2022届高考数学一轮复习讲义:第五章 5.5复数学生版

合集下载

高考数学全程一轮复习第五章平面向量与复数第四节复数课件

高考数学全程一轮复习第五章平面向量与复数第四节复数课件

夯实基础 1.思考辨析(正确的打“√”,错误的打“×”) (1)复数z=a+bi(a,b∈R)中,虚部为bi.( × ) (2)复数中有相等复数的概念,因此复数可以比较大小.( × ) (3)原点是实轴与虚轴的交点.( √ ) (4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就 是复数对应的向量的模.( √ )
题后师说
(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该 满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的 方程(不等式)组即可.
(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实 部和虚部.
巩固训练1
(1)[2022·新高考Ⅰ卷]若i(1-z)=1,则z+zത=( )
A.-1 B.1 C.-2 D.2
答案:D
解析:(2x+i)(1-i)=(2x+1)+(1-2x)i=y,
所以ቊ12x−+21x
= =
0y,,解得ቐxy==122,. 故选D.
4.(易错)已知复数z=1+i(其中i为虚数单位),则复数2zത的虚部是 ________.
答案:-2
解析:因为z=1+i, 所以2zത=2(1-i)=2-2i, 所以复数2zത的虚部是-2.
答案:B
(2)已知复数z1=1+2i,z2=2-i(i为虚数单位),z3在复平面上对应的 点分别为A,B,C.若四边形OABC为平行四边形(O为复平面的坐标原 点),则复数z3为( )
A.1-3i B.1+3i C.-1+3i D.-1-3i
答案:A
解析:设z3=x+yi(x,y∈R),则C(x,y),依题意A(1,2), B(2,-1),AB=(1,-3),由于四边形OABC是平行四边形, 所以OC=AB,(x,y)=(1,-3),所以z3=1-3i.故选A.

2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第1节平面向量的概念及线性运算教

2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第1节平面向量的概念及线性运算教

学习资料2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第1节平面向量的概念及线性运算教师用书教案理新人教版班级:科目:第1节平面向量的概念及线性运算全国卷五年考情图解高考命题规律把握1。

考查形式本章在备考中一般为2~3个客观题.2.考查内容(1)对向量的考查,主要考查平面向量的线性运算、坐标运算、向量的平行与垂直、向量的数量积及应用,难度为容易或中档。

(2)高考主要考查复数的基本概念、复数相等的充要条件以及复数的加、减、乘、除四则运算,其中复数的运算是高考的热点,一般为选择题.平面向量的概念及线性运算[考试要求]1。

了解向量的实际背景,理解平面向量的概念和两个向量相等的含义,理解向量的几何表示.2。

掌握向量加法、减法的运算,理解其几何意义.3。

掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.4.了解向量线性运算的性质及其几何意义.1.向量的有关概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的长度(或模).(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量.平行向量又叫共线向量.规定:0与任一向量平行.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则①交换律:a+b=b+a;②结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算①|λa|=|λ||a|;②当λ〉0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.提醒:当a≠0时,定理中的实数λ才唯一,否则不唯一.[常用结论]1.P为线段AB的中点,O为平面内任意一点⇔错误!=错误!(错误!+错误!).2.若G为△ABC的重心,则有(1)错误!+错误!+错误!=0;(2)错误!=错误!(错误!+错误!).3.首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点的向量,一个封闭图形首尾连接而成的向量和为零向量.4.对于起点相同、终点共线的三个向量错误!,错误!,错误!(O与P1P2不共线),总有错误!=u错误!+v错误!,u+v=1,即总可以用其中两个向量的线性组合表示第三个向量,且系数和为1.5.对于任意两个向量a,b,都有:(1)||a|-|b||≤|a±b|≤|a|+|b|;(2)|a+b|2+|a-b|2=2(|a|2+|b|2).一、易错易误辨析(正确的打“√”,错误的打“×”) (1)若两个向量共线,则其方向必定相同或相反.( )(2)若向量错误!与向量错误!是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (3)若a ∥b ,b ∥c ,则a ∥c 。

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5

高考数学一轮复习 第五章 平面向量与复数5.3 平面向量的数量积考试要求 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量的方法解决某些简单的平面几何问题.知识梳理 1.向量的夹角已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角. 2.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a ||b |cos θ叫做a 与b的数量积,记作a ·b投影|a |cos θ叫做向量a 在b 方向上的投影|b |cos θ叫做向量b 在a方向上的投影几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积3.向量数量积的运算律 (1)a ·b =b ·a .(2)(λa )·b =λ(a ·b )=a ·(λb ). (3)(a +b )·c =a ·c +b ·c .4.平面向量数量积的有关结论已知非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ.结论 符号表示 坐标表示模|a |=a ·a |a |=x 21+y 21夹角 cos θ=a ·b |a ||b |cos θ=x 1x 2+y 1y 2x 21+y 21x 22+y 22a ⊥b 的充要条件 a ·b =0 x 1x 2+y 1y 2=0|a ·b |与|a ||b |的关系 |a ·b |≤|a ||b ||x 1x 2+y 1y 2|≤x 21+y 21x 22+y 22常用结论1.平面向量数量积运算的常用公式 (1)(a +b )·(a -b )=a 2-b 2; (2)(a±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论 已知向量a ,b .(1)若a 与b 的夹角为锐角,则a·b >0;若a·b >0,则a 与b 的夹角为锐角或0. (2)若a 与b 的夹角为钝角,则a·b <0;若a·b <0,则a 与b 的夹角为钝角或π. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)两个向量的夹角的范围是⎣⎡⎦⎤0,π2.( × ) (2)若a ·b >0,则a 和b 的夹角为锐角.( × )(3)两个向量的数量积是一个实数,向量的加、减、数乘运算的结果是向量.( √ ) (4)(a·b )·c =a·(b·c ).( × ) 教材改编题1.(2022·海南省临高二中模拟)设a ,b ,c 是任意的非零向量,则下列结论正确的是( )B .a·b =b·c ,则a =cC .a·b =0⇒a =0或b =0D .(a +b )·(a -b )=|a |2-|b |2 答案 D2.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. 答案 2 33.已知向量a ,b 满足3|a |=2|b |=6,且(a -2b )⊥(2a +b ),则a ,b 夹角的余弦值为________. 答案 -59解析 设a ,b 的夹角为θ, 依题意,(a -2b )·(2a +b )=0, 则2a 2-3a ·b -2b 2=0, 故2×4-3×2×3·cos θ-2×32=0, 则cos θ=-59.题型一 平面向量数量积的基本运算例1 (1)(2021·北京)a =(2,1),b =(2,-1),c =(0,1),则(a +b )·c =______;a ·b =______. 答案 0 3解析 ∵a =(2,1),b =(2,-1),c =(0,1), ∴a +b =(4,0),∴(a +b )·c =4×0+0×1=0, a ·b =2×2+1×(-1)=3.(2)(2022·邹城模拟)在平面四边形ABCD 中,已知AB →=DC →,P 为CD 上一点,CP →=3PD →,|AB →|=4,|AD →|=3,AB →与AD →的夹角为θ,且cos θ=23,则AP →·PB →=________.解析 如图所示,∵AB →=DC →,∴四边形ABCD 为平行四边形, ∵CP →=3PD →,∴AP →=AD →+DP →=14AB →+AD →,PB →=AB →-AP →=34AB →-AD →,又∵|AB →|=4,|AD →|=3,cos θ=23,则AB →·AD →=4×3×23=8,∴AP →·PB →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫34AB →-AD → =12AB →·AD →-AD →2+316 AB →2 =12×8-9+316×42=-2. 教师备选1.(2019·全国Ⅱ)已知AB →=(2,3),AC →=(3,t ),|BC →|=1,则AB →·BC →等于( ) A .-3 B .-2 C .2 D .3 答案 C解析 因为BC →=AC →-AB →=(1,t -3), 所以|BC →|=12+t -32=1,解得t =3,所以BC →=(1,0),所以AB →·BC →=2×1+3×0=2.2.在边长为2的正三角形ABC 中,M 是BC 的中点,D 是线段AM 的中点.①若BD →=xBA →+yBC →,则x +y =________;②BD →·BM →=________. 答案 341解析 ①∵M 是BC 的中点, ∴BM →=12BC →,∵D 是AM 的中点,∴BD →=12BA →+12BM →=12BA →+14BC →,∴x =12,y =14,∴x +y =34.②∵△ABC 是边长为2的正三角形,M 是BC 的中点, ∴AM ⊥BC ,且BM =1,∴BD →·BM →=|BD →||BM →|cos ∠DBM =|BM →|2=1. 思维升华 计算平面向量数量积的主要方法 (1)利用定义:a·b =|a ||b |cos 〈a ,b 〉.(2)利用坐标运算,若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2. (3)灵活运用平面向量数量积的几何意义.跟踪训练1 (1)(2021·新高考全国Ⅱ)已知向量a +b +c =0,|a |=1,|b |=|c |=2,a ·b +b ·c +c ·a =________. 答案 -92解析 由已知可得(a +b +c )2 =a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=9+2(a ·b +b ·c +c ·a )=0, 因此a ·b +b ·c +c ·a =-92.(2)(2020·北京)已知正方形ABCD 的边长为2,点P 满足AP →=12(AB →+AC →),则|PD →|=________;PB →·PD →=________. 答案5 -1解析 建立如图所示的平面直角坐标系,∵AP →=12(AB →+AC →),∴P 为BC 的中点.∴点P 的坐标为(2,1),点D 的坐标为(0,2),点B 的坐标为(2,0), ∴|PD →|=5,PB →=(0,-1),PD →=(-2,1), ∴PB →·PD →=-1.题型二 平面向量数量积的应用 命题点1 向量的模例2 已知向量a ,b 满足|a |=6,|b |=4,且a 与b 的夹角为60°,则|a +b |=__________,|a -3b |=________. 答案 219 6 3解析 因为|a |=6,|b |=4,a 与b 的夹角为60°, 所以a ·b =|a ||b |cos 〈a ,b 〉=6×4×12=12,(a +b )2=a 2+2a ·b +b 2=36+24+16=76, (a -3b )2=a 2-6a·b +9b 2=36-72+144=108,所以|a +b |=219,|a -3b |=6 3. 命题点2 向量的夹角例3 (2020·全国Ⅲ)已知向量a ,b 满足|a |=5,|b |=6,a ·b =-6,则cos 〈a ,a +b 〉等于( ) A .-3135B .-1935C.1735D.1935答案 D解析 ∵|a +b |2=(a +b )2=a 2+2a ·b +b 2 =25-12+36=49, ∴|a +b |=7,∴cos 〈a ,a +b 〉=a ·a +b |a ||a +b |=a 2+a ·b |a ||a +b |=25-65×7=1935. 命题点3 向量的垂直例4 (2021·全国乙卷)已知向量a =(1,3),b =(3,4),若(a -λb )⊥b ,则λ=________. 答案 35解析 方法一 a -λb =(1-3λ,3-4λ), ∵(a -λb )⊥b ,∴(a -λb )·b =0, 即(1-3λ,3-4λ)·(3,4)=0, ∴3-9λ+12-16λ=0,解得λ=35.方法二 由(a -λb )⊥b 可知,(a -λb )·b =0,即a ·b -λb 2=0, 从而λ=a ·b b 2=1,3·3,432+42=1525=35. 教师备选1.已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α, ∵(a -b )⊥b , ∴(a -b )·b =0, ∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |, ∴cos α=12,∵α∈[0,π],∴α=π3.2.已知e 1,e 2是两个单位向量,且|e 1+e 2|=3,则|e 1-e 2|=________. 答案 1解析 由|e 1+e 2|=3,两边平方, 得e 21+2e 1·e 2+e 22=3.又e 1,e 2是单位向量, 所以2e 1·e 2=1,所以|e 1-e 2|2=e 21-2e 1·e 2+e 22=1, 所以|e 1-e 2|=1.思维升华 (1)求平面向量的模的方法①公式法:利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算; ②几何法:利用向量的几何意义,即利用向量线性运算的平行四边形法则或三角形法则作出所求向量,再利用余弦定理等方法求解. (2)求平面向量的夹角的方法①定义法:cos θ=a·b |a ||b |,求解时应求出a ·b ,|a |,|b |的值或找出这三个量之间的关系;②坐标法.(3)两个向量垂直的充要条件a ⊥b ⇔a ·b =0⇔|a -b|=|a +b|(其中a ≠0,b ≠0).跟踪训练2 (1)已知单位向量a ,b 满足a ·b =0,若向量c =7a +2b ,则sin 〈a ,c 〉等于( ) A.73 B.23 C.79 D.29答案 B解析 方法一 设a =(1,0),b =(0,1), 则c =(7,2), ∴cos 〈a ,c 〉=a ·c |a ||c |=73, ∴sin 〈a ,c 〉=23. 方法二 a ·c =a ·(7a +2b ) =7a 2+2a ·b =7, |c |=7a +2b2=7a 2+2b 2+214a ·b =7+2=3,∴cos 〈a ,c 〉=a ·c |a ||c |=71×3=73, ∴sin 〈a ,c 〉=23. (2)(2021·新高考全国Ⅰ改编)已知O 为坐标原点,点P 1(cos α,sin α),P 2(cos β,-sin β),P 3(cos(α+β),sin(α+β)),A (1,0),则 ①|OP 1—→|=|OP 2—→|; ②|AP 1—→|=|AP 2—→|; ③OA →·OP 3—→=OP 1—→·OP 2—→; ④OA →·OP 1—→=OP 2—→·OP 3—→.以上结论正确的有________.(填序号) 答案 ①③解析 由题意可知, |OP 1—→|=cos 2α+sin 2α=1, |OP 2—→|=cos 2β+-sin β2=1,所以|OP 1—→|=|OP 2—→|,故①正确; 取α=π4,则P 1⎝⎛⎭⎫22,22,取β=5π4,则P 2⎝⎛⎭⎫-22,22, 则|AP 1—→|≠|AP 2—→|,故②错误; 因为OA →·OP 3—→=cos(α+β),OP 1—→·OP 2—→=cos αcos β-sin αsin β=cos(α+β), 所以OA →·OP 3—→=OP 1—→·OP 2—→,故③正确; 因为OA →·OP 1—→=cos α,OP 2—→·OP 3—→=cos βcos(α+β)-sin βsin(α+β) =cos(α+2β), 取α=π4,β=π4,则OA →·OP 1—→=22,OP 2—→·OP 3—→=cos 3π4=-22,所以OA →·OP 1—→≠OP 2—→·OP 3—→,故④错误.题型三 平面向量的实际应用例5 (2022·东莞模拟)在日常生活中,我们会看到两个人共提一个行李包的情况(如图所示).假设行李包所受的重力为G ,所受的两个拉力分别为F 1,F 2,若|F 1|=|F 2|,且F 1与F 2的夹角为θ,则以下结论不正确的是( )A .|F 1|的最小值为12|G |B .θ的范围为[0,π]C .当θ=π2时,|F 1|=22|G |D .当θ=2π3时,|F 1|=|G |答案 B解析 由题意知,F 1+F 2+G =0, 可得F 1+F 2=-G ,两边同时平方得 |G |2=|F 1|2+|F 2|2+2|F 1||F 2|cos θ =2|F 1|2+2|F 1|2cos θ, 所以|F 1|2=|G |221+cos θ.当θ=0时,|F 1|min =12|G |;当θ=π2时,|F 1|=22|G |;当θ=2π3时,|F 1|=|G |,故A ,C ,D 正确;当θ=π时,竖直方向上没有分力与重力平衡,不成立,所以θ∈[0,π),故B 错误. 教师备选若平面上的三个力F 1,F 2,F 3作用于一点,且处于平衡状态,已知|F 1|=1 N ,|F 2|=6+22N ,F 1与F 2的夹角为45°,求: (1)F 3的大小;(2)F 3与F 1夹角的大小. 解 (1)∵三个力平衡, ∴F 1+F 2+F 3=0,∴|F 3|=|F 1+F 2|=|F 1|2+2F 1·F 2+|F 2|2=12+2×1×6+22cos 45°+⎝ ⎛⎭⎪⎫6+222=4+23=1+ 3.(2)方法一 设F 3与F 1的夹角为θ, 则|F 2|=|F 1|2+|F 3|2+2|F 1||F 3|cos θ, 即6+22=12+1+32+2×1×1+3cos θ,解得cos θ=-32, ∵θ∈[0,π], ∴θ=5π6.方法二 设F 3与F 1的夹角为θ, 由余弦定理得cos(π-θ)=12+1+32-⎝⎛⎭⎪⎫6+2222×1×1+3=32, ∵θ∈[0,π],∴θ=5π6.思维升华 用向量方法解决实际问题的步骤跟踪训练3 (2022·沈阳二中模拟)渭河某处南北两岸平行,如图所示,某艘游船从南岸码头A出发航行到北岸,假设游船在静水中航行速度的大小为|ν1|=10 km/h ,水流速度的大小为|ν2|=6 km/h.设ν1与ν2的夹角为120°,北岸的点A ′在码头A 的正北方向,那么该游船航行到北岸的位置应( )A .在A ′东侧B .在A ′西侧C .恰好与A ′重合D .无法确定答案 A解析 建立如图所示的平面直角坐标系,由题意可得ν1=(-5,53),ν2=(6,0), 所以ν1+ν2=(1,53),说明游船有x 轴正方向的速度,即向东的速度,所以该游船航行到北岸的位置应在A ′东侧.极化恒等式:设a ,b 为两个平面向量,则有恒等式a ·b =14[]a +b2-a -b2.如图所示.(1)在平行四边形ABDC 中,AB →=a ,AC →=b , 则a·b =14(|AD →|2-|BC →|2).(2)在△ABC 中,AB →=a ,AC →=b ,AM 为中线, 则a·b =|AM →|2-14|BC →|2.例1 在△ABC 中,M 是BC 的中点,AM =3,BC =10,则AB →·AC →=________. 答案 -16解析 如图所示,由极化恒等式,易得AB →·AC →=AM →2-MB →2=32-52=-16.例2 已知AB 为圆x 2+y 2=1的一条直径,点P 为直线x -y +2=0上任意一点,则P A →·PB →的最小值是________. 答案 1解析 如图所示,由极化恒等式易知,当OP 垂直于直线x -y +2=0时,P A →·PB →有最小值,即P A →·PB →=PO →2-OB →2=(2)2-12=1.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( ) A .1 B .2 C. 2 D.22答案 C解析 如图所示,设OA →⊥OB →,记OA →=a ,OB →=b ,OC →=c , M 为AB 的中点, 由极化恒等式有 (a -c )·(b -c )=CA →·CB →=|CM →|2-|AB →|24=0,∴|CM →|2=|AB →|24=12,可知MC →是有固定起点,固定模长的动向量.点C 的轨迹是以AB 为直径的圆,且点O 也在此圆上, 所以|c |的最大值为圆的直径长,即为 2.课时精练1.(2020·全国Ⅱ)已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .a +2b B .2a +b C .a -2b D .2a -b 答案 D解析 由题意得|a |=|b |=1, 设a ,b 的夹角为θ=60°,故a ·b =|a ||b |cos θ=12.对A 项,(a +2b )·b =a ·b +2b 2 =12+2=52≠0; 对B 项,(2a +b )·b =2a ·b +b 2 =2×12+1=2≠0;对C 项,(a -2b )·b =a ·b -2b 2 =12-2=-32≠0; 对D 项,(2a -b )·b =2a ·b -b 2=2×12-1=0.2.(2022·四川乐山第一中学模拟)已知向量a =(2,-2),b =(2,1),b ∥c ,a ·c =4,则|c |等于( ) A .2 5 B .4 C .5 2 D .4 2答案 A解析 因为b ∥c ,所以c =λb =(2λ,λ)(λ∈R ), 又a ·c =4λ-2λ=2λ=4,所以λ=2,c =(4,2),|c |=42+22=2 5.3.(2022·宜昌模拟)若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则a -b 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 D解析 |a +b |=|a -b |=2|a |,等号左右同时平方,得|a +b |2=|a -b |2=4|a |2,即|a |2+|b |2+2a ·b =|a |2+|b |2-2a ·b =4|a |2, 所以a ·b =0且|b |2=3|a |2, 所以|a -b |=|a -b |2=|a |2+|b |2-2a ·b =233|b |,所以cos 〈a -b ,b 〉=a -b ·b|a -b ||b |=-|b |2233|b |·|b |=-32,因为〈a -b ,b 〉∈[0,π],所以〈a -b ,b 〉=5π6.4.已知a =(-2,1),b =(k ,-3),c =(1,2),若(a -2b )⊥c ,则与b 共线的单位向量为( ) A.⎝⎛⎭⎫255,-55或⎝⎛⎭⎫-255,55 B.⎝⎛⎭⎫-255,-55或⎝⎛⎭⎫255,55 C.⎝⎛⎭⎫255,55 D.⎝⎛⎭⎫-255,55 答案 A解析 由题意得a -2b =(-2-2k ,7), ∵(a -2b )⊥c , ∴(a -2b )·c =0,即(-2-2k ,7)·(1,2)=0,-2-2k +14=0, 解得k =6, ∴b =(6,-3), ∴e =±b 62+-32=±⎝⎛⎭⎫255,-55. 5.(2022·盐城模拟)下列关于向量a ,b ,c 的运算,不一定成立的是( ) A .(a +b )·c =a ·c +b ·c B .(a ·b )·c =a ·(b ·c )C.a·b≤|a||b|D.|a-b|≤|a|+|b|答案 B解析根据数量积的分配律可知A正确;选项B中,左边为c的共线向量,右边为a的共线向量,故B不正确;根据数量积的定义,可知a·b=|a||b|cos〈a,b〉≤|a||b|,故C正确;|a-b|2=|a|2+|b|2-2a·b=|a|2+|b|2-2|a||b|cos〈a,b〉≤|a|2+|b|2+2|a||b|=(|a|+|b|)2,故|a-b|≤|a|+|b|,故D正确.6.已知向量a=(2,1),b=(1,-1),c=(m-2,-n),其中m,n均为正数,且(a-b)∥c,则下列说法正确的是()A.a与b的夹角为钝角B.向量a在b上的投影为-2 2C.2m+n=4D.mn的最小值为2答案 C解析对于A,向量a=(2,1),b=(1,-1),则a·b=2-1=1>0,又a,b不共线,所以a,b的夹角为锐角,故A错误;对于B,设向量a,b的夹角为θ,则cos θ=a·b|a||b|=15×2=1010,所以向量a在b上的投影为|a |cos θ=5×1010=22,故B 错误; 对于C ,a -b =(1,2),若(a -b )∥c ,则-n =2(m -2),变形可得2m +n =4,故C 正确; 对于D ,由2m +n =4,且m ,n 均为正数,得mn =12(2m ·n )≤12⎝⎛⎭⎫2m +n 22=2,当且仅当m =1,n =2时,等号成立,即mn 的最大值为2,故D 错误.7.(2021·全国甲卷)已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 答案 -103解析 c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103.8.(2020·全国Ⅰ)设a ,b 为单位向量,且|a +b |=1,则|a -b |=________. 答案3解析 将|a +b |=1两边平方, 得a 2+2a ·b +b 2=1. ∵a 2=b 2=1,∴1+2a ·b +1=1,即2a ·b =-1. ∴|a -b |=a -b2=a 2-2a ·b +b 2=1--1+1= 3.9.(2022·长沙模拟)在△ABC 中,BC 的中点为D ,设向量AB →=a ,AC →=b . (1)用a ,b 表示向量AD →;(2)若向量a ,b 满足|a |=3,|b |=2,〈a ,b 〉=60°,求AB →·AD →的值. 解 (1)AD →=12(AB →+AC →)=12a +12b ,所以AD →=12a +12b .(2)AB →·AD →=a ·⎝⎛⎭⎫12a +12b =12a 2+12a·b =12×32+12×3×2×cos 60°=6, 所以AB →·AD →=6.10.(2022·南昌模拟)已知向量m =(3sin x ,cos x -1),n =(cos x ,cos x +1),若f (x )=m·n . (1)求函数f (x )的单调递增区间;(2)在Rt △ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若∠A =90°,f (C )=0,c =3,CD 为∠BCA 的角平分线,E 为CD 的中点,求BE 的长. 解 (1)f (x )=m ·n =3sin x ·cos x +cos 2x -1 =32sin 2x +12cos 2x -12=sin ⎝⎛⎭⎫2x +π6-12. 令2x +π6∈⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ), 则x ∈⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). 所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)f (C )=sin ⎝⎛⎭⎫2C +π6-12=0, sin ⎝⎛⎭⎫2C +π6=12,又C ∈⎝⎛⎭⎫0,π2, 所以C =π3.在△ACD 中,CD =233, 在△BCE 中,BE =22+⎝⎛⎭⎫332-2×2×33×32=213.11.(2022·恩施质检)圆内接四边形ABCD 中,AD =2,CD =4,BD 是圆的直径,则AC →·BD →等于( )A .12B .-12C .20D .-20答案 B解析 如图所示,由题知∠BAD =∠BCD =90°,AD =2,CD =4,∴AC →·BD →=(AD →+DC →)·BD →=AD →·BD →+DC →·BD →=|AD →||BD →|cos ∠BDA -|DC →||BD →|cos ∠BDC=|AD →|2-|DC →|2=4-16=-12.12.在△ABC 中,已知⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,且AB →|AB →|·AC →|AC →|=12,则△ABC 为( ) A .等边三角形B .直角三角形C .等腰三角形D .三边均不相等的三角形答案 A解析 AB →|AB →|,AC →|AC →|分别为与AB →,AC →方向相同的单位向量,由平行四边形法则可知向量AB →|AB →|+AC →|AC →|所在的直线为∠BAC 的角平分线.因为⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|·BC →=0, 所以∠BAC 的角平分线垂直于BC ,所以AB =AC .又AB →|AB →|·AC →|AC →|=⎪⎪⎪⎪⎪⎪AB →|AB →|⎪⎪⎪⎪⎪⎪AC →|AC →|·cos ∠BAC =12, 所以cos ∠BAC =12,∠BAC =60°. 所以△ABC 为等边三角形.13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F 1,F 2,且F 1,F 2与水平夹角均为45°,|F 1|=|F 2|=10 2 N ,则物体的重力大小为________ N.答案 20解析 如图所示,∵|F 1|=|F 2|=10 2 N ,∴|F 1+F 2|=102×2=20 N ,∴物体的重力大小为20 N.14.(2021·天津)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE ⊥AB 且交AB于点E ,DF ∥AB 且交AC 于点F ,则|2BE →+DF →|的值为________;(DE →+DF →)·DA →的最小值为________.答案 1 1120 解析 设BE =x ,x ∈⎝⎛⎭⎫0,12, ∵△ABC 为边长为1的等边三角形,DE ⊥AB ,∴∠BDE =30°,BD =2x ,DE =3x ,DC =1-2x ,∵DF ∥AB ,∴△DFC 为边长为1-2x 的等边三角形,DE ⊥DF ,∴(2BE →+DF →)2=4BE →2+4BE →·DF →+DF →2=4x 2+4x (1-2x )×cos 0°+(1-2x )2=1,∴|2BE →+DF →|=1,∵(DE →+DF →)·DA →=(DE →+DF →)·(DE →+EA →)=DE →2+DF →·EA →=(3x )2+(1-2x )×(1-x )=5x 2-3x +1=5⎝⎛⎭⎫x -3102+1120, ∴当x =310时,(DE →+DF →)·DA →的最小值为1120.15.定义一种向量运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ·b ,当a ,b 不共线时,|a -b |,当a ,b 共线时(a ,b 是任意的两个向量).对于同一平面内的向量a ,b ,c ,e ,给出下列结论,正确的是( )A .a ⊗b =b ⊗aB .λ(a ⊗b )=(λa )⊗b (λ∈R )C .(a +b )⊗c =a ⊗c +b ⊗cD .若e 是单位向量,则|a ⊗e |≥|a |+1答案 A解析 当a ,b 共线时,a ⊗b =|a -b |=|b -a |=b ⊗a ,当a ,b 不共线时,a ⊗b =a ·b =b ·a =b ⊗a ,故A 正确;当λ=0,b ≠0时,λ(a ⊗b )=0,(λa )⊗b =|0-b |≠0,故B 错误;当a +b 与c 共线时,则存在a ,b 与c 不共线,(a +b )⊗c =|a +b -c |,a ⊗c +b ⊗c =a ·c +b ·c ,显然|a +b -c |≠a ·c +b ·c ,故C 错误;当e 与a 不共线时,|a ⊗e |=|a ·e |<|a |·|e |<|a |+1,当e 与a 共线时,设a =u e ,u ∈R ,|a ⊗e |=|a -e |=|u e -e |=|u -1|≤|u |+1,故D 错误.16.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求c .解 (1)m·n =sin A cos B +sin B cos A=sin(A +B ),在△ABC 中,A +B =π-C ,0<C <π,所以sin(A +B )=sin C ,所以m·n =sin C ,又m·n =sin 2C ,所以sin 2C =sin C ,cos C =12, 又因为C ∈(0,π),故C =π3. (2)由sin A ,sin C ,sin B 成等差数列,可得2sin C =sin A +sin B ,由正弦定理得2c =a +b .因为CA →·(AB →-AC →)=18,所以CA →·CB →=18,即ab cos C =18,ab =36.由余弦定理得c 2=a 2+b 2-2ab cos C =(a +b )2-3ab , 所以c 2=4c 2-3×36,c 2=36, 所以c =6.。

2024届新高考一轮复习人教A版 第5章 第5讲 复数 课件(53张)

2024届新高考一轮复习人教A版 第5章 第5讲 复数 课件(53张)

的点位于( A )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(4)(2022·浙 江 卷 ) 已 知 a , b ∈ R , a + 3i = (b + i)i(i 为 虚 数 单 位 ) , 则
( B) A.a=1,b=-3
B.a=-1,b=3
C.a=-1,b=-3
D.a=1,b=3
(5)(2022·全国甲卷)若 z=1+i,则|iz+3 z |=( D )
= -42+-32=5,故选 B.
解法二:依题意可得 i2·z=(3-4i)i,所以 z=-4-3i,则|z|=
-42+-32=5,故选 B.
6.(2022·全国新高考Ⅱ卷)(2+2i)(1-2i)=( D )
A.-2+4i
B.-2-4i
C.6+2i
D.6-2i
[解析] (2+2i)(1-2i)=2-4i+2i+4=6-2i,故选D.
- 7.(2019·全国卷Ⅱ,2,5 分)设 z=-3+2i,则在复平面内 z 对应的点
位于( C )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
[解析] 由题意,得-z =-3-2i,其在复平面内对应的点为(-3,-
2),位于第三象限,故选 C.
考点突破 · 互动探究
考点一
复数的基本概念——ห้องสมุดไป่ตู้主练透
题组二 走进教材
2.(必修2P73T2改编)若复数(a2-3a+2)+(a-1)i是纯虚数,则实数a 的值为( B )
A.1
B.2
C.1或2
D.-1
[解析] 依题意,有aa2--13≠a+0,2=0, 解得 a=2.故选 B.

版新高考数学一轮复习第五章平面向量复数课件ppt(4份打包)新人教B版

版新高考数学一轮复习第五章平面向量复数课件ppt(4份打包)新人教B版
(1)模:|λa|=|λ||a| (2)方向:当λ>0时,λa 与a方向_相__同__;当λ<0时, λa与a方向_相__反__;当λ =0时,λa=0
3.平行向量基本定理 如果_a_=_λ__b_,则a∥b;反之,如果a∥b,且b≠0,则一定存在唯一一个实数λ, 使得_a_=_λ__b_.
【常用结论】 1.相等向量: (1)两向量起点相同,终点相同,则两向量相等. (2)两相等向量,如果起点相同,则其终点也相同. (3)两相等向量,如果起点不同,则其终点也不同. (4)向量相等具有传递性,非零向量的平行具有传递性. (5)向量可以平移,平移后的向量与原向量是相等向量.
1 2
AB,BE=
2 3
BC.若
DE=1AB+2 AC
(λ1、λ2为实数),则λ1+λ2的值为________. 世纪金榜导学号
【解题导思】
序号
联想解题
1
由“则 EB =”及选项,想到平面向量线性运算.
2
由“ DE=1AB+2 AC”,想到平面向量线性运算
【解析】1.选A.如图所示
EB AB AE AB 1 AD AB 1 1 (AB AC)
【易错点索引】
序号 1 2 3
易错警示 不理解单位向量、零向量的含义
不能正确运用三角形法则 不会将向量问题转化为不等式问题
典题索引 考点一、T1,2
考点二、T1 考点三、角度3
【教材·基础自测】
1.(必修4P79练习AT2改编 )给出下列命题:①零向量的长度为零,方向是任
意的;②若a,b都是单位向量,则a=b;③向量 AB与BA 相等.则所有正确命题的序号
2
22
3 AB 1 AC. 44

2022版新教材高考数学一轮复习第5章平面向量数系的扩充与复数的引入第4节数系的扩充与复数的引入课件

2022版新教材高考数学一轮复习第5章平面向量数系的扩充与复数的引入第4节数系的扩充与复数的引入课件

2.复数的几何意义
(1)复数加法的几何意义 若复数 z1,z2 对应的向量O→Z1,O→Z2不共线,则复数 z1+z2 是以O→Z1, O→Z2为两邻边的平行四边形的对角线O→Z所对应的复数. (2)复数减法的几何意义 复数 z1-z2 是O→Z1-O→Z2=Z→2Z1所对应的复数.
3.复数的加、减、乘、除运算法则 设 z1=a+bi,z2=c+di(a,b,c,d∈R),则 (1)加法:z1+z2=(a+bi)+(c+di)= (a+c)+(b+d)i . (2)减法:z1-z2=(a+bi)-(c+di)= (a-c)+(b-d)i . (3)乘法:z1·z2=(a+bi)·(c+di)= (ac-bd)+(ad+bc)i . (4)除法:zz12=ac++dbii=ac++dbiicc--ddii=acc2+ +bdd2 +bcc2+-da2di(c+di≠0).
复数几何意义问题的解题策略 (1)复数 z、复平面上的点 Z 及向量O→Z间的相互联系:z=a+bi(a, b∈R)⇔Z(a,b)⇔O→Z=(a,b). (2)由于复数、点、向量之间建立了一一对应的关系,因此可把 复数、向量与解析几何联系在一起,解题时可运用数形结合的方法, 使问题简单化.
若复数 z=11++mii在复平面内对应的点在第四象限,求实数 m 的
A.-1
B.0
C.1
D.-1 或 1
A 解析:因为 z 为纯虚数,所以xx2--11≠=00,, 所以 x=-1.
3.在复平面内,复数 6+5i,-2+3i 对应的点分别为 A,B.若
C 为线段 AB 的中点,则点 C 对应的复数是( )
A.4+8i
B.8+2i
C.2+4i
D.4+i
C 解析:因为 A(6,5),B(-2,3),所以线段 AB 的中点 C(2,4), 则点 C 对应的复数为 z=2+4i.

高考数学一轮总复习第五章平面向量与复数 1平面向量的概念及线性运算课件

高考数学一轮总复习第五章平面向量与复数 1平面向量的概念及线性运算课件



【拓广探索】
13.设点在的内部,且,则的面积与 的面积之比为 ( )
A.3 B. C.2 D.
解:如图,取的中点D,在上取点,使 ,连接, .
第五章 平面向量与复数
5.1 平面向量的概念及线性运算
1.通过对力、速度、位移等的分析,了解平面向量的实际背景,理解平面向量的意义和两个向量相等的含义. 2.理解平面向量的几何表示和基本要素. 3.借助实例和平面向量的几何表示,掌握平面向量加、减运算及运算规则,理解其几何意义. 4.通过实例分析,掌握平面向量的数乘运算及运算规则,理解其几何意义.理解两个平面向量共线的含义. 5.了解平面向量的线性运算性质及其几何意义.
解:存在实数 ,使得,说明向量,共线,则, 同向或反向;,则,同向.故“存在实数 ,使得”是“ ”的必要不充分条件.故选B.

10.在中,为边上的动点(不含两端),且满足,则 ( )
A.有最小值4 B.有最大值4 C.有最大值2 D.有最小值2
解:由题意,知,, .所以 ,当且仅当 时取等号.故选A.
三角形法则
平行四边形法则
方向相同
运算
定义
法则(或几何意义)
运算律(性质)
数乘
3.向量共线定理 向量与共线的充要条件是:存在唯一一个实数 ,使________.
相同
相反
续表
常用结论
1.加法运算的推广 (1)加法运算的推广: . (2)向量三角不等式: .两向量不共线时,可由“三角形中任意两边之和大于第三边,任意两边之差小于第三边”知“ ”成立;两向量共线时,可得出“ ”成立(分同向、反向两种不同情形).
A.单位向量都相等 B.若,则 C.若,则 D.若,则

2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第3节平面向量的数量积与平面向量

2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第3节平面向量的数量积与平面向量

学习资料2022届高考数学统考一轮复习第5章平面向量数系的扩充与复数的引入第3节平面向量的数量积与平面向量应用举例教师用书教案理新人教版班级:科目:平面向量的数量积与平面向量应用举例[考试要求] 1.理解平面向量数量积的含义及其物理意义。

2。

了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算。

4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

5。

会用向量方法解决某些简单的平面几何问题。

6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量的夹角已知两个非零向量a和b,作错误!=a,错误!=b,则∠AOB就是向量a与b的夹角,向量夹角的范围是:[0,π].2.平面向量的数量积定义设两个非零向量a,b的夹角为θ,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b投影|a|cos θ叫做向量a在b方向上的投影,|b|cos θ叫做向量b在a方向上的投影几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积(1)交换律:a·b=b·a;(2)数乘结合律:(λa)·b=λ(a·b)=a·(λb);(3)分配律:a·(b+c)=a·b+a·c。

4.平面向量数量积的性质及其坐标表示设非零向量a=(x1,y1),b=(x2,y2),θ=〈a,b〉.结论几何表示坐标表示模|a|=错误!|a|=错误!数量积a·b=|a||b|cosθa·b=x1x2+y1y2夹角cos θ=错误!cos θ=错误! a⊥b a·b=0x1x2+y1y2=0|a·b|与|a||b|的关系|a·b|≤|a||b||x1x2+y1y2|≤错误!·错误! 12211212[常用结论]1.平面向量数量积运算的常用公式(1)(a+b)·(a-b)=a2-b2;(2)(a±b)2=a2±2a·b+b2.2.两个向量a,b的夹角为锐角⇔a·b>0且a,b不共线;两个向量a,b的夹角为钝角⇔a·b<0且a,b不共线.3.a在b方向上的投影为错误!,b在a方向上的投影为错误!.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)两个向量的数量积是一个实数,向量的数乘运算的运算结果是向量.() (2)向量在另一个向量方向上的投影为数量,而不是向量.()(3)由a·b=0可得a=0或b=0. ()(4)(a·b)c=a(b·c).()[答案](1)√(2)√(3)×(4)×二、教材习题衍生1.设a=(1,-2),b=(-3,4),c=(3,2),则(a+2b)·c=()A.(-15,12)B.0C.-3 D.-11C[∵a+2b=(-5,6),∴(a+2b)·c=-5×3+6×2=-3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2022届高考数学一轮复习讲义:第五章5.5复数学生版
第1课时
进门测
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)方程x2+x+1=0没有解.()
(2)复数z=a+b i(a,b∈R)中,虚部为b i.()
(3)复数中有相等复数的概念,因此复数可以比较大小.()
(4)原点是实轴与虚轴的交点.()
(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.()
作业检查

第2课时
阶段训练
题型一复数的概念
例1(1)若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b的值分别等于() A.3,-2 B.3,2
C.3,-3 D.-1,4
(2)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的() A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件
(3)i是虚数单位,复数z满足(1+i)z=2,则z的实部为________.
引申探究
1.若将本例(1)中方程左边改为(1+i)(2-3i),求a,b的值.
2.若将本例(3)中的条件“(1+i)z=2”改为“(1+i)3z=2”,求z的实部.。

相关文档
最新文档