14.3提公因式法练习题

合集下载

14.3 因式分解(讲+练)【14大题型】

14.3 因式分解(讲+练)【14大题型】

14.3 因式分解因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解只针对多项式,而不是针对单项式,是对这个多项式的整体,而不是部分,因式分解的结果只能是整式的积的形式.(2)要把一个多项式分解到每一个因式不能再分解为止.(3)因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算.题型1:因式分解的概念1.下列各式从左到右的变形中,是因式分解且完全正确的是( )A.(x+2)(x﹣2)=x2﹣4B.x2﹣2x﹣3=x(x﹣2)﹣3C.x2﹣4x+4=(x﹣2)2D.x3﹣x=x(x2﹣1)【变式1-1】下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+1【变式1-2】下列各式从左到右的变形中,属于因式分解的是( )A.a(x+y)=ax+ay B.a2−4=(a+2)(a−2)题型2:找公因式2.代数式 15a 3b 3(a−b) , 5a 2b(b−a) , −120a 3b 3(a 2−b 2) 中的公因式是( )A .5a 2b(b−a)B .5a 2b 2(b−a)C .5ab(b−a)D .120a 3b 3(b 2−a 2)提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,这种因式分解的方法叫提公因式法。

注意:(1)提公因式法分解因式实际上是逆用乘法分配律,即 .(2)用提公因式法分解因式的关键是准确找出多项式各项的公因式.(3)当多项式第一项的系数是负数时,通常先提出“—”号,使括号内的第一项的系数变为正数,同时多项式的各项都要变号.(4)用提公因式法分解因式时,若多项式的某项与公因式相等或它们的和为零,则提取公因式后,该项变为:“+1”或“-1”,不要把该项漏掉,或认为是0而出现错误.题型3:提公因式法分解因式3.(1)分解因式:a 2-3a ; (2)分解因式:3x 2y-6xy 2.m m题型4:提公因式法与整体思想4.已知xy=-3,满足x+y=2,求代数式x2y+xy2的值.题型5:平方差公式法分解因式5.因式分解:m2(1)a2-9;(2)25−14题型6:完全平方公式法分解因式6.因式分解:(1)x2-4x+4.(2)16m2-8mn+n2.(3)4x2+20x+25;7.因式分解:(1)x2-3x+2;(2)x2-2x-15(3)x2-7x+12.题型8:分组分解法分解因式8.因式分解:(1)x2+4x-a2+4.(2)9-x2+2xy-y2.题型9:利用因式分解简便运算9.计算:(1)2022+202×196+982(2)652-352;10.已知多项式2x-x+m有一个因式(2x+1),求m的值.题型11:利用因式分解求代数式的值11.已知a+b=5,ab=3,求代数式a3b+2a2b2+ab3的值.题型12:利用因式分解解决整除问题12.求证:对于任意自然数n,(n+7)2-(n-5)2都能被24整除.题型13:因式分解与几何问题13.如图,边长为a、b的矩形,它的周长为14,面积为10,计算a2b+2ab+ab2的值.a2+4ab+3b2因式分解.【变式13-2】如图,长为m,宽为x(m>x)的大长方形被分割成7 小块,除阴影A,B 外,其余5 块是形状、大小完全相同的小长方形,其较短一边长为y.记阴影A 与B 的面积差为S.(1)分别用含m,x,y的代数式表示阴影A,B 的面积;(2)先化简S,再求当m=6,y=1 时S的值;(3)当x取任何实数时,面积差S 的值都保持不变,问m 与y应满足什么条件?题型14:因式分解与三角形问题14.△ABC的三边长分别为a,b,c,且2a+ab=2c+bc,请判断△ABC是等边三角形、等腰三角形,还是直角三角形?并说明理由.【变式14-1】若△ABC的三边长分别为a、b、c,且b2+2ab=c2+2ac,判断△ABC的形状.【变式14-2】已知在△ABC中,三边长分别为a,b,c,且满足等式a2+bc−ac−b2=0,请判断△ABC的形状,并写出你的理由.【变式14-3】已知三角形的三边长分别为a,b,c,且满足等式a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.一、单选题1.同学们把多项式2x2−4xy+2x提取公因式2x后,则另一个因式应为( )A.x−2y B.x−2y+1C.x−4y+1D.x−2y−12.下列多项式中不能用公式进行因式分解的是( )A.a2+a+ 1B.a2+b2-2ab C.−a2+25b2D.−4−b243.把多项式3m(x﹣y)﹣2(y﹣x)2分解因式的结果是( )A.(x﹣y)(3m﹣2x﹣2y)B.(x﹣y)(3m﹣2x+2y)C.(x﹣y)(3m+2x﹣2y)D.(y﹣x)(3m+2x﹣2y)4.如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )A.2560B.490C.70D.495.计算-22021+(-2)2020所得的结果是( )A.-22020B.-2 2021C.22020D.-26.若c2﹣a2﹣2ab﹣b2=10,a+b+c=﹣5,则a+b﹣c的值是( )A.2B.5C.20D.97.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6B.3C.4D.58.观察下列分解因式的过程:x2−2xy+y2−16=(x−y)2−16=(x−y+4)(x−y−4),这种分解因式的方法叫分组分解法.利用这种分组的思想方法,已知a,b,c满足a2−b2−ac+bc=0,则以a,b,c为三条线段首尾顺次连接围成一个三角形,下列描述正确的是( )A.围成一个等腰三角形B.围成一个直角三角形C.围成一个等腰直角三角形D.不能围成三角形二、填空题9.下列因式分解正确的是 (填序号)①x2−2x=x(x−2);②x2−2x+1=x(x−2)+1;③x2−4=(x+4)(x−4);④4x2+4x+1=( 2x+1)210.分解因式:ax2﹣4axy+4ay2= .11.已知:m+n=5,mn=4,则:m2n+mn2= .12.因式分解:1-a2+2ab-b2= .13.边长为a、b的长方形,它的周长为14,面积为10,则a2b+a b2的值为 .14.若△ABC 的三条边a ,b ,c 满足关系式:a 4+b 2c 2﹣a 2c 2﹣b 4=0,则△ABC 的形状是 .15.甲、乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4);乙看错了a ,分解结果为(x +1)(x +9),则多项式x 2+ax +b 分解因式的正确结果为 .三、解答题16.因式分解:(1)a 3−36a(2)14x 2+xy +y 2(3)(a 2+4)2−16a 217.把下列各式因式分解:(1)x 2(y ﹣2)﹣x (2﹣y )(2)25(x ﹣y )2+10(y ﹣x )+1(3)(x 2+y 2)2﹣4x 2y 2(4)4m 2﹣n 2﹣4m+1.18.已知二次三项式x 2+px+q 的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.19.给出三个多项式:12x 2+2x ﹣1,12x 2+4x+1,12x 2﹣2x .请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.四、综合题20.已知 a 2−3a +1=0 ,求(1)a 2+1a 2的值。

必刷基础练【14.3 因式分解】(解析版)

必刷基础练【14.3 因式分解】(解析版)

2022-2023学年八年级数学上册考点必刷练精编讲义(人教版)基础第14章《整式的乘法与因式分解》14.3 因式分解知识点1:提公因式法1.(2021八上·宜宾期末)下列各式从左到右的变形中,是因式分解且完全正确的是( )A .(x+2)(x﹣2)=x 2﹣4B .x 2﹣2x﹣3=x (x﹣2)﹣3C .x 2﹣4x+4=(x﹣2)2D .x 3﹣x=x (x 2﹣1)【答案】C【完整解答】解:A 、(x+2)(x﹣2)=x 2﹣4是乘法运算,故不符合题意;B 、x 2﹣2x﹣3=x (x﹣2)﹣3的右边不是积的形式,故不符合题意;C 、x 2﹣4x+4=(x﹣2)2是因式分解,符合题意;D 、x 3﹣x=x (x 2﹣1)=x (x+1)(x-1),原式分解不彻底,故不符合题意.故答案为:C.【思路引导】把一个多项式在一个范围内化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式,因式分解必须进行到每一个因式都不能再分解为止,据此判断即可.2.(2021.儋州月考)下列各式从左至右是因式分解的是( )A .()242(2)a a a -=+-B .()()2211x y x y x y --=+--C .222()x y x xy y +=++D .222()2x y x xy y -=++【答案】A 【完整解答】解:A 、()242(2)a a a -=+-,等式从左到右的变形属于因式分解,故本选项符合题意;B 、()()2211x y x y x y --=+--,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C 、222()x y x xy y +=++,是整式的乘法,不是因式分解,故本选项不符合题意;D 、222()2x y x xy y -=++,是整式的乘法,不是因式分解,故本选项不符合题意.故答案为:A.【思路引导】把一个多项式化为几个整式的积的形式,这种变形叫做这个多项式的因式分解,据此判断即可.3.(2021八上·东平期中)下列式子由左到右的变形中,属于因式分解的是( )A .(x+2y )2=x 2+4xy+4y 2B .x 2﹣2y+4=(x﹣1)2+3C .3x 2﹣2x﹣1=(3x+1)(x﹣1)D .m (a+b+c )=ma+mb+mc【答案】C【完整解答】解:A 、是整式的乘法,故A 不符合题意;B 、没把多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、是整式乘法,故D 不符合题意;故答案为:C .【思路引导】根据因式分解的定义判断各个选项即可。

八年级数学人教版上册同步练习提公因式法(解析版)

八年级数学人教版上册同步练习提公因式法(解析版)

14.3.1提公因式法一、单选题1.在3257x x x k +++中,若有一个因式为(2)x +,则k 的值为( )A .2B .2-C .6D .6- 【答案】A【分析】根据因式分解的意义可设()()322572x x x k x x mx n +++=+++,再利用整式乘法计算()()22x x mx n +++后得()()32222x m x n m x n +++++,即可根据因式分解与整式乘法的关系求解.【详解】设()()322572x x x k x x mx n +++=+++, ∵()()22x x mx n +++ 322222x mx nx x mx n =+++++()()32222x m x n m x n =+++++3257x x x k =+++,∴25m ,27n m +=, 2k n =,解得3m =,1n =,2k =.故选:A .【点评】本题考查了因式分解的意义,掌握因式分解与整式乘法的关系是解题的关键.2.下列各式由左边到右边是因式分解且分解结果正确的是( )A .()3a 43a 12-=-B .()()24x 94x 34x 3-=+-C .()22x 4x 4x 2-+=-D .()3224a 6a 2a 2a 2a 3a ++=+ 【答案】C【分析】根据因式分解的意义求解即可.【详解】A 、()34312a a -=-是整式的乘法,故A 不符合题意;B 、()()2492323x x x -=+-,原式分解不正确,故B 不符合题意;C 、()22442x x x -+=-,分解正确,故C 符合题意;D 、()3224622231a a a a a a ++=++,原式分解不正确,故D 不符合题意;故选:C .【点评】本题考查了因式分解的意义,利用因式分解是把一个多项式转化成几个整式积的形式.3.下列从左到右是因式分解的是( ).A .(a +b )(a -b )=a 2-b 2B .(a +b )2 =a 2+2ab +b 2C .(x +2)(x -5)=x 2-3x +10D .x 2+2x -15=(x -3)(x +5) 【答案】D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、是整式的乘法,故B 错误;C 、是整式的乘法,故C 错误;D 、符合因式分解,故D 正确;故选:D .【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别.4.下列等式中,从左到右的变形正确的是( )A .()22242x x x ++=+B .()()2444x x x -=+-C .()222244x y x xy y +=++D .()()2x 2x 3x 6+-=-【答案】C【分析】分别对各选项进行变形,然后对照进行判断即可得到答案.【详解】A 、()22241+3x x x ++=+,原选项变形错误,故不符合题意;B 、()()2422x x x -=+-,原选项变形错误,故不符合题意;C 、()222244x y x xy y +=++,原选项变形正确,故符合题意;D 、2(2)(3)6x x x x +=---,原选项变形错误,故不符合题意;故选:C .【点评】此题主要考查了整式的乘法和因式分解,熟练掌握运算法则是解答此题的关键.5.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( ) A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解【答案】D 【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点评】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义. 6.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 【答案】C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点评】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键.7.下列各式从左到右的变形中,属于分解因式的是( )A .a (m+n )=am+anB .10x 2﹣5x =5x (2x ﹣1)C .x 2﹣16+6x =(x+4)(x ﹣4)+6xD .a 2﹣b 2﹣c 2=(a ﹣b )(a+b )﹣c 2【答案】B【分析】根据分解因式的定义逐个判断即可.【详解】A .等式由左到右的变形属于整式乘法,不属于分解因式,故本选项不符合题意;B .等式由左到右的变形属于分解因式,故本选项符合题意;C .等式由左到右的变形不属于分解因式,故本选项不符合题意;D .等式由左到右的变形不属于分解因式,故本选项不符合题意;故选:B .【点评】此题考查了因式分解的定义.掌握其定义是解答此题的关键.8.(﹣2)2019+(﹣2)2020等于( )A .﹣22019B .﹣22020C .22019D .﹣2【答案】C【分析】直接提取公因式(−2)2019,进而计算得出答案.【详解】(−2)2019+(−2)2020=(−2)2019×(1−2)=22019.故选:C .【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.二、填空题目9.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2,所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).故答案:3x -.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.10.已知22()()24x my x ny x xy y -+=+-,则22m n mn -的值为______.【答案】8.-【分析】由22()()24x my x ny x xy y -+=+-可得()222224,x n m xy mny x xy y +--=+-可得:2,4,n m mn -=-=-即2,4,m n mn -=-=再把22m n mn -分解因式,再整体代入求值即可.【详解】 22()()24x my x ny x xy y -+=+-,222224,x nxy mxy mny x xy y ∴+--=+-()222224,x n m xy mny x xy y ∴+--=+-2,4,n m mn ∴-=-=-2,4,m n mn ∴-=-=∴ ()22m n m n mn mn =--()428.=⨯-=-故答案为:8.-【点评】本题考查的是整式的乘法,多项式的恒等,因式分解的应用,掌握以上知识是解题的关键. 11.多项式22y y m ++因式分解后有一个因式是(1)y -,则m =_______.【答案】3-【分析】由于x 的多项式y 2+2y+m 分解因式后有一个因式是(y-1),所以当y=1时多项式的值为0,由此得到关于m 的方程,解方程即可求出m 的值.【详解】∵多项式y 2+2y+m 因式分解后有一个因式为(y-1),∵当y=1时多项式的值为0,即1+2+m=0,解得m=-3.故答案为:-3.【点评】本题考查了因式分解的意义,有公因式时,要先考虑提取公因式;注意运用整体代入法求解. 12.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.【答案】4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点评】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想.三、解答题13.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值.解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ).则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n ,解得n =3,m =6,∴另一个因式为x +3,m 的值为6依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ;(2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ;(3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值.【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5.【分析】(1)仿照题干中给出的方法计算即可;(2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】(1)∵2(3)()33x x a x x ax a -+=-+-=2(3)3x a x a +--=2712x x -+.∴a ﹣3=﹣7,﹣3a =12,解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +-=+--=226x x --.=226x bx +-.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++-=-++.对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++-=-++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++-=-+-+-=+-+--.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k .解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点评】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.14.解答下列各题:(1)计算:()()()22x 12x 52x 5+-+-(2)分解因式:()225m 2x y 5mn --. 【答案】(1)426x +;(2)()()5m 2x y+n 2x y n ---【分析】(1)利用完全平方公式和平方差公式分别计算前后两部分,然后进行加减运算即可;(2)先提取公因式5m ,再利用平方差公式计算.【详解】(1)原式2241=4425x x x +++-=426x +(2)原式()22=5m 2x y n -⎡⎤-⎣⎦()()=5m 2x y+n 2x y n ---【点评】本题考查整式的混合运算和因式分解,解题的关键是熟练掌握完全平方公式和平方差公式的法则. 15.将下列各式因式分解:(1)324x xy -;(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y .【答案】(1)x (x+2y )(x-2y );(2)(x ﹣y )2(3)x y -.【分析】(1)先提取公因式x ,后变形成为22(2)x y -,用平方差公式分解即可;(2)先将6xy (y ﹣x )变形为-6xy (x﹣y),后提取公因式,再用完全平方公式分解即可.【详解】(1)324x xy -=22(4)x x y -=22[(2)]x x y -=x (x+2y )(x-2y );(2)(x ﹣y )2x +6xy (y ﹣x )+9(x ﹣y )2y=(x ﹣y )2x -6xy (x ﹣y )+9(x ﹣y )2y=(x ﹣y )(2x -6xy +92y )=(x ﹣y )2(3)x y -.【点评】本题考查了提取公因式法,平方差公式法,完全平方公式法分解因式,熟练掌握先提后套用公式分解因式是解题的关键.16.我们常利用数形结合思想探索整式乘法的一些法则和公式.类似地,我们可以借助一个棱长为a 的大正方体进行以下探索:(1)在大正方体一角截去一个棱长为()<b b a 的小正方体,如图1所示,则得到的几何体的体积为________;(2)将图1中的几何体分割成三个长方体①、②、③,如图2所示,∵BC a =,AB a b =-,CF b =,∴长方体①的体积为()ab a b -.类似地,长方体②的体积为________,长方体③的体积为________;(结果不需要化简)(3)将表示长方体①、②、③的体积相加,并将得到的多项式分解因式的结果为________;(4)用不同的方法表示图1中几何体的体积,可以得到的等式为________.(5)已知4a b -=,2ab =,求33a b -的值.【答案】(1)33a b -;(2)()2b a b -,()2a a b -;(3)()+ab a b -()2b a b -()2+a a b -()()22a b a ab b =-++;(4)()()3322a b a b a ab b -=-++;(5)88.【分析】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b 从而可得答案;(2)由,,ED OD b DM a b ===-,,GH HJ a HN a b ===-利用长方体的体积公式直接可得答案; (3)提取公因式-a b ,即可得到答案;(4)由(1)(3)的结论结合等体积的方法可得答案;(5)利用()2222,a b a b ab +=-+先求解22,a b + 再利用()()3322a b a b a ab b -=-++,再整体代入求值即可得到答案.【详解】(1)由大的正方体的体积为3,a 截去的小正方体的体积为3,b所以截去后得到的几何体的体积为:33,a b -故答案为:33.a b -(2),,ED OD b DM a b ===-由长方体的体积公式可得:长方体②的体积为()2b a b -,,,GH HJ a HN a b ===-所以长方体③的体积为()2,aa b - 故答案为:()2b a b -,()2.a a b -(3)由题意得:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++故答案为:()+ab a b -()2b a b -()2+a a b -()()22.a b a ab b =-++(4)由(1)(3)的结论,可以得到的等式为:()()3322.a b a b a ab b -=-++故答案为:()()3322.a b a b a ab b -=-++(5) 4a b -=,2ab =,()222216420,a b a b ab ∴+=-+=+=()()3322a b a b a ab b -=-++,()33420288.a b ∴-=⨯+=【点评】本题考查的是完全平方公式的变形,提公因式分解因式,代数恒等式的几何意义,掌握利用不同的方法表示同一个几何体的体积得到代数恒等式,以及应用得到的恒等式解决问题是解题的关键. 17.已知7,12a b ab -==-(1)求22ab a b -的值(2)求22a b +的值【答案】(1)84;(2)25.【分析】(1)先提取公因式ab -将所求式子因式分解为()ab a b --,再将已知式子的值代入即可得; (2)利用完全平方公式进行变形求值即可得.【详解】(1)7,12a b ab -==-,()22ab a b ab a b ∴-=--,()127=--⨯,84=;(2)7,12a b ab -==-,()249a b ∴-=,22249a b ab ∴+-=,()2221249a b ∴+-⨯-=,2225a b ∴+=.【点评】本题考查了利用因式分解和完全平方公式进行变形求值,熟练掌握因式分解的方法和完全平方公式是解题关键.18.设333201720182019x y z ==,322222x mx nx x mx n =+++++,且=.求111x y z++的值. 【答案】1.【分析】由322222x mx nx x mx n =+++++,可得000x y z >>>,,,令333201720182019x y z k ===,由=变形得=可得2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭因式分解11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭,由000x y z >>>,,,1110x y z ++>,可得1111x y z ++=. 【详解】∵322222x mx nx x mx n =+++++,∴000x y z >>>,,,或,,x y z 一正,两负,333201720182019x y z ==说明x ,y ,z 同号,∴000x y z >>>,,,令333201720182019x y z k ===,=++,=+,=+,111x y z ⎛⎫=++ ⎪⎝⎭,111x y z=++, ∴2111111x y z x y z ⎛⎫++=++ ⎪⎝⎭, ∴11111110x y z x y z ⎛⎫⎛⎫++++-= ⎪⎪⎝⎭⎝⎭, ∵000x y z >>>,,,1110x y z++>, ∴1111x y z++=. 【点评】本题考查立方根条件求值问题,掌握立方根的性质,巧秒恒等变形使实际问题简化,利用等式两边平方,因式分解求出代数式的值是解题关键.19.已知5x y +=,4xy =,求下列各式的值.(1)x y -;(2)33x y xy +.【答案】(1)3±;(2)68【分析】(1)根据完全平方公式的变形公式(x ﹣y )2=(x+y)2﹣4xy 进行求解即可;(2)利用完全平方公式求解x 2+y 2,再将所求代数式因式分解,进而代入数值即可求解.【详解】(1)∵5x y +=,4xy =,∴(x ﹣y )2=(x+y)2﹣4xy=52﹣4×4=9,∴x ﹣y=±3;(2)∵(x+y )2= x 2+y 2+2xy ,∴x 2+y 2=52﹣2×4=17,∴33x y xy +=xy(x 2+y 2)=4×17=68.【点评】本题考查代数式求值、完全平方公式、平方根、因式分解、有理数的混合运算,熟记完全平方公式,灵活运用公式是解答的关键.20.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值.解:设另一个因式为x n +,得25(2)()x x m x x n ++=++,则225(2)2x x m x n x n ++=+++,25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6.依照以上方法解答下列问题:(1)若二次三项式254x x -+可分解为(1)()x x a -+,则a =________;(2)若二次三项式226x bx +-可分解为(23)(2)x x +-,则b =________;(3)已知二次三项式229x x k +-有一个因式是21x -,求另一个因式以及k 的值.【答案】(1)4-;(2)1-;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a -+展开,根据所给出的二次三项式即可求出a 的值;(2)(2x +3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x +n ),得2x 2+9x ﹣k =(2x ﹣1)(x +n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】(1)∵(1)()x x a -+=x 2+(a ﹣1)x ﹣a =254x x -+,∴a ﹣1=﹣5,解得:a =﹣4;故答案是:﹣4(2)∵(2x +3)(x ﹣2)=2x 2﹣x ﹣6=2x 2+bx ﹣6,∴b =﹣1.故答案是:﹣1.(3)设另一个因式为(x+n),得2x2+9x﹣k=(2x﹣1)(x+n),则2x2+9x﹣k=2x2+(2n﹣1)x﹣n,∴2n﹣1=9,﹣k=﹣n,解得n=5,k=5,∴另一个因式为x+5,k的值为5.【点评】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.祝福语祝你考试成功!。

专题14.3 因式分解的综合应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章

专题14.3 因式分解的综合应用(专项拔高卷)学生版-2024-2025学年八年级数学上册真题汇编章

2024-2025学年人教版数学八年级上册同步专题热点难点专项练习专题14.3 因式分解的综合应用(专项拔高30题)考试时间:90分钟试卷满分:120分难度:0.53姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•佛山月考)已知a、b、c为△ABC的三边长,且a2+ac=b2+bc,则△ABC是()A.等腰直角三角形B.直角三角形C.等边三角形D.等腰三角形2.(2分)(2023•阜城县校级模拟)如图,把图1中的①部分剪下来,恰好能拼在②的位置处,构成图2中的图形,形成一个从边长为a的大正方形中剪掉一个边长为b的小正方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.(a+b)(a﹣b)=a2﹣b23.(2分)(2023•赫山区校级一模)设n为某一自然数,代入代数式n3﹣n计算其值时,四个学生算出了下列四个结果.其中正确的结果是()A.5814 B.5841 C.8415 D.84514.(2分)(2023•路北区模拟)在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b25.(2分)(2023春•蜀山区校级期中)如果一个正整数可以表示为两个连续奇数的平方差,那么称该正整数为“致真数”,如8=32﹣12,24=72﹣52,即8,24均为“致真数”,在不超过50的正整数中,所有的“致真数”之和为()A.160 B.164 C.168 D.1776.(2分)(2023春•金沙县期末)设a,b为自然数,定义aΔb=a2+b2﹣ab,则(3△4)+(﹣4△5)的值()A.34 B.58 C.74 D.987.(2分)(2022秋•大兴区校级期末)在日常生活中,如取款、上网等都需要密码,有一种利用“因式分解”法生成的密码,方便记忆.如:对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式x3﹣9xy2,取x=10,y=1时,用上述方法生成的密码可以是()A.101001 B.1307 C.1370 D.101378.(2分)(2022秋•江北区校级期末)定义:对于确定顺序的三个数a,b,c,计算,,,将这三个计算结果的最大值称为a,b,c的“极数”:例如:1,﹣3,1,因为,,,所以1,2,3的“极数”为,下列说法正确的个数为()①3,1,﹣4的“极数”是36;②若x,y,0的“极数”为0,则x和y中至少有1个数是负数;③存在2个数m,使得m,﹣6,2的极数为.A.0个B.1个C.2个D.3个9.(2分)(2021秋•惠民县期末)已知a、b、c为△ABC的三条边边长,且满足等式a2+2b2+c2﹣2ab﹣2bc =0,则△ABC的形状为()A.等腰三角形B.等边三角形C.直角三角形D.钝角三角形10.(2分)(2022秋•内江期末)已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为()A.25 B.20 C.15 D.10评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023春•岳阳期末)当a+b=2,ab=﹣3时,则a2b+ab2=.12.(2分)(2023•平江县模拟)若2a﹣3b=﹣1,则代数式4a2﹣6ab+3b的值为.13.(2分)(2022秋•万州区期末)若,则代数式m2+n2+k2+2mn﹣2mk﹣2nk 的值为.14.(2分)(2022秋•河口区期末)若一个整数能表示成a2+b2(a,b是正整数)的形式,则称这个数为“丰利数”.例如,2是“丰利数”,因为2=12+12,再如,M=x2+2xy+2y2=(x+y)2+y2(x+y,y是正整数),所以M也是“丰利数”.若p=4x2﹣mxy+2y2﹣6y+9(其中x>y>0)是“丰利数”,则m=.15.(2分)(2023春•淮安区期末)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n(以上长度单位:cm).观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为.16.(2分)(2022秋•新泰市期中)如图,将一张大长方形纸板按图中虚线裁剪成9块,其中有2块是边长为a厘米的大正方形,2块是边长都为b厘米的小正方形,5块是长为a厘米,宽为b厘米的相同的小长方形,且a>b.观察图形,可以发现代数式2a2+5ab+2b2可以因式分解为.17.(2分)(2022秋•新泰市期中)已知a=2021x+2000,b=2021x+2001,c=2021x+2002,则多项式a2+b2+c2﹣ab﹣bc﹣ca的值为.18.(2分)(2021秋•云梦县期末)若m2=2n+2021,n2=2m+2021(m≠n),那么式子m3﹣4mn+n3值为.19.(2分)(2022秋•文登区期中)已知a=+18,b=+17,c=+16,那么代数式a2+b2+c2﹣ab﹣bc﹣ac的值是.20.(2分)(2018春•成都期中)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc ﹣ca的值为.评卷人得分三.解答题(共9小题,满分80分)21.(8分)(2023春•高碑店市校级月考)发现:两个正整数之和与这两个正整数之差的平方差一定是4的倍数.验证:(1)(2+1)2﹣(2﹣1)2=;(2)设两个正整数为m,n,请验证“发现”中的结论正确;拓展:(1)已知(x+y)2=200,xy=48,求(x﹣y)2的值;(2)直接写出两个正整数之和与这两个正整数之差的平方和一定是几的倍数.22.(8分)(2023春•新晃县期末)“以形释数”是利用数形结合思想证明代数问题的一种体现,做整式的乘法运算时利用几何直观的方法获取结论,在解决整式运算问题时经常运用.例1:如图1,可得等式:a(b+c)=ab+ac;例2:由图2,可得等式:(a+2b)(a+b)=a2+3ab+2b2.(1)如图3,将几个面积不等的小正方形与小长方形拼成一个边长为a+b+c的正方形,从中你发现的结论用等式表示为;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=10,a2+b2+c2=36.求ab+bc+ac的值.(3)如图4,拼成AMGN为大长方形,记长方形ABCD的面积与长方形EFGH的面积差为S.设CD=x,若S的值与CD无关,求a与b之间的数量关系.23.(8分)(2022秋•交城县期末)在学习对复杂多项式进行因式分解时,老师示范了如下例题:例:因式分解:(x2+6x+5)(x2+6x﹣7)+36解:设x2+6x=y原式=(y+5)(y﹣7)+36第一步=y2﹣2y+1第二步=(y﹣1)2第三步=(x2+6x﹣1)2第四步完成下列任务:(1)例题中第二步到第三步运用了因式分解的;(填序号)①提取公因式;②平方差公式;③两数和的完全平方公式;④两数差的完全平方公式;(3)请你模仿以上例题分解因式:(a2﹣4a+2)(a2﹣4a+6)+4.24.(8分)(2022秋•前郭县期末)下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程解:设x2﹣4x=y原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的.A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.25.(8分)(2022秋•邻水县期末)我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图1可以用来解释a2+2ab+b2=(a+b)2.现有足够多的正方形卡片1号、2号,长方形卡片3号,如图3.(1)根据图2完成因式分解:2a2+2ab=;(2)现有1号卡片1张、2号卡片4张,3号卡片4张,在不重叠的情况下可以紧密地拼成一个大正方形,求这个大正方形的边长;(3)图1中的两个正方形的面积之和为S1,两个长方形的面积之和为S2,S1与S2有何大小关系?请说明理由.26.(10分)(2023春•芗城区校级期中)常用的分解因式的方法有提取公因式法、公式法及十字相乘法.但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,可以通过以下过程进行因式分解:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2+2xy+y2﹣9;(2)已知:x+y=3,x﹣y=2.求:x2﹣y2+6y﹣6x的值.27.(10分)(2022秋•长春期末)我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如图①可以得到(a+2b)(a+b)=a2+3ab+2b2.请回答下列问题:(1)写出图②中所表示的数学等式;(2)猜测(a+b+c+d)2=.(3)利用(1)中得到的结论,解决下面的问题:已知a+b+c=12,ab+bc+ca=48,求a2+b2+c2的值;(4)在(3)的条件下,若a、b、c分别是一个三角形的三边长,请判断该三角形的形状,并说明理由.28.(10分)(2023春•新吴区期中)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如x2+4x﹣5=x2+4x+()2﹣()2﹣5=(x+2)2﹣9=(x+2+3)(x+2﹣3)=(x+3)(x ﹣1).根据以上材料,解答下列问题.(1)分解因式(利用公式法):x2+2x﹣8;(2)求多项式x2+4x﹣3的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC的周长.29.(10分)(2021秋•科尔沁区期末)阅读材料:利用公式法,可以将一些形如ax2+bx+c(a≠0)的多项式变形为a(x+m)2+n的形式,我们把这样的变形方法叫做多项式ax2+bx+c(a≠0)的配方法,运用多项式的配方法可以解决一些数学问题.比如运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例:x2+4x﹣5=x2+4x+()2﹣()2﹣5=x2+4x+4﹣9=(x+2)2﹣9.=(x+2﹣3)(x+2+3)=(x﹣1)(x+5).根据以上材料,利用多项式的配方解答下列问题.(1)分解因式:x2+2x﹣3;(2)求多项式x2+6x﹣9的最小值;(3)已知a,b,c是△ABC的三边长,且满足a2+b2+c2﹣6a﹣8b﹣10c+50=0,求△ABC的周长.。

八年级数学上册第十四章整式的乘法与因式分解14.3.1运用提公因式法因式分解同步精练

八年级数学上册第十四章整式的乘法与因式分解14.3.1运用提公因式法因式分解同步精练

14.3.1 运用提公因式法因式分解1.把一个多项式化成几个__整式__的__积__的形式,叫做因式分解.2.如果一个多项式的各项含有__公因式__,那么就可以把这个__公因式__提出来,从而将多项式化成__整式的积__的形式,这种因式分解的方法叫做提公因式法.3.ma+mb的公因式是__m__;2a(y-z)和-3b(y-z)的公因式是__(y-z)__.■易错点睛■因式分解:2a(x-y)+4(y-x).【解】2(x-y)(a-2)【点睛】正确确定两个单项式的公因式是解决本题的关键.知识点公因式与运用提公因式法分解因式1.(2016·海南)下列式子从左到右变形属于因式分解的是( B )A.a2+4a-21=a(a+4)-21B.a2+4a-21=(a-3)(a+7)C.(a-3)(a+7)=a2+4a-21D.a2+4a-21=(a+2)2-252.(2016·武汉)把a2-2a分解因式,正确的是( A )A.a(a-2) B.a(a+2)C.a(a2-2) D.a(2-a)3.(2016·白云)(1)多项式3ma2-6mab的公因式是__3ma__;(2)多项式3a3b3-3a2b2-9a2b各项的公因式是__3a2b__;(3)多项式3x2y3z+9x3y3z与6x4yz2的公因式是__3x2yz__.4.分解因式:(1)(2016·淮安)3x-12=__3(x-4)__;(2)(2016·南宁)ax+ay=__a(x+y)__;(3)(2016·赤峰)3a2-6a=__3a(a-2)__;(4)(2016·广西)x3-2x2y=__x2(x-2y)__.5.把下列各式分解因式:(1)a2-a;【解题过程】解:a(a-1)(2)2xy-4x2;【解题过程】解:2x(y-2x)(3)m(x-y)+n(y-x);【解题过程】解:(x-y)(m-n)(4)ax2y+axy2;【解题过程】解:axy(x+y)(5)-3ma3+6ma2-12ma;【解题过程】解:-3ma(a2-2a+4)(6)6p(p+q)-4q(p+q).【解题过程】解:2(p+q)(3p-2q)x-y与ay-ax的公因式是( A )6.a()x-y B.ay+axA.a()C.a D.x-y7.(x-y)2-(x-y)因式分解的结果是( C )A.(y-x)(x-y) B.(x-y)(x-y+1) C.(x-y)(x-y-1) D.(x-y)(y-x-1) 8.因式分解:a2b-2ab2=__ab(a-2b)__.9.若ab=1,a+b=2,则a3b2+a2b3=__2__.10.若a+b=3,a2b+ab2=18,则ab=__6__.11.把下列各式分解因式:(1)-3x2+6xy-3x;【解题过程】解:-3x(x-2y+1);(2)x(x-y)+y(y-x);【解题过程】解:(x-y)2;(3)6a(m-n)-3b(n-m);【解题过程】解:3(m -n )(2a +b );(4)4q (1-p )3+2(p -1)2.【解题过程】解:2(1-p )2(2q -2pq +1).12.利用因式分解计算:(1)5392-439×539;【解题过程】解:53900(2)20142+2014-2014×2015. 【解题过程】解:013.先分解因式,再求值:2xy 2-2x 2y ,其中x -y =3,xy =16.(导学号:58024271) 【解题过程】解:2xy (y -x )=-1.14.△ABC 的三边分别为a ,b ,c ,且a +2ab =c +2bc ,请判断△ABC 是等边三角形,等腰三角形还是直角三角形?说明理由.(导学号:58024272)【解题过程】解:∵a +2ab =c +2bc ,∴(a -c )+2b (a -c )=0,∴(a -c )(1+2b )=0,故a =c 或1+2b =0,显然b ≠-12,故a =c , ∴此三角形是等腰三角形.。

14.3因式分解(1)——提公因式法+课件+2023-2024学年人教版数学八年级上册

14.3因式分解(1)——提公因式法+课件+2023-2024学年人教版数学八年级上册

知识点 2 提公因式法分解因式 (1)公因式:多项式中每项都有的__因__式__; (2)一般地,如果多项式的各项有_公__因__式___,可以把这个公因式提取出 来,将多项式写成公因式与另一个因式的__乘__积__的形式,这种分解因 式的方法叫做提公因式法.
多项式2a2b3+4ab2c的公因式是_2_a_b_2__. 多项式m(a-x)-mn(a-x)的公因式是_m__(_a_-__x_) _.
计算: 3×24+6×24+4×22. 解:原式=3×24+6×24+24
=(3+6+1)×24 =160.
计算: 42×20.23+72×20.23-20.23×14. 解:原式=(42+72-14)×20.23
=100×20.23 =2 023.
如图,长方形的长、宽分别为a,b,周长为10,面积为6, 则a2b+ab2的值为( B ) A.60 B.30 C.15 D.16
5.确定下列多项式的公因式,并分解因式. (1)ax+ay; 解:ax,ay的公因式为a, 原式=a(x+y). (2)3mx-6nx2; 解:3mx,-6nx2的公因式为3x, 原式=3x(m-2nx).
(3)4a2b+10ab-2ab2. 解:4a2b,10ab,-2ab2的公因式为2ab, 原式=2ab(2a+5-b).
八年级上册 人教版数学
第十四章 整式的乘法与因式分解 因式分解(1)——提公因式法
复习导入
计算: (1)2(x+y)=__2_x_+__2_y_; (2)(x+1)(x-1)=__x_2_-__1_; (3)(a+b)2=__a_2_+__2_a_b_+__b_2_.
新知探究
知识点 1 因式分解的概念 把一个多项式化成了几个整式的_积___的形式,像这样的式子变形叫做 这个多项式的因式分解,也叫做把这个多项式分解因式.

14.3 提公因式法1

14.3 提公因式法1

14.3 提公因式法1学习目标1、能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2、使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解. 学习重点:掌握用提公因式法把多项式分解因式.学习难点:正确地确定多项式的最大公因式.学习过程:一、温故知新:(1)当k =______时,多项式k x x -+732有一个因式为(__________)(2)=-+1032x x __________(3)如果=--652m m (m +a )(m +b ) ,则a =__________,b =__________.二、走进新课:【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x 2+4=2(x 2+2); (2)2t 2-3t+1 = (2t 3-3t 2+t );(3)x 2-2xy+y 2=(x -y )2 (4)m (x+y )=mx+my ;问题: 1.多项式mn+mb 中各项含有相同因式吗?请将上述多项式分别写成两个因式的乘积的形式,并说明理由. 归纳:我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb 中的公因式是m ,在4x 2-x 中的公因式是x ,在xy 2-yz -y 中的公因式是y . 概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.小组合作,探究方法多项式4x 2-8x 6,16a 3b 2-4a 3b 2-8ab 4各项的公因式是什么?分析:提公因式的方法是:先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.【例1】把-4x 2yz -12xy 2z+4xyz 分解因式.解:-4x 2yz -12xy 2z+4xyz=-(4x 2yz+12xy 2z -4xyz )=-4xyz (x+3y -1)【例2】分解因式,3a 2(x -y )3-4b 2(y -x )2分析:观察所给多项式可以找出公因式(y -x )2或(x -y )2,于是有两种变形,(x -t 1y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法.解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)2·3a2(y-x)+4b2(y-x)2]=-(y-x)2 [3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)2·3a2(x-y)-4b2(x-y)2=(x-y)2 [3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0.84×12+12×0.6-0.44×12.引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?小试牛刀:利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69三、课堂总结:1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.一、填空题课后练习1.把一个多项式__________________________,这样的式子变形,叫做把这个多项式因式分解,也叫做把这个多项式______________。

14.3.1提公因式法

14.3.1提公因式法

解:原式=
= =
3 2 24 x ( 12x 28 x )
4 x (24x3÷4x+12x2÷4x-28x÷4x)
4 x (6x2+3x-7)
当多项式第一项系数是 负数,通常先提出“-” 号,使括号内第一项系 数变为正数,注意括号 内各项都要变号。
利用因式分解简化运算
14.3.1
提供因式法
14.3 因式分解 14.3.1 提公因式法
(1) x 2 x x( x 1) ( 2) x 1 ( x 1)(x 1)
2
(3)ma+mb+mc= m(a+b+c) (4) x2-6x+9= (x-3)2
因式分解定义
把一个多项式化成几个整式的积 的形式,这种变形叫做把这个多项 式因式分解(也叫分解因式).
14.3.1
提供因式法
分解因式: (1)ax-ay; (2)-3ax +12ax -15ax; (3)2m(m-n) +6(n-m) ; (4)4x
n+ 1 3 2 3 2
-12x +32x
n
n- 1
.
1、什么叫因式分解? 2、确定公因式的方法: 一看系数 二看字母 三看指数
3、提公因式法分解因式步骤(分两步):
说出下列各多项式的公因式: m (1)ma + mb ; 4k (2)4kx - 8ky ; 5y2 (3)5y3+20y2 ; (4)a2b-2ab2+ab . ab
最大公约数 一看系数
相同字母 二看字母
最低指数
三看指数
例1 把8a3b2 + 12ab3c 分解因式.
最大公约数
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档