fluent教程 第五章燃烧模拟.ppt

合集下载

FLUENT算例 (9)模拟燃烧.pptx

FLUENT算例 (9)模拟燃烧.pptx

⑥ 在 Hydraulic Diameter 项输入燃烧筒直径 0.45
⑦ Species Mass Fractions 项均为常数,且在 O2 项输入 0.22 ⑧ 点击 OK
3
设定燃料进口边界条件
① 在 Zone 项选择 inlet_fuel ② 确定 Type 项为 velocity-inlet ,点击 Set,打开燃料速度入口边界设
② 确定在 Type 项为 velocity-inlet
③ 在 Velocity Magnitude 项输入空气入口速度 0.5 ④ 在 Turbulence Specification Method 项选 Intensity and Hydraulic
Diameter
⑤ 在 Turbulence Intensity 项输入 10
第 3 步 设置边界类型并输出文件
1
设置甲烷速度入口边界
① 在 Action 项为 Add
② 在 Name 项填入边界名 inlet-fuel
③ 在 Type 项选择 WELOCITY_INLET
④ 点击 Edges 右侧黄色区域
⑤ 按住 Shift 键点击 AC 线段
⑥ Apply
2
设置空气速度入口边界
③ 在 Thermal 选项卡中 Thermal Conditions 项 选择 Heat Flux
④ 在 Heat Flux 项保留默认的零值
⑤ 保留其他默认设置,点击 OK
第 5 步 初始化流场并求解
1 设置求解控制参数 ①打开求解控制参数设置对话框,在 Under-Relaxation Factors 项,设
学海无 涯
Fluent 是目前国际上比较流行的商用 CFD 软件包,在美国的市场占有率为 60%,凡 是和流体、热传递和化学反应等有关的工业均可使用。它具有丰富的物理模型、先 进的数值方法和强大的前后处理功能,在航空航天、汽车设计、石油天然气和涡轮 机设计等方面都有着广泛的应用。

FLUENT中组分输运及化学反应(燃烧)模拟

FLUENT中组分输运及化学反应(燃烧)模拟

©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
燃烧模拟

广泛应用与均相和非均相燃 烧过程模拟

燃烧炉 锅炉 加热器 燃气轮机 火箭发动机 流场流动特性及其混合特 性 温度场 组分浓度场 颗粒和污染物排放
Temperature in a gas furnace

求解内容

缺点:


©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
守恒标量 (混合物分数) 模型: PDF 模型

只适应用于非预混 (扩散) 火焰燃烧 假定化学反应过程受混合速率控制

满足局部化学平衡. 控制体(计算单元)组分、物性决定于燃料和氧化剂在该处的混合程 度. 用化学平衡计算来处理化学反应 (prePDF).
i i ( f , c ) Pf ( f ) Pc ( c )dc df
00

只适合绝热系统(FLUENT V5) Import strained flame calculations

prePDF or Sandia’s OPPDIF code

Single or multiple flamelets
f=1 f=0 f=1
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
系统化学平衡假设

化学反应很快到达平衡. 可以考虑中间组分.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
PDF 模拟Turbulence-Chemistry相互作用

Fluctuating mixture fraction is completely defined by its probability density function (PDF).

fluent燃烧教程

fluent燃烧教程

Copyright 2001 Fluent Inc. All rights reserved.
8
Laminar flames: General Finite-Rate Chemistry
Example: Mitchell flame
Company Confidential
Copyright 2001 Fluent Inc. All rights reserved.
Limit updates when solution changing quickly Qn+1 = Qn + σ ∆Q ε 2 ∆ T > ε 3T where ε3 = positivity rate (default = 0.2) σ = ε2 = temp. redux (default = 0.25) otherwise 1
Disable reactions and solve for mixing. Enable reactions – flame should propagate back to flame stabilizer.
For non-premixed flames:
For low temperature inlets and walls, an ignition source is required
Low pressure and high pressure rates, with blending functions
Molecular transport
Critical in subsonic laminar flames since it determines mixing and flame speeds Recommend using kinetic theory

fluent算例模拟燃烧

fluent算例模拟燃烧

计算流体力学作业FLUENT 模拟燃烧问题描述:长为2m、直径为的圆筒形燃烧器结构如图1所示,燃烧筒壁上嵌有三块厚为 m,高 m的薄板,以利于甲烷与空气的混合。

燃烧火焰为湍流扩散火焰。

在燃烧器中心有一个直径为 m、长为 m、壁厚为 m的小喷嘴,甲烷以60 m/s的速度从小喷嘴注入燃烧器。

空气从喷嘴周围以 m/s的速度进入燃烧器。

总当量比大约是(甲烷含量超过空气约28%),甲烷气体在燃烧器中高速流动,并与低速流动的空气混合,基于甲烷喷嘴直径的雷诺数约为×103。

假定燃料完全燃烧并转换为:CH4+2O2→CO2+2H2O反应过程是通过化学计量系数、形成焓和控制化学反应率的相应参数来定义的。

利用FLUENT的finite-rate化学反应模型对一个圆筒形燃烧器内的甲烷和空气的混合物的流动和燃烧过程进行研究。

1、建立物理模型,选择材料属性,定义带化学组分混合与反应的湍流流动边界条件2、使用非耦合求解器求解燃烧问题3、对燃烧组分的比热分别为常量和变量的情况进行计算,并比较其结果4、利用分布云图检查反应流的计算结果5、预测热力型和快速型的NO X含量6、使用场函数计算器进行NO含量计算一、利用GAMBIT建立计算模型第1步启动GAMBIT,建立基本结构分析:圆筒燃烧器是一个轴对称的结构,可简化为二维流动,故只要建立轴对称面上的二维结构就可以了,几何结构如图2所示。

(1)建立新文件夹在F盘根目录下建立一个名为combustion的文件夹。

(2)启动GAMBIT(3)创建对称轴①创建两端点。

A(0,0,0),B(2,0,0)②将两端点连成线(4)创建小喷嘴及空气进口边界①创建C、D、E、F、G点②连接AC、CD、DE、DF、FG。

(5)创建燃烧筒壁面、隔板和出口①创建H、I、J、K、L、M、N点(y轴为,z轴为0)。

②将H、I、J、K、L、M、N向Y轴负方向复制,距离为板高度。

③连接GH、HO、OP、PI、IJ、JQ、QR、RK、KL、LS、ST、TM、MN、NB。

fluent硫化氢与二氧化硫燃烧模拟

fluent硫化氢与二氧化硫燃烧模拟

fluent硫化氢与二氧化硫燃烧模拟1.启动FLUENT并导入网格(1)Windows系统下执行“开始”→“所有程序”→ANSYS2021R1→FluidDynamics→Fluent2021R1命令,启动Fluent2021R1。

(2)单击主菜单中File→Read→Mesh命令,导入.msh网格文件。

2.定义模型单击命令结构树中General按钮,弹出General(总体模型设定)面板。

在SolverTime中选择Transient,勾选Gravity,Z填入-9.81,X填入自定义函数8[ms^-2]*sin(9[rads^-1]*t)。

3.设置材料(1)双击A4栏Setup项,打开FluentLauncher对话框,单击OK按钮进入FLUENT界面。

(2)单击主菜单中SettingUpPhysics→Materials→Create/Edit,弹出Create/EditMaterials(材料)对话框。

单击FluentDatabase按钮弹出FluentDatabaseMaterials对话框,选择waterliquid,单击Copy按钮确认。

4.设置多相流模型(1)在模型设定面板Models中双击Multiphase按钮,弹出MultiphaseModel(多相流模型)对话框,选择VOF,勾选ImplicitBodyForce,单击OK按钮确认并关闭对话框。

(2)在模型设定面板Models中双击Multiphase下的Phases 按钮,弹出Phase(多相流设置)对话框,在Phase-1对话框中,PhaseMaterial选择air,在Phase-2对话框中,PhaseMaterial选择water-liquid,单击OK按钮确认并关闭对话框。

5.初始条件(1)单击主菜单中Solution→Initialization按钮,弹出SolutionInitialization(初始化设置)面板。

fluent在燃烧方面的应用

fluent在燃烧方面的应用

CFD主要工作流程
• 几何描述
• 说明流动条件
• 选择计算的数学模型
• 说明初始条件、边界条件
• 网格生成
• 选择数值计算参数
• CFD程序计算 • 流场结果的可视化分析处理 • 准确度估计
流场结果后处理:
通过等值图、流线图、XY函数曲线图等手 段对流场密度、压力、马赫数等参数和流速、 流向等进行分析
– 描述流体运动的偏微分方程数学特性非常复杂,迄今为止只有 很少数很简单的流动用AFD获得了结果
• CFD与实验研究(EFD)相比有独特的优势
– 不需要实验模型、风洞等,可节省大量的时间和经费 – 可以获得远比实验数据丰富、直观的三维流场结果 – 可以模拟许多难以进行实验的流动问题 – 能实现计算机的“虚拟”设计/分析,一定程度代替制造和测
– 松弛迭代、CFL条件、Lax定理等
• 60~70年代初步形成数值计算能力,无粘线性问题计算
– 面元法,用于飞机和汽车工业
• 70~80年代实现了无粘非线性问题的计算
– 全速势方程计算,激波装配法,不可压N-S方程计算
• 80~90年代取得了Euler/N-S方程计算突破
– TVD、MUSCL等高分辨率格式,时间推进的有限体积法
— Fluent应用 —
燃烧模拟
目录 本讲
第一章 Fluent简介
§ 1.3 计算流体力学中的应用
可用于非常广泛的涉及流体运动的领域 • 航空航天 • 天气预测 • 舰船设计 • 汽车工业 • 能源工程 • 其他工业 • 生物工程 • 体育竞赛
— Fluent应用 —
燃烧器模拟
目录 本讲
第一章 Fluent简介
1. /dvbbs/index.asp?action=fra meon

《fluent讲义》课件

《fluent讲义》课件

Fluent的模拟应用和优化技术
1
热传导模拟
模拟热传导过程,包括传热、热辐射和相变,以优化能量传递和系统效率。
2
多物理场模拟
将不同物理场耦合进行模拟,如流体-固体、流体-电磁和流体-热传导,以研究多 场耦合效应。
3
物流耦合模拟
模拟流体和结构耦合,研究流体对结构的影响,以及结构变化对流体行为的反馈。
流体力学概念与模拟
1 流体力学基础
介绍流体力学的基本概念,包括质量守恒、 动量守恒和能量守恒。
2 多相流模拟
探索多相流模型,如气固流、气液流和固液 流,并学习如何模拟这些复杂的流体行为。
3 湍流模拟
了解湍流的产生机制和模型,并学习如何进 行湍流模拟以预测和优化流体行为。
4 化学反应模拟
研究流体中的化学反应过程,包括燃烧、化 学反应和质量转移,并模拟这些过程的影响。
Fluent的动网格技术和并行计算
动网格技术
介绍Fluent中的动网格技术,包括网格自适应和网 格重构。动态调整网格以捕捉流动细节和提高模拟 精度。
并行计算
探索Fluent中的并行计算技术,利用多核处理器和 集群系统提高模拟速度和处理大规模模拟任务。
Fluent的后处理工具和工程应用案例
后处理工具
Fluent的操作和界面介绍包括模型创建、网 格导入、参数设置等。
物理模型选择
深入了解Fluent所提供的多种物理模型选项,并 选择适合你的应用的模型。
用户界面
探索Fluent友好的用户界面,包括工具栏、菜单 栏、视图控制和后处理选项。
求解器设置
学习如何选择和设置合适的求解器以提高模拟效 率和准确性。
使用Fluent的后处理工具进行数据可视化、图表分析 和结果解释,以实现全面的模拟分析。

fluent教程 第五章,燃烧模拟解析

fluent教程 第五章,燃烧模拟解析

生成新的混合物. 改变已有混合物的物性/化学反应.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
有限速率模型小节

优点:


可以应用于nonpremixed, partially premixed和premixed combustion 简单、直观 应用广泛 不适合混合速率与化学反应动力学时间尺度相当时候的化学反应 (要 求 Da >>1). 没有严格考虑湍流-化学反应之间的相互作用问题 不能考虑中间产物或组分、不能考虑分裂影响. 模型常数不确定, 特别是用于计算多个化学反应的时候尤为如此,模 型常数通用性较差。.

化学反应机理不明确.


只求解混合物分数及其方差的输运方程, 无需求解组分的输运方程. 可以严格考虑湍流与化学反应的相互作用
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
混合分数定义

混合分数, f, 写成元素的质量分数形式:
f

Z k Z k ,O Z k , F Z k ,O

组分 j的源项 (产生或消耗)是机理中所有k个反应的净反应速率 :
R j R jk
k


Rjk (第k 个化学反应生成或消耗的j 组分)是根据 Arrhenius速率公式 、混合或涡旋破碎(EBU)速率的小值。. 混合速率与涡旋寿命相关, k /.

物理意义是湍流涡旋是决定化学反应的首要因素。对于非预混燃烧 ,湍流涡旋决定了组分混合;对于预混燃烧湍流决定了热输运(高 温加热低温)。即:化学反应决定于湍流混合组分(非预混燃烧) 和热量(预混燃烧)的速率。
©燃烧
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解当地时间平均的各个组分的质量分数, mj.
组分 j的源项 (产生或消耗)是机理中所有k个反应的净反应速率 :
Rj Rjk k
Rjk (第k 个化学反应生成或消耗的j 组分)是根据 Arrhenius速率公式 、混合或涡旋破碎(EBU)速率的小值。.
混合速率与涡旋寿命相关, k /.
物理意义是湍流涡旋是决定化学反应的首要因素。对于非预混燃烧 ,湍流涡旋决定了组分混合;对于预混燃烧湍流决定了热输运(高 温加热低温)。即:化学反应决定于湍流混合组分(非预混燃烧) 和热量(预混燃烧)的速率。
该模型用来处理系统中同时具有非预混和充分预混的情况。 该方法同时求解了混合分数和反应进展变量
©燃烧
计算流体与传热传质
有限化学反应速率模型设置
热科学与能源工程系 2003年10月
要求:
给出组分及其物性 给出化学反应及其反应速率在内的化学反应动力学数据
FLUENT V5 在mixture material database里面提供了数据 对于常用的燃料,数据库都会给定机理,组分物性等信息. 如果用户需要给定个性化机理,则:
粉煤与喷油燃烧子模型
辐射模型: DTRM, P-1, Rosseland 和Discrete Ordinates (V5)
湍流模型: k-, RNG k-, RSM, Realizable k- (V5) and LES (V5)
污染物排放模型: NOx with reburn chemistry (V5) and soot
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
模拟燃烧过程的化学反应动力学
难点与挑战
多数实际的燃烧过程是湍流 化学反应速率高度非线性; 湍流-化学反应高度耦合,相互作用很重
要。 真实化学反应机理包含数十个组分, 数百个基元反应,并且方程组极
具刚性 (基元化学反应时间尺度相差大)
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
燃烧模拟
广泛应用与均相和非均相燃 烧过程模拟
燃烧炉 锅炉 加热器 燃气轮机 火箭发动机
求解内容
流场流动特性及其混合特 性
温度场 组分浓度场 颗粒和污染物排放
Temperature in a gas furnace CO2 mass fraction Stream function
计算流体与传热传质
FLUENT中组分输运及化学反应 (燃烧)模拟
热科学与能源工程系 2003年10月
Temperature in a gas furnace
©燃烧
计算流体与传热传质
概要
应用 燃烧模拟简介 化学动力学 气相燃烧模型 稀疏相燃烧模型 污染物排放模拟 燃烧数值模拟步骤介绍
热科学与能源工程系 2003年10月
气相燃烧
有限速率模型 (Magnussen model) 守恒标量的 PDF模型 (一个或两个混合分数) 层流火焰面(小火焰)模型 (V5) Zimont model (V5)
稀疏相模型
湍流颗粒弥散
随机轨道模型(Stochastic tracking) 颗粒云团模型(Particle cloud model) (V5)
实际处理方法
简化化学反应机理 有限速率燃烧模型
考虑湍流及其混合、弱化反应化学 混合分数模型
平衡化学的 PDF模型 层流火焰面模型
进展变量模型
Zimont 模型
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
有限速率模型
用总包机理反应描述化学反应过程. 求解化学组分输运方程.
©燃烧
计算流体与传热传质
燃烧模型概要
热科学与能源工程系 2003年10月
稀疏相模型
液滴/颗粒动力学 非均相反应 液化 蒸发
输运控制方程
质量 动量 (湍流) 能量 化学组分
污染物模型

燃烧模型
预混 局部预混 非预混燃烧
辐射换热模型
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
FLUENT提供的燃烧模型
生成新的混合物. 改变已有混合物的物性/化学反应.
©燃烧
计算流体与传热传质
有限速率模型小节
热科学与能源工程系 2003年10月
优点:
可以应用于nonpremixed, partially premixed和premixed combustion 简单、直观
应用广泛
缺点:
不适合混合速率与化学反应动力学时间尺度相当时候的化学反应 (要 求 Da >>1).
满足局部化学平衡. 控制体(计算单元)组分、物性决定于燃料和氧化剂在该处的混合程
度.
化学反应机理不明确.
用化学平衡计算来处理化学反应 (prePDF).
只求解混合物分数及其方差的输运方程, 无需求解组分的输运方程. 可以严格考虑湍流与化学反应的相互作用
©燃烧
计算流体与传热传质
混合分数定义
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
Fluent燃烧模型
有限速率模型
求解组分的质量分数输运方程,化学反应机理由用户自己定 义。
非预混燃烧模型
该模型中并不求解单个组分的输运方程,而是求解一个或者 两个守恒标量(混合分数)的输运方程
预混燃烧模型
模拟完全混合的燃烧问题。充分混合的燃烧物和产物被火焰 前锋分隔,求解出的化学反应进展变量来描述该火焰前峰的位置 部分预混燃烧模型
混合物分数是守恒标量(conserved scalar):
没有严格考虑湍流-化学反应之间的相互作用问题
不能考虑中间产物或组分、不能考虑分裂影响. 模型常数不确定, 特别是用于计算多个化学反应的时候尤为如此,模
型常数通用性较差。.
©燃烧
计算流体与传热传质
热科学与能源工程系 2003年10月
守恒标量 (混合物分数) 模型: PDF 模型
只适应用于非预混 (扩散) 火焰燃烧 假定化学反应过程受混合速率控制
热科学与能源工程系 2003年10月
混合分数, f, 写成元素的质量分数形式:
f Zk Zk,O Zk,F Zk,O
其中, Zk 是元素k的质量分数 ;下标 F 和O 表示燃料和氧化剂进口流 处的值。
对于简单的 fuel/oxidizer系统, 混合物分数代表计算控制体里的燃料 质量分数.
相关文档
最新文档