不等式性质及证明
不等式的性质和证明

不等式的性质和证明一、基础知识1.性质对称性a>bÛb<a 传递性a>b,b>c Þ a>c 加法单调性a>b Þ a+c>b+c 乘法单调性a>b,c>0 Þ ac>bc;a>b,c<0 Þ ac<bc开方法则a>b>0 Þ移项法则a+b >c Þ a>c-b 同向不等式相加a>b,c>d Þ a+c>b+d 同向不等式相乘a>b>0,c >d>0 Þ ac>bd 乘方法则a>b>0 Þ a n>b n倒数法则a>b,ab>0 Þ2.证明方法:比较法,综合法,分析法,反证法,换元法证明技巧:逆代,判别式,放缩,拆项,单调性3.主要公式及解题思路公式:a2+b2≥2ab(a,b∈R)a3+b3+c3≥3abc(a,b,c∈R+)思路:①②③④正数x,y且x+y=1,求证:≥二、例题解析1.(1)a,b∈R+且a<b,则下列不等式一定成立的是()A.B.C.D.(2)若0<x<1,0<y<1且x≠y,则x2+y2,x+y,2xy,中最大的一个是()A.x2+y2B.x+y C.2xy D.(3)若a,b为非零实数,则在①a2+b2≥2ab ②≤ ③≥④≥2中恒成立的个数为()A.4B.3C.2D.1(4)下列函数中,y的最小值是4的是()A.B.C.y= D.y=lgx+4log x10(5)若a2+b2+c2=1,则下列不等式成立的是()A. a2+b2+c2>1B.ab+bc+ca≥C.|abc|≤ D a3+b3+c3≥2.(1)已知x,y∈R+且2x+y=1,则的最小值为(2)已知x,y∈R 且x2+y2=1,则3x+4y的最大值为(3)在等比数列{a n}和等差数列{b n}中,a1=b1>0,a3=b3>0,a1≠a3,试比较大小:a5b5(4)已知a>0,b>0,a + b=1,则的最小值为(5)已知:x+2y=1,则的最小值为(6)已知:x>0,y>0且x+2y=4,则lg x + lg y的最大值为(7)若x>0,则,若x<0,则(8)建造一个容积为8 m3,深为2m的长方体无盖水池,如果池底和池壁造价分别为120元和80元,那么水池的最低总造价为元。
不等式的性质和解法

不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。
2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。
(2)同向相加:如果a>b且c>d,那么a+c>b+d。
(3)同向相减:如果a>b,那么a-c>b-c。
(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。
二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。
(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。
(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。
(4)合并同类项:将不等式两边同类项合并。
(5)化简:将不等式化简到最简形式。
2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。
(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。
3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。
4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。
(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。
三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。
2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。
3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。
不等式的性质与证明方法总结

不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。
不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。
本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。
一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。
这个性质是不等式推理的基础,可以用于简化证明过程。
2. 加法性:如果a < b,则a + c < b + c。
这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。
3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。
这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。
4. 对称性:如果a < b,则-b < -a。
这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。
二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。
2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。
均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。
3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。
不等式的基本性质8条证明过程不等式的基本性质和等式的基本性质的异同

不等式的基本性质:①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z;⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑦如果x>y>0,m>n>0,那么xm>yn;⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)或者说,不等式的基本性质有:①对称性;②传递性:③加法单调性:即同向不等式可加性:④乘法单调性:⑤同向正值不等式可乘性:⑥正值不等式可乘方:⑦正值不等式可开方:⑧倒数法则。
[2]……如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
不等式的基本性质和等式的基本性质的异同:①相同点:无论是等式还是不等式,都可以在它的两边加(或减)同一个数或同一个整式;②不同点:对于等式来说,在等式的两边乘(或除以)同一个正数(或同一个负数),等式仍然成立,但是对于不等式来说,却不大一样,在不等式的两边乘(或除以)同一个正数,不等号的方向不变,而在不等式的两边乘(或除以)同一个负数,不等号要改变方向。
原理:①不等式F(x)< G(x)与不等式G(x)>F(x)同解。
②如果不等式F(x)< G(x)的定义域被解析式H(x )的定义域所包含,那么不等式F (x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。
3不等式的性质证明和基本不等式

3.分析法: 由结论到条件,注意格式规范→步
步可逆即充要
x Ex:已知:
y 0 ,比较:
x y x y
与
x x
2 2
y y
2 2
的大小.
Ex:比较
x
2
与 2 x 的大小。
1 a b 1 b c 1 a c
ab 2
Ex:已知 a
b c ,求证:
Ex:已知 a , b
R , a b , 求证: a b b ( a b ) a
( Ex:已知 a , b R , 求证:
a
2
1
)2 (
b
2
1
1
1
)2 a 2 b 2
b
a
Ex:已知
求证: lg
2
a,b,c R ,
lg b c 2
且不全相等
a c 2 lg a lg b lg c
2
且可推广:
a,b,c R ,
a b c 3
3
abc 仅 当 a b c 0时 取 等 号
n
且进一步:
ai R ,
a1 a 2 a n n
a1 a n
称作:n个正数的算术平均数不小于它的几何平均数 且变形为:
1 a,b
二、不等式的基本性质
(1)传递性:a
b,b c a c
a (2)加法单调性:
a (3)乘法单调性:
b a c b c
b, c 0 ac bc b, c d a c b d b 0, c d 0 ac bd
不等式的性质证明

不等式的性质证明不等式是数学中常见的概念,它描述了两个数、两个算式或两个函数之间的大小关系。
在数学研究和实际问题中,不等式的性质具有重要的意义。
本文将深入探讨不等式的基本性质,并进行相应的证明。
一、不等式的基本性质1. 传递性:对于任意的实数a、b、c,若a < b,b < c,则有a < c。
即如果一个数小于另一个数,而另一个数又小于另一个数,那么第一个数一定小于第三个数。
证明:设a < b,b < c,用反证法。
假设a ≥ c,那么由于a < b,根据传递性得知b ≥ c,与b < c矛盾。
故假设不成立,得证。
2. 加法性:对于任意的实数a、b、c,若a < b,则有a + c < b + c。
即两个不等式的同侧同时加上一个相同的数,不等号的方向不变。
证明:设a < b,用反证法。
假设a + c ≥ b + c,那么由于a < b,根据传递性得知a + c < b + c,与假设矛盾。
故假设不成立,得证。
3. 乘法性:对于任意的实数a、b和正数c,若a < b且c > 0,则有ac < bc。
即两个不等式的同侧同时乘上一个正数,不等号的方向不变;若c < 0,则有ac > bc,即两个不等式的同侧同时乘上一个负数,不等号的方向反向。
证明:设a < b,用反证法。
假设ac ≥ bc,若c > 0,则由于a < b,根据乘法性得知ac < bc,与假设矛盾;若c < 0,则有ac > bc,同样与假设矛盾。
故假设不成立,得证。
二、不等式中的常见定理及证明1. 加法定理:对于任意的实数a,b和c,若a < b,则有a + c < b + c。
证明:设a < b,令d = b - a,根据传递性得知0 < d。
由于c > 0,根据乘法性可得0 < c × d。
不等式的基本性质和证明的基本方法

通过构造平方和并利用非负性进行证明。
应用领域
在线性代数、函数分析和概率论中有广泛应用,如证明某些函数的可 积性等。
切比雪夫不等式
定义
对于任意两个实数序列,序列和的乘积小于或等于序列各项乘积 的和。
证明方法
通过排序后应用算术-几何平均不等式进行证明。
应用领域
在数论、概率论和统计学中有应用,如证明某些概率分布的性质等。
06
经典不等式介绍及其证明
算术-几何平均不等式
定义
对于所有非负实数,算术平均数永远大于或等于 几何平均数。
证明方法
通过数学归纳法或拉格朗日乘数法进行证明。
应用领域
在概率论、信息论和统计学中广泛应用,如证明 熵的最大值等。
柯西-施瓦茨不等式
定义
对于任意两个向量,它们的内积的绝对值小于或等于它们的模的乘 积。
数列的单调性
利用不等式的性质,可以判断数列的单调性,即数列是递增还是 递减。
数列的有界性
通过不等式的性质,可以证明数列的有界性,即数列的每一项都落 在某个区间内。
数学归纳法中的不等式证明
在数学归纳法中,经常需要利用不等式的性质进行证明,如证明某 个不等式对所有的自然数都成立。
05
证明不等式的基本策略
不等式在数学、物理、工程等领域都有广泛应用,研究不等式有 助于解决实际问题。
不等式的基本性质概述
01
传递性
02
可加性
03 可乘性
04
特殊性
对称性
05
如果a>b且b>c,则a>c。 如果a>b,则a+c>b+c。 如果a>b且c>0,则ac>bc。 任何数都大于负数,小于正数。 如果a=b,则b=a。
不等式基本性质和证明

第一讲 不等式的基本性质与证明一、 知识点分析不等式概念:我们把含有不等号的式子叫做不等式。
不等式的基本性质:(1)a b b a <⇔>(对称性) (2)c a c b b a >⇒>>,(传递性) (3)c b c a b a ±>±⇒>(4)d b c a d c b a +>+⇒>>,(同向相加性) (5)bc ac c b a >⇒>>0,.,bc ac c b a <⇒<>0,(6)bd ac d c b a >⇒>>>>0,0(同向相乘性) (7)a ﹥b ,ab ﹥0,a 1⇒﹤b1(倒数变向性) (8))1,(0>∈>⇒>>n Z n b a b a n n 且(平方法则),)1,(0>∈>⇒>>n Z n b a b a n n 且(开方法则)注:1、无同向相减性和同向相除性,且同向相乘性须正数2、性质(8)中,若n 为正奇数,则无须b a ,都大于零两个实数大小的比较:作差法 b a b a >⇔>-0;b a b a =⇔=-0;b a b a <⇔<-0作商法 若b a ,﹥0,则b a ﹥1a ⇔﹥b ;b a ﹤1a ⇔﹤b ;ba=1a ⇔=b不等式的证明方法: ①作差法②作商法③综合法:由因到果 ④分析法:执果索因 ⑤放缩法:常见类型有⑴nn n n n n n n n111)1(11)1(11112--=-<<+=+- (放缩程度较大);⑵)1111(2111122+--=-<n n n n (放缩程度较小);⑶1(212221--=-+<=n n n n nn⑥数学归纳法:常用于数列类的不等式 ⑦利用函数单调性法二、 例题精选例1.⑴比较a 与b 的大小:a =m 3-m 2n -3mn 2 与 b =2m 2n -6mn 2+n 3⑵设21x x <,比较1211x x -+与2221x x -+的大小⑶设0,0>>b a ,试比较a b b a b a b a 与的大小 例2.⑴已知y x x yx y x y x ---≤≤≤≤5,,2,51,322求的取值范围 ⑵已知y x y x y -≤-≤≤+≤2,51,3x 2求的取值范围例3. 判断下列命题A 是命题B 的什么条件 ⑴ A :x >3 B:x 1<31 ⑵ A :x <3 B :x 1>31 ⑶ A :x >y B :yx 11< ⑷ A :32>>y x 且 B:65>>+xy y x 且例4. 甲乙两人从A 地同时出发沿同一条路线步行到B 地,甲在前一半时间行走的速度为x ,后一半时间行走的速度为y ,乙用速度x 走完前半段路程,用速度y 走完后半段路程,若x ≠y ,试指出谁先到达B 地,并说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
普通高中课程标准实验教科书—数学 [人教版]高三新数学第一轮复习教案(讲座31)—不等式性质及证明一.课标要求:1.不等关系 通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.基本不等式:(a ,b ≥0)①探索并了解基本不等式的证明过程;②会用基本不等式解决简单的最大(小)问题。
二.命题走向不等式历来是高考的重点内容。
对于本将来讲,考察有关不等式性质的基础知识、基本方法,而且还考察逻辑推理能力、分析问题、解决问题的能力。
本将内容在复习时,要在思想方法上下功夫。
预测2007年的高考命题趋势:1.从题型上来看,选择题、填空题都有可能考察,把不等式的性质与函数、三角结合起来综合考察不等式的性质、函数单调性等,多以选择题的形式出现,解答题以含参数的不等式的证明、求解为主;2.利用基本不等式解决像函数)0(,)(>+=a xax x f 的单调性或解决有关最值问题是考察的重点和热点,应加强训练。
三.要点精讲1.不等式的性质比较两实数大小的方法——求差比较法 0a b a b >⇔->; 0a b a b =⇔-=; 0a b a b <⇔-<。
定理1:若a b >,则b a <;若b a <,则a b >.即a b >⇔b a <。
说明:把不等式的左边和右边交换,所得不等式与原不等式异向,称为不等式的对称性。
定理2:若a b >,且b c >,则a c >。
说明:此定理证明的主要依据是实数运算的符号法则及两正数之和仍是正数;定理2称不等式的传递性。
定理3:若a b >,则a c b c +>+。
说明:(1)不等式的两边都加上同一个实数,所得不等式与原不等式同向; (2)定理3的证明相当于比较a c +与b c +的大小,采用的是求差比较法; (3)定理3的逆命题也成立;(4)不等式中任何一项改变符号后,可以把它从一边移到另一边。
定理3推论:若,,a b c d a c b d >>+>+且则。
说明:(1)推论的证明连续两次运用定理3然后由定理2证出;(2)这一推论可以推广到任意有限个同向不等式两边分别相加,即:两个或者更多个同向不等式两边分别相加,所得不等式与原不等式同向;(3)同向不等式:两个不等号方向相同的不等式;异向不等式:两个不等号方向相反的不等式。
定理4.如果b a >且0>c ,那么bc ac >;如果b a >且0<c ,那么bc ac <。
推论1:如果0>>b a 且0>>d c ,那么bd ac >。
说明:(1)不等式两端乘以同一个正数,不等号方向不变;乘以同一个负数,不等号方向改变;(2)两边都是正数的同向不等式的两边分别相乘,所得不等式与原不等式同向;(3)推论1可以推广到任意有限个两边都是正数的同向不等式两边分别相乘。
这就是说,两个或者更多个两边都是正数的同向不等式两边分别相乘,所得不等式与原不等式同向。
推论2:如果0>>b a , 那么nn b a > )1(>∈n N n 且。
定理5:如果0>>b a ,那么nn b a > )1(>∈n N n 且。
2.基本不等式定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”)。
说明:(1)指出定理适用范围:R b a ∈,;(2)强调取“=”的条件b a =。
定理2:如果b a ,是正数,那么ab ba ≥+2(当且仅当b a =时取“=”) 说明:(1)这个定理适用的范围:,a b R +∈;(2)我们称b a b a ,2为+的算术平均数,称b a ab ,为的几何平均数。
即:两个正数的算术平均数不小于它们的几何平均数。
3.常用的证明不等式的方法 (1)比较法比较法证明不等式的一般步骤:作差—变形—判断—结论;为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以便判断其正负。
(2)综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数的定理)和不等式的性质,推导出所要证明的不等式,这个证明方法叫综合法;利用某些已经证明过的不等式和不等式的性质时要注意它们各自成立的条件。
综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒L ,及从已知条件A 出发,逐步推演不等式成立的必要条件,推导出所要证明的结论B 。
(3)分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法。
(1)“分析法”是从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,即“执果索因”;(2)综合过程有时正好是分析过程的逆推,所以常用分析法探索证明的途径,然后用综合法的形式写出证明过程。
四.典例解析题型1:考查不等式性质的题目例1.(1)(06上海文,14)如果0,0a b <>,那么,下列不等式中正确的是( )(A )11a b< (B < (C )22a b < (D )||||a b > (2)(06江苏,8)设a 、b 、c 是互不相等的正数,则下列等式中不恒成立....的是 (A )||||||c b c a b a -+-≤- (B )aa a a 1122+≥+ (C )21||≥-+-ba b a (D )a a a a -+≤+-+213 解析:(1)答案:A ;显然0,0a b <>,但无法判断b a ,-与|||,|b a 的大小; (2)运用排除法,C 选项21≥-+-ba b a ,当a -b <0时不成立,运用公式一定要注意公式成立的条件,如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a ,如果a ,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 点评:本题主要考查.不等式恒成立的条件,由于给出的是不完全提干,必须结合选择支,才能得出正确的结论。
例2.(1)(2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是( )+c >b +d-c >b -d >bd D.cb d a > (2)(1999上海理,15)若a <b <0,则下列结论中正确的命题是( ) Ab a 11>和||1||1b a >均不能成立B .bb a 11>-和||1||1b a >均不能成立 C .不等式a b a 11>-和(a +b 1)2>(b +a1)2均不能成立D.不等式||1||1b a >和(a +a1)2>(b +b 1)2均不能成立 解析:(1)答案:A ;∵a >b ,c >d ,∴a +c >b +d ;(2)答案:B解析:∵b <0,∴-b >0,∴a -b >a ,又∵a -b <0,a <0,∴ab a 11<-。
故ab a 11>-不成立。
∵a <b <0,∴|a |>|b |,∴||1||1b a <故||1||1b a >不成立。
由此可选B 。
另外,A 中b a 11>成立.C 与D 中(a +b 1)2>(b +a1)2成立。
其证明如下:∵a <b <0,a b 11<<0,∴a +b 1<b +a 1<0,∴|a +b 1|>|b +a1|, 故(a +b 1)2>(b +a1)2。
点评:本题考查不等式的基本性质。
题型2:基本不等式例3.(06浙江理,7)“a >b >0”是“ab <222b a +”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D)既不允分也不必要条件解析:A ;22b a +ab 2≥中参数的取值不只是指可以取非负数。
均值不等式满足)0,0(,2>>≥+b a ab ba 。
点评:该题考察了基本不等式中的易错点。
例4.(1)(2001京春)若实数a 、b 满足a +b =2,则3a +3b 的最小值是( )343(2)(2000全国,7)若a >b >1,P =b a lg lg ⋅,Q =21(lg a +lg b ),R =lg (2b a +),则( )<P <Q<Q <R <P <R<R <Q解析:(1)答案:B ;3a +3b ≥2b a b a +=⋅3233=6,当且仅当a =b =1时取等号。
故3a +3b 的最小值是6;(2)答案:B ;∵lg a >lg b >0,∴21(lg a +lg b )>b a lg lg ⋅,即Q >P , 又∵a >b >1,∴ab ba >+2, ∴21lg )2lg(=<+ab b a (lg a +lg b ), 即R >Q ,∴有P <Q <R ,选B 。
点评:本题考查不等式的平均值定理,要注意判断等号成立的条件。
题型3:不等式的证明例5.已知a >0,b >0,且a +b =1 求证 (a +a 1)(b +b 1)≥425。
证法一: (分析综合法)欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,即证4(ab )2-33(ab )+8≥0,即证ab ≤41或ab ≥8 ∵a >0,b >0,a +b =1,∴ab ≥8不可能成立∵1=a +b ≥2ab ,∴ab ≤41,从而得证。
证法二: (均值代换法) 设a =21+t 1,b =21+t 2。
∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<21,|t 2|<21, .4254116254123162541)45(41)141)(141()21)(21()141)(141(211)21(211)21(11)1)(1(2242222222222222222112122221122212122=≥-++=--+=-++++++=++++++++=+++⨯+++=+⨯+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =21时,等号成立。