辑的推理规则介绍谓词逻辑的推理规则和模型理论第八章:集合论的高级主题8.1 集合论的公理化介绍ZFC公理系统和集合论的哲学问题8.2 无穷集合的概念探讨无穷集合的性质和无穷性的分类8.3 集合论的应用介绍集合论在数学和计算机科学中的应用第九章:图论的高级主题9.1 树的基本概念介绍树的定义、表示方法和性质9.2 网络与流探讨网络的最大流和最小费用流问题9.3 拓扑排序与最长路径介绍拓扑排序的定义和最长路径问题10.1 组合设计介绍组合设计的概念和类型10.2 代数结构的基本概念介绍群、环、域等代数结构的基本概念10.3 编码理论的基本概念介绍编码理论的基本概念和应用领域《离散数学教案》课件第十一章:组合设计11.1 组合设计的基本概念介绍组合设计、区块系统和平面设计的定义11.2 拉丁方和Steiner系统探讨拉丁方、拉丁平方和Steiner系统的性质和构造方法11.3 组合设计的应用介绍组合设计在编码理论、信息论等方面的应用第十二章:代数结构的基本概念12.1 群的基本概念介绍群的定义、表示方法和性质12.2 环和域的基本概念介绍环和域的定义、表示方法和性质12.3 代数结构的应用探讨代数结构在密码学、编码理论等方面的应用13.1 网络流与匹配介绍网络流、最大流和最小费用流问题的算法和理论13.2 染色问题探讨图的染色问题的算法和理论,包括顶点染色和边染色13.3 代数拓扑和图的同构介绍代数拓扑的基本概念和图的同构问题的算法和理论第十四章:离散数学在应用领域14.1 离散数学在计算机科学中的应用介绍离散数学在算法设计、数据结构、编译原理等方面的应用14.2 离散数学在信息科学中的应用探讨离散数学在信息加密、编码理论、信息传输等方面的应用14.3 离散数学在其他领域的应用介绍离散数学在经济学、生物学、工程学等方面的应用第十五章:离散数学的综合应用15.1 离散数学的综合问题探讨离散数学在实际问题中的应用,如图论在网络设计中的应用、组合设计在通信系统中的应用等15.2 离散数学的案例研究分析离散数学在具体案例中的应用,如Google的PageRank算法、社交网络分析等15.3 离散数学的未来趋势展望离散数学在科学研究和应用领域的未来发展趋势和挑战重点和难点解析本文档涵盖了一个全面的《离散数学教案》课件,共包含十五个章节。

离散数学安徽大学教案

离散数学安徽大学教案

课程名称:离散数学授课班级:XX级XX班授课教师:XX教学目标:1. 让学生掌握离散数学的基本概念、基本理论和基本方法。

2. 培养学生运用离散数学解决实际问题的能力。

3. 增强学生的逻辑思维和抽象思维能力。

教学内容:1. 离散数学的基本概念2. 图论3. 排列组合与二项式定理4. 逻辑代数与布尔函数5. 计算机算法教学重点:1. 离散数学的基本概念和理论2. 图论的基本概念和应用3. 排列组合与二项式定理的应用4. 逻辑代数与布尔函数的应用5. 计算机算法的基本思想教学难点:1. 离散数学概念的理解和应用2. 图论问题的求解3. 排列组合与二项式定理的综合应用4. 逻辑代数与布尔函数的复杂应用5. 计算机算法的复杂实现教学过程:一、导入1. 通过实际案例引入离散数学的概念,激发学生的学习兴趣。

2. 简要介绍离散数学在计算机科学、信息技术、数学等领域的应用。

二、基本概念与理论1. 讲解离散数学的基本概念,如集合、关系、函数等。

2. 讲解离散数学的基本理论,如鸽巢原理、归纳法等。

3. 通过实例讲解基本概念和理论的应用。

三、图论1. 讲解图论的基本概念,如无向图、有向图、连通图等。

2. 讲解图论的基本算法,如最短路径算法、最小生成树算法等。

3. 通过实例讲解图论在现实生活中的应用。

四、排列组合与二项式定理1. 讲解排列组合的基本概念,如排列、组合、排列数、组合数等。

2. 讲解二项式定理及其应用。

3. 通过实例讲解排列组合与二项式定理在生活中的应用。

五、逻辑代数与布尔函数1. 讲解逻辑代数的基本概念,如逻辑门、逻辑运算等。

2. 讲解布尔函数及其化简。

3. 通过实例讲解逻辑代数与布尔函数在电路设计、信息安全等领域的应用。

六、计算机算法1. 讲解计算机算法的基本思想,如贪心算法、分治算法等。

2. 通过实例讲解算法的设计与实现。

3. 讲解算法在计算机科学中的重要性。

七、总结与复习1. 总结本节课所学内容,强调重点和难点。

高三离散数学教案设计模板

高三离散数学教案设计模板

课时:2课时教学目标:1. 理解离散数学的基本概念和性质。

2. 掌握图论的基本术语和基本概念,如顶点、边、路径、回路等。

3. 学会使用图表示实际问题,并能进行简单的图论分析。

4. 培养学生的逻辑思维能力和解决实际问题的能力。

教学内容:1. 离散数学的基本概念2. 图论的基本术语和概念3. 图的表示和图论分析教学过程:第一课时一、导入1. 引导学生回顾高中数学中的集合、逻辑等基本概念。

2. 提出离散数学在计算机科学、信息技术等领域的重要应用。

二、新课内容1. 离散数学的基本概念- 介绍离散数学的定义、研究内容和特点。

- 讲解离散结构的基本概念,如集合、图、树等。

2. 图论的基本术语和概念- 介绍图论的基本术语,如顶点、边、路径、回路等。

- 讲解图的分类,如无向图、有向图、加权图等。

三、课堂练习1. 让学生绘制简单的无向图和有向图,并标明顶点和边。

2. 引导学生分析图的特点,如连通性、路径长度等。

四、小结1. 总结本节课所学内容,强调离散数学的基本概念和图论的基本术语。

2. 布置课后作业,巩固所学知识。

第二课时一、复习1. 复习上节课所学内容,检查学生对离散数学基本概念和图论基本术语的掌握情况。

二、新课内容1. 图的表示- 介绍图的表示方法,如邻接矩阵、邻接表等。

- 讲解如何使用邻接矩阵和邻接表表示图。

2. 图论分析- 介绍图论的基本算法,如最短路径算法、最小生成树算法等。

- 讲解如何应用图论算法解决实际问题。

三、课堂练习1. 让学生使用邻接矩阵和邻接表表示给定的图。

2. 引导学生应用图论算法解决实际问题,如求最短路径、最小生成树等。

四、小结1. 总结本节课所学内容,强调图的表示和图论分析的重要性。

2. 布置课后作业,巩固所学知识。

教学评价:1. 通过课堂练习和课后作业,评价学生对离散数学基本概念和图论基本术语的掌握程度。

2. 通过图论分析的实际问题解决,评价学生应用离散数学解决实际问题的能力。

备注:1. 在教学过程中,注重启发式教学,引导学生主动思考和探索。

《离散数学》电子教案

《离散数学》电子教案

第一章集合论一、教学内容及要求授课学时:2教学内容1.1 集合的基本概念集合的概念及其表示;集合与集合之间的包含、真包含和相等关系的定义,数学描述及判定和证明方法;空集、全集和幂集三个特殊集合的定义、性质以及幂集的计算算法。

1.2 集合的运算集合运算的定义、性质及证明1.3 无限集可数集合和不可数集合的概念。

1.4 与集合相关的应用与集合相关的简单应用实例。

基本要求1)能正确地用枚举法或叙述法表示一个集合,会画文氏图。

2)能判定元素与集合的属于关系。

3)能利用集合与集合关系的判定与证明方法证明两个集合之间的包含、相等、和真包含的关系。

4)能熟练计算集合之间的并、交、差、补运算,掌握集合运算的定律;5)能熟练地计算P(A)。

6)理解集合的归纳法表示。

7)理解集合的对称差运算。

8)了解集合的递归指定法表示。

9)了解无限集的基本概念。

10)了解集合的简单应用。

能力培养通过课堂讲解和课后实践作业,培养学生的抽象思维和问题解决能力。

二、教学重点、难点及解决办法教学重点:集合的概念及集合间关系的证明;集合的表示方法:列举法、描述法和文氏图;集合运算及定律和幂集P(A)的计算。

教学难点:从集合与元素两个角度去分析集合;集合与集合关系的证明和无限集基数的理解。

解决办法:1)在教学过程中,为了加强学生对一个集合“双重身份”的理解,可以通过实例教学法,让学生具体体会一个集合的“双重身份”带来的问题及解决办法;2)对于新概念—幂集,让学生编程实现求一个集合的幂集,从而加深对幂集的理解。

初步建立学生的发散思维能力以及实际动手编写程序的能力。

三、教学设计从集合伦论的创始人康托尔到集合论的最终完备,让学生明白科学研究的道路是坎坷的,但为全人类做出自己的贡献是有价值和意义的,从而要树立为科学献身的精神和爱国主义情怀。

从集合的定义入手,结合高中阶段对集合的认识,指出当时定义存在的不足,提出新的定义方法;重点介绍大学阶段学习集合的主要意义和内容,关注重点概念的理解;介绍属于关系与包含关系之间的区别与联系,特别是一个集合“双重身份”的理解;强调集合的基本运算,特别是幂集的计算;集合与集合包含、真包含和相等关系的数学描述及相应的证明方法。

离散数学教学设计方案

离散数学教学设计方案

一、教学目标1. 知识目标:(1)使学生掌握离散数学的基本概念、基本原理和基本方法;(2)培养学生运用离散数学知识解决实际问题的能力;(3)提高学生的逻辑思维能力和抽象思维能力。

2. 能力目标:(1)培养学生的数学建模能力,使其能够将实际问题转化为数学模型;(2)提高学生的编程能力,使其能够运用所学知识进行程序设计;(3)增强学生的团队合作意识,使其能够在团队项目中发挥积极作用。

3. 情感目标:(1)激发学生对离散数学的兴趣,使其热爱数学;(2)培养学生严谨、求实的科学态度;(3)提高学生的自主学习能力和终身学习能力。

二、教学内容1. 离散数学的基本概念:集合、关系、函数、图论等;2. 离散数学的基本原理:逻辑推理、归纳推理、演绎推理等;3. 离散数学的基本方法:算法设计、程序设计、数学建模等;4. 离散数学在各领域的应用:计算机科学、信息技术、经济学、管理学等。

三、教学策略1. 采用启发式教学,引导学生主动探究,培养学生的自主学习能力;2. 结合实际问题,运用离散数学知识解决实际问题,提高学生的应用能力;3. 采用案例教学,让学生在具体案例中掌握离散数学知识;4. 开展小组讨论,培养学生的团队合作意识和沟通能力;5. 运用多媒体教学,丰富教学内容,提高教学效果。

四、教学过程1. 导入新课:通过提问、讨论等方式,激发学生的学习兴趣,引导学生进入学习状态;2. 讲授新课:讲解离散数学的基本概念、基本原理和基本方法,结合实际案例进行分析;3. 练习巩固:布置课后作业,让学生巩固所学知识;4. 小组讨论:组织学生进行小组讨论,培养学生的团队合作意识和沟通能力;5. 课堂小结:总结本节课所学内容,回顾重点、难点,帮助学生梳理知识体系;6. 课后辅导:针对学生在学习过程中遇到的问题,进行个别辅导。

五、教学评价1. 课堂表现:观察学生在课堂上的参与度、积极性,评价学生的出勤情况;2. 作业完成情况:检查学生课后作业的完成质量,评价学生的知识掌握程度;3. 小组讨论表现:评价学生在小组讨论中的表现,包括发言质量、团队合作能力等;4. 期末考试:通过考试评价学生对离散数学知识的掌握程度和综合应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《离散数学》教案第一章集合与关系集合是数学中最基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。

集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。

G. Cantor(康脱)是作为数学分支的集合论的奠基人。

1870年前后,他关于无穷序列的研究导致集合论的系统发展。

1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。

1878年,他引进了两个集合具有相等的“势”的概念。

然而,朴素集合论中包含着悖论。

第一个悖论是布拉利-福尔蒂的最大序数悖论。

1901年罗素发现了有名的罗素悖论。

1932年康脱也发表了关于最大基数的悖论。

集合论的现代公理化开始于1908年策梅罗所发表的一组公理,经过弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。

另外一种系统是冯·诺伊曼-伯奈斯-哥德尔集合论。

公理集合论中一个有名的猜想是连续统假设(CH)。

哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。

现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。

一、学习目的与要求本章目的是介绍集合的基本概念,讲授集合运算的基本理论,关系的定义与运算。

通过本章的学习,使学生了解集合是数学的基本语言,掌握主要的集合运算方法和关系运算方法,为学习后续章节打下良好基础。

二、知识点1.集合的基本概念与表示方法;2.集合的运算;3.序偶与笛卡尔积;4.关系及其表示、关系矩阵、关系图;5.关系的性质,符合关系、逆关系;6.关系的闭包运算;7.集合的划分与覆盖、等价关系与等价类;相容关系;8.序关系、偏序集、哈斯图。

三、要求1.识记集合的层次关系、集合与其元素间的关系,自反关系、对称关系、传递关系的识别,复合关系、逆关系的识别。

2.领会领会下列概念:两个集合相等的概念几证明方法,关系的闭包运算,关系等价性证明。

1.1 集合论的基本概念与运算1.1.1 集合的概念集合不能精确定义。

集合可以描述为:一个集合把世间万物分成两类,一些对象属于该集合,是组成这个集合的成员,另一些对象不属于该集合。

可以说,由于一个集合的存在,世上的对象可分成两类,任一对象或属于该集合或不属于该集合,二者必居其一也只居其一。

直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。

例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;……集合通常用大写的英文字母A,B,C,…,来标记,元素通常用小写字母a,b,c,…,来表示。

例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。

集合的表示方法:表示一个集合的方法通常有三种:列举法、描述法和归纳定义法。

(1) 列举法列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。

在能清楚地表示集合成员的情况下可使用省略号。

例如 A={a,b,c,…,z},Z={0,±1,±2,…}都是合法的表示。

(2) 描述法用谓词来概括集合中元素的属性来表示这个集合。

例如 B={x|x∈R∧x2-1=0}表示方程x2-1=0的实数解集。

许多集合可以用两种方法来表示,如B也可以写成{-1,1}。

但是有些集合不可以用列元素法表示,如实数集合。

(3) 归纳定义法:1.3节再讨论。

属于、不属于:元素和集合之间的关系是隶属关系,即属于或不属于,属于记作∈,不属于记作∉。

例如A={a,{b,c},d,{{d}}},这里a∈A,{b,c}∈A,d∈A,{{d}}∈A,但b∉A,{d}∉A。

b和{d}是A的元素的元素。

外延公理:两个集合A和B相等,当且仅当它们有相同的成员。

集合的元素是彼此不同的:如果同一个元素在集合中多次出现应该认为是一个元素。

如 {1,1,2,2,3}={1,2,3}。

集合的元素是无序的:如{1,2,3}={3,1,2}。

1.1.2 集合间的关系定义1.1.1设A,B为集合,如果B中的每个元素都是A中的元素,则称B是A的子集合,简称子集。

这时也称B 被A 包含,或A 包含B ,记作B ⊆A 。

称B 是A 的扩集。

包含的符号化表示为:B ⊆A ⇔∀x(x∈B→x∈A)。

如果B 不被A 包含,则记作B⊆A 。

例如 N ⊆Z ⊆Q ⊆R ⊆C ,但Z ⊆N 。

显然对任何集合A 都有A ⊆A 。

注意:属于关系和包含关系都是两个集合之间的关系,对于某些集合可以同时成立这两种关系。

例如A ={a ,{a}}和{a},既有{a}∈A,又有{a}⊆A 。

前者把它们看成是不同层次上的两个集合,后者把它们看成是同一层次上的两个集合,都是正确的。

定义1.1.2 设A ,B 为集合,如果B ⊆A 且B≠A,则称B 是A 的真子集,记作B ⊂A 。

如果B 不是A 的真子集,则记作B ⊄A 。

真子集的符号化表示为:B ⊂A ⇔B ⊆A∧B≠A。

例如 N ⊂Z ⊂Q ⊂R ⊂C ,但N ⊄N 。

为方便起见,所讨论的全部集合和元素是限于某一论述域中,即使这个论述域有时没有明确地指出,但表示集合元素的变元只能在该域中取值。

此论述域常用U 表示,并称为全集。

定义 1.1.3 不含任何元素的集合叫空集,记作Φ。

空集可以符号化表示为Φ={x|x≠x}。

例如{x|x∈R∧x 2+1=0}是方程x 2+1=0的实数解集,因为该方程无实数解,所以是空集。

定理1.1-1 空集是一切集合的子集。

证:对任何集合A ,由子集定义有()A x x x A Φ⊆⇔∀∈Φ→∈,右边的蕴涵式因前件为假而为真命题,所以A Φ⊆也为真。

推论 空集是唯一的。

证:假设存在空集1Φ和2Φ,由定理6.1有12Φ⊆Φ,21Φ⊆Φ。

根据集合相等的定义,有12Φ=Φ。

含有n 个元素的集合简称n 元集,它的含有m(m≤n)个元素的子集叫做它的m 元子集。

任给一个n 元集,怎样求出它的全部子集呢?举例说明如下。

例1.1.1 A ={1,2,3},将A 的子集分类:0元子集,也就是空集,只有一个:Φ;1元子集,即单元集:{1},{2},{3}; 2元子集:{1,2},{1,3},{2,3}; 3元子集:{1,2,3}。

一般地说,对于n 元集A ,它的0元子集有0n C 个,1元子集有1n C 个,…,m 元子集有m n C 个,…,n 元子集有n n C 个。

子集总数为012n n n n n C C C +++=个。

全集与空集在本章中起重要作用,注意掌握它们的基本概念。

注意:∈与⊆的联系与区别。

(1) ∈表示集合的元素(可以为集合)与集合本身的从属关系,(2) ⊆表示两个集合之间的包含关系。

例如:对于集合A={a,b,c},{a}是A 的子集:{a}⊆A ,a 是A 的元素:a∈A。

注意:不要写成{a}∈A 和a ⊆A 。

{}a a ≠,但{}a a ∈;{}Φ是一元集,而不是空集。

|{}|1Φ=,||0Φ=。

1.1.3 集合的运算集合的交、并和差运算1. 集合交、并、差运算的定义(注意集合运算与逻辑运算的对应关系)定义 设A 和B 是集合,(1) A 和B 的交记为A B ,定义为:{|}A B x x A x B =∈∧∈; (2) A 和B 的并记为A B ,定义为:{|}A B x x A x B =∈∨∈;(3) A 和B 的差记为A B -,定义为:{|}A B x x A x B -=∈∧∉。

例:设{,,,}A a b c d =,{,,}B b c e =,则{,}A B b c =,{,,,,}A B a b c d e =,{,}A B a d -=,{}B A e -=定义:如果,A B 是两个集合,A B =Φ,那么称A 和B 是不相交的。

如果C 是一个集合的族,且C 中的任意两个不同元素都不相交,那么称C 是(两两)不相交集合的族。

2. 集合的并和交运算的推广(广义交、广义并)n 个集合12121{|}ni n n i A A A A x x A x A x A ===∈∧∈∧∧∈,12121{|}n i n n i A A A A x x A x A x A ===∈∨∈∨∨∈,无穷可数个集合:121i i A A A ∞==,121i i A A A ∞== 一般情形:{|()}S C S x S S C x S ∈=∀∈→∈(C ≠Φ),{|()}S CS x S S C x S ∈=∃∈∧∈3. 集合交、并、差运算的性质:(1) 交换律 AB B A =, A B B A =, (2) 结合律 ()()AB C A B C =, ()()A B C A B C =. (3) 分配律 ()()()A B C A B A C =, ()()()A B C A B A C =(4) 幂等律 AA A =, A A A =, (5) 同一律 AA Φ=, A U A =, (6) 零 律 AU U = A Φ=Φ, (7) 吸收律 ()AA B A =, ()A A B A =, (8) 德摩根律 ()()()A B C A B A C -=-- ()()()A B C A B A C -=--(9) (a) A A -Φ=, (b) A B A -⊆, (c)A A B ⊆, (d)A B A ⊆,(e) 若A B ⊆,C D ⊆,则()()AC BD ⊆,()()A C B D ⊆, (f) 若A B ⊆,则AB A =, (g) 若A B ⊆,则A B B =, (h) A B A A B B A B =⇔=⇔-=Φ。

证:利用运算的定义(与逻辑运算的关系)或已证明的性质。

集合的补运算1. 集合的补运算的定义定义:设U 是论述域而A 是U 的子集,则A 的(绝对)补为:B A =当且仅当A B U =和A B =Φ。

2. 集合补运算的性质:(1) 矛盾律 A A =Φ; (2) 排中律 A A U =;(3) 德摩根律 U Φ=, U =Φ, ________A B A B =, ________A B A B =;(4) 双重否定律(A 的补的补是A ):A A =;(5) 若A B ⊆,则B A ⊆。

例:证明A -(B ∪C)=(A -B)∩( A -C)。

证对任意的x ,x ∈A -(B ∪C) ⇔ x ∈A ∧x ∉B ∪C ⇔ x ∈A ∧┐(x ∈B ∨x ∈C)⇔ x ∈A ∧(┐x ∈B ∧┐x ∈C) ⇔ x ∈A ∧x ∉B ∧x ∉C⇔ (x ∈A ∧x ∉B)∧(x ∈A ∧x ∉C) ⇔ x ∈A -B)∧x ∈A -C⇔ x ∈(A -B)∩(A -C)所以 A -(B ∪C)=(A -B)∩( A -C)。

相关文档
最新文档