2014人教A版高中数学必修三2.2.2《用样本的数字特征估计总体的数字特征》导学案1

合集下载

高中数学人教A版必修三第二章2.2.2用样本的数字特征估计总体的数字特征课件

高中数学人教A版必修三第二章2.2.2用样本的数字特征估计总体的数字特征课件
(1)1 ,2,3,3,3,5,5,8,8,8,9,9 众数是:3和8 (2)1 ,2,3,3,3,5,5,8,8,9,9 众数是:3
2、求下列各组数据的中位数
(1)1 ,2,3,3,3,4,6,8,8,8,9,9 中位数是:5 (2)1 ,2,3,3,3,4,8,8,8,9,9 中位数是:4
2.已知样本数据 x1,x2,…,xn 的均值 x =5,则样本数据
学徒 100 1 100
合计
23 6900
如何在频率散布直方图中估计平均数
频率/组距
0.08
0.16 0.30 0.50
0.44 0.40 0.50 0.28 0.30
0.12 0.20 0.08 0.04 0.10
频率/组距 0.5 1 1.5 2 2.5
平均数的估计值等于频率 散布直方图中每个小矩形的面 积乘以小矩形底边中点的横坐 标之和.
1.求出a、p、n; 2.补全频率散布直方图;
2.2.2用样本的数字特征估计 总体的数字特征
众数、中位数、平均数
用样本的数字特征估计总体的数字特征
1.众数、中位数、平均数的概念 (1)众数:一组数据中_出__现__次__数__最__多__的数.
按顺序排好
(2)中位数:一组数据按大小顺序排列后,处于_中__间__位置 的数.如果个数是偶数,则取_中__间__两个数据的平均数.
0.08 0.04
0.5 1 1.5 2 2.5
0.06 0.04
月均用水量/t
0.02
3 3.5 4 4.5
2.02
[典例] 某中学举行电脑知识竞赛,现将高一参赛学生的成 绩进行整理后分成五组绘制成如图所示的频率分布直方图,已知 图中从左到右的第一、二、三、四、五小组的频率分别是 0.30,0.40,0.15,0.10,0.05.

高中数学 2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

高中数学 2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

频率 (乙)
0.4 0.3 0.2 0.1
O 4 5 6 7 8 9 10 环数
甲的成绩比较分散,极差较大,乙的 成绩相对集中,比较稳定.
1、标准差
思考: 反映样本数据的分散程度的大小,
最常用的统计量是标准差, 一般用s表示. 假设 样本数据x1, x2, …, xn的平均数为, 则标准差的 计算公式是:
(1)平均来说甲队比乙队防守技术好; (2)乙队比甲队技术水平更稳定; (3)甲队有时表现很差,有时表现又非常 好; (4)乙队很少不失球。
关于统计的有关性质及规律
(1)若x1, x2,...,xn的平均数为x,那么mx1 a, mx2 a,...,mxn a的平均数是_____;
(2)数据x1, x2,...,xn与数据x1 a, x2 a,..., xn a的方差_____;
有两位射击运动员在一次设计测试中 各射靶10次,每次命中的环数如下:
甲 7 8 7 9 5 4 9 10 7 4 乙9578768 6 77
如果你是教练,你应当如何对这次射 击情况作出评价?如果这是一次选拔性考 核,你应当如何作出选择?
思考:甲、乙两人射击的平均成绩相等, 观察两人成绩的频率分布条形图,你能说明 其水平差异在那里吗?
(3)若x1, x2,...,xn的方差为s2, 那么ax1,ax2, ...,axn的方差为_____.
s≥0,标准差为0的样本数据都相等.
【例1】画出下列四组样本数据的条形图, 说明它们的异同点.
(1)5,5,5,5,5,5,5,5,5 (2)4,4,4,5,5,5,6,6,6 (3)3,3,4,4,5,6,6,7,7 (4)2,2,2,2,5,8,8,8,8
2. 标准差的一个应用

2014人教A版高中数学必修三 2.2.2《用样本的数字特征估计总体的数字特征》学案1

2014人教A版高中数学必修三 2.2.2《用样本的数字特征估计总体的数字特征》学案1

高中数学必修三学案:2.2.2用样本的数字特征估计总体的数字特征学习目标1.正确理解样本数据标准差的意义和作用,学会计算数据的标准差。

2.能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。

3.会用样本的基本数字特征估计总体的基本数字特征。

学习过程一、课前准备1.预习众数、中位数、平均数的概念。

2.标准差、方差的概念。

(1).数据的离散程度可用极差、 、 来描述.样本方差描述了一组数据围绕平均数波动的大小.一般地,设样本的数据为123,,,n x x x x ,样本的平均数为x ,则定义 2s = ,2s 表示方差。

(2).为了得到以样本数据的单位表示的波动幅度,通常要求出样本方差的算术平方根 s = ,s 表示样本标准差。

不要漏写单位。

3.如何从频率分布直方图中估计众数、中位数、平均数呢?①众数: 。

②中位数: 。

③平均数: 。

二、新课导学※ 探索新知新知1:众数、中位数、平均数(1)众数:一组数据中重复出现次数最多的数称为这组数的众数.(2)中位数:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数称为这组数据的中位数.① 当数据个数为奇数时,中位数是按从小到大的顺序排列中间的那个数.②当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的两个数的平均数.(3)平均数:如果有n 个数123,,,n x x x x ,那么nx x x n +++ 21叫这n 个数的平均数. 新知2:标准差、方差1.标准差考察样本数据的分散程度的大小,最常用的统计量是标准差。

标准差是样本数据到平均数的一种平均距离,一般用s 表示。

样本数据1,2,,n x x x 的标准差的算法:① 算出样本数据的平均数x 。

② 算出每个样本数据与样本(1,2,)i x x i n -=③ 算出②中(1,2,)i x x i n -=的平方。

④ 算出③中n 个平方数的平均数,即为样本方差。

2.2.2 用样本的数字特征估计总体的数字特征标准差

2.2.2 用样本的数字特征估计总体的数字特征标准差
2.2.2 用样本的数字特征估计 总体的数字特征
标准差
平均数向我们提供了样本数据的重要信息,但是 平均数向我们提供了样本数据的重要信息 但是 平均有时也会使我们作出对总体的片面判断. 平均有时也会使我们作出对总体的片面判断.因 为这个平均数掩盖了一些极端的情况, 为这个平均数掩盖了一些极端的情况,而这些极 端情况显然是不能忽的.因此, 端情况显然是不能忽的.因此,只有平均数还难 以概括样本数据的实际状态. 以概括样本数据的实际状态. 如:有两位射击运动员在一次射击测试中各 射靶10次 每次命中的环数如下: 射靶 次,每次命中的环数如下:
考察样本数据的分散程度的大小, 考察样本数据的分散程度的大小,最常用的统计量是 标准差. 标准差. 标准差是样本平均数的一种平均距离,一般用s表示 表示. 标准差是样本平均数的一种平均距离,一般用 表示. 所谓“平均距离” 其含义可作如下理解: 所谓“平均距离”,其含义可作如下理解: 假设样本数据是 x1 , x 2 ,⋅ ⋅ ⋅, x n , x 表示这组数据的平均 的距离是: 数,则 x i 到 x 的距离是: 则 的平均距离是: 于是样本数据 x1 , x 2 ,⋅ ⋅ ⋅, x n 到 x 的平均距离是:
甲 25.46, 25.32, 25.45, 25.39, 25.36 25.34, 25.42, 25.45, 25.38, 25.42 25.39, 25.43, 25.39, 25.40, 25.44 乙 25.40, 25.42, 25.35, 25.41, 25.39 25.40, 25.43, 25.44, 25.48, 25.48 25.47, 25.49, 25.49, 25.36, 25.34 25.33, 25.43, 25.43, 25.32, 25.47 25.31, 25.32, 25.32, 25.32, 25.48

高中数学 2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

高中数学 2.2.2用样本的数字特征估计总体的数字特征课件 新人教A版必修3

人数
2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位数与平均数 。
解:在17个数据中,1.75出现了4次,出现的次数最多, 即这组数据的众数是1.75.
上面表里的17个数据可看成是按从小到大的顺序排 列的,其中第9个数据1.70是最中间的一个数据,即这组 数据的中位数是1.70;
这组数据的平均数是
x 1 ( 1 .5 0 2 1 .6 0 3 ... 1 .9 0 1 ) 1 .6 9 米
0.6
频率分布直方图
平均数
0.5
0.4
0.25
0.3
0.22
0.2
0.14
0.15
0.1
0.08
0.06
. . . . . . . . . 0.04
0
0.5
1
1.5
2
2.5
3
0.04 0.02
3.5
4
4.5
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25
2.02
例有关吗?
0.5
0.4
0.25
0.3
0.22
0.2
0.14
0.15
0.1
0.08
0.06
. . . . . . . . . 0.04
0
0.5
1
1.5
2
2.5
3
0.04 0.02
3.5
4
4.5
0.25 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25
月均用水量/t
频率 组距
1 7

人教A版必修三 2.2.2用样本的数字特征估计总体的数字特征 课件(36张)

人教A版必修三 2.2.2用样本的数字特征估计总体的数字特征 课件(36张)

C.-x ,s2
D.-x +100,s2
【解析】
(1)因为
-x

1 11
(2+4+4+5+5+6+7+8+9+11
+x)=111(61+x)=6,所以x=5.
方差为s2=42+22+22+12+12+1012+12+22+32+52+12=6116=
6.
(2)样本数据x1,x2,…,x10的均值-x =110(x1+x2+…+x10),
解析:因为甲班学生成绩的平均分是85,所以
78+79+85+80+x+80+96+92 7
=85,解得x=5,又因为乙班学
生成绩的中位数是83,所以y=3,所以x+y=8.
答案:8
类型二 方差、标准差的计算与应用
例2 (1)有一笔统计资料,共有11个数据如下(不完全以大小
排列):2,4,4,5,5,6,7,8,9,11,x,已知这组数据的平均数为6,则这
知识点一 众数、中位数、平均数
1.众数 一组数据中重复出现次数最__多__的数叫做这组数的众数,即在样 本数据中,频率_最__大__值___所对应的样本数据为众数.
2.中位数 把一组数据按__从__小__到__大___(或__从__大__到__小__)___的顺序排列,把处于 中__间__位置的那个数称为这组数据的中位数.当数据个数为奇数时,
3.已知一组数据为-3,5,7,x,11,且这组数的众数为5,那么 该组数据的中位数是( )
A.7 B.5 C.6 D.11
解析:由这组数据的众数为5,可知x=5,把这组数据由小到 大排列为-3,5,5,7,11,则可知中位数为5.
答案:B
4.已知五个数据3,5,7,4,6,则该样本的标准差为( ) A.5 B. 5 C.2 D. 2

人教A版高中数学必修3:2.2.2 用样本的数字特征估计总体的数字特征(4)


中位数左边和右边的直方图的面积 应该相等
中位数 37.81
3. 同样,可以从频率分布直方图中估计 样本平均数
平均数的估计值=频率分布直方图中每个 小矩形的面积乘以小矩形底边中点的横坐 标之和,由此估计工人日加工零件数的平 均数又是多少呢?
平均数的估计值=频率分布直方图中每个 小矩形的面积乘以小矩形底边中点的横 坐标之和
3、平均数 x x1 x2 x3 ... xn n
随机观测生产某种零件的某工厂25名工人的日加 工零件数(单位:件),获得数据如下:25,29,30, 31,32,33,34,34,36,36,36,37,37,38, 39,40,41,42,42,43,43,44,45,46,49.
平均数:37.5
练习1 如图所示是一样本的频率分布直方图,则由
图形中的数据,可以估计众数、中位数与平均 数分别是多少?
众数:12.5 中位数:13 平均数:13
练习2
某中学举行电脑知识竞赛,现将高一参赛学生的成绩进 行整理后分成五组绘制成如图所示的频率分布直方图,已知 图中从左到右的第一、二、三、四、五小组的频率分别是 0.30、0.40、0.15、0.10、0.05.求: (1)高一参赛学生的成绩的众数、中位数. 众数:65 中位数:65 (2)高一参赛置
大册子P35-P37相应的题目做完,要有过程 步骤。
样本频率分布直方图如下:
二 、 众数、中位数、平均数 与频率分布直方图的关系
1、众数在样本数据的频率分布直方图 中,就是最高矩形的中点的横坐标。
例如,从 刚才例子中频率分布直方图可 以看出,工人的日加工零件的众数是多少?
众数(最高矩形的中点的横坐标)
众数:37.5
2、在样本中,有50%的个体小于或等于 中位数,也有50%的个体大于或等于中位 数,因此,在频率分布直方图中,中位数 左边和右边的直方图的面积应该相等,由 此可以估计中位数的值。下图中虚线代表 工人日加工零件数的中位数的估计值,此 数据值为______.

【创新设计】2014-2015学年高中数学 2.2.2 用样本的数字特征估计总体的数字特征课件 新人教A版必修3


1 解 (1)x甲= (99+ 100+ 98+ 100+ 100+ 103)= 100, 6 - 1 x乙= (99+ 100+ 102+ 99+ 100+ 100)= 100. 6 1 2 s 甲 = [(99- 100)2+ (100- 100)2+(98- 100)2+ (100- 100)2+ 6 7 2 2 (100- 100) + (103- 100) ]= , 3 1 2 s 乙 = [(99- 100)2+ (100- 100)2+(102- 100)2+ (99- 100)2+ 6 (100- 100)2+ (100- 100)2]= 1.
2.下列各数字特征中,能反映一组数据离散程度的是 (
)
A.众数
答案
A. 2
B.平均数
C.标准差
D.中位数
(
D.2
C )
B. 0 C.1
3.样本101,98,102,100,99的标准差为 答案 A

解析 样本平均数x=100,方差为 s2=2,∴标准差 s= 2, 故选 A.
4.甲乙两名学生六次数学测验成绩(百分制)如图所示.

样本平均数 x是___________.
要点一 众数、中位数、平均数的简单运用
例1 在上一月调查的100位居民的月均用水量的问题中,制
作出了这些样本数据的频率分布直方图:
从中可以看出,月均用水量的众数估计是________;中位数 是________;平均数为________. 答案 2.25 t 2.02 t 2.02 t
- -
规律方法
1.利用频率分布直方图估计数字特征:
(1)众数是最高的矩形的底边的中点. (2)中位数左右两侧直方图的面积相等. (3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐 标之和. 2.利用直方图求众数、中位数、平均数均为估计值,与实际

2.2.2用样本的数字特征估计总体的


25.49 25.32
从生产零件内径的尺寸看,谁生产的零件质量 ks5u精品课件 较高?
x 甲 » 25.401 s甲 » 0.037
x 乙 » 25.406
s乙 » 0.068
甲生产的零件内径更接近内径标准,且稳定 程度较高,故甲生产的零件质量较高.
说明:1.生产质量可以从总体的平均数与标准差 两个角度来衡量,但甲、乙两个总体的平均数与 标准差都是不知道的,我们就用样本的平均数与 标准差估计总体的平均数与标准差. 2.问题中25.40mm是内径的标准值,而不是 总体的平均数.
ks5u精品课件
例5 有20种不同的零食,它们的热量 含量如下: 110 120 123 165 432 190 174 235 428 318 249 280 162 146 210 120 123 120 150 140 (1)以上20个数据组成总体,求总体平 均数与总体标准差; (2)设计一个适当的随机抽样方法,从 总体中抽取一个容量为7的样本,计算样 本的平均数和标准差.
(3)
O
1Байду номын сангаас2 3 4 5 6 7 8
(4)
ks5u精品课件
例2 甲、乙两人同时生产内径为25.40mm的一种 零件,为了对两人的生产质量进行评比,从他们 生产的零件中各随机抽取20件,量得其内径尺寸 如下(单位:mm):
甲 : 25.46 25.45 25.44 乙: 25.40 25.49 25.47 25.32 25.38 25.40 25.43 26.36 25.31 25.45 25.42 25.42 25.44 25.34 25.32 25.39 25.39 25.35 25.48 25.33 25.32 25.36 25.43 25.41 25.48 25.43 25.32 25.34 25.39 25.39 25.47 25.43 25.48 25.42 25.40

高中数学人教A版必修3-2.2.2 用样本的数字特征估计总体的数字特征-课件(共28张PPT)

3.平均数的定义:一组数据的和除以数据的 个数所得到的数.
小练习
求下列一组数的众数、中位数、平均数
(1)2,2,3,3,5,6,7
(2)2,3,5,5
判一判(正确的打“√”,错误的打“×”) (1)中位数一定是样本数据中的某个数.(× ) (2)在一组样本数据中,众数一定是唯一的.(× )
众数可以有多个,中位数是唯一的. (求中位数先排序)
4.如图所示的茎叶图记录了甲、乙两 组各5名工人某日的产量数据(单位: 件).若这两组数据的中位数相等,且平均 值也相等,则x和y的值分别为( A )
A.3,5 C.3,7
B.5,5 D.5,7
课堂小结
1.样本的数字特征:众数、中位数和平均数. 2.用样本频率分布直方图估计样本的众数、 中位数、平均数.
2.用相关知识来解决简单的统计问题.(重点)
3.体会样本数据特征具有随机性(重点) 4.初步体会、领悟“用数据说话”的统计思想 方法。
【教学方法】:启发式、探究式
复习回顾
1.众数的定义: 在一组数据中,出现次数最多 的数据叫做这一组数据的众数.
2.中位数的定义: 将一组数据按大小顺序依次 排列,把处在最中间位置的一个数据(或两个 数据的平均数)叫做这组数据的中位数.
一天 10名工人生产的零件的中位数是( C )
A.14 B.16 C.15 D.17 【解析】选C.把件数从小到大排列为10,12,14, 14,15,15,16,17,17,19,可知中位数为15.
2.甲、乙两个班各随机选出 15名同学进行测验,所得成 绩的茎叶图如图.从图中看, _____班的平均成绩较高. 【解析】结合茎叶图中成绩的情况可知,
又因为第一个小矩形的面积为0.3,所以设第 二个小矩形底边的一部分长为x,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

40.0
39.8
40.1
40.2
39.9
40.0
40.2
39.8
40.2Байду номын сангаас
39.8

40.0
4 0.0
399
40.0
39.9
40.1
40.1
40.1
40.0
39.9
(1)你能选择适当的数分别表示这两组数据的离散程度吗?
提出问题:什么叫标准差?有什么意义?
(2)分别计算上面从甲、乙两台机床抽取的10件产品直径的标准差
§2.2.2用样本的数字特征估计总体的数字特征1
授课
时间
第周星期第节
课型
新授课
主备课人
学习
目标
1.掌握平均数、中位数、众数、 极差、方差、标准差的计算、意义和作用;
2.根据问题的需要选择适当的数字特征来表达数据的信息.
重点难点
根据问题的需要选择适当的数字特征来表达数据的信息.
学习
过程
与方

自主学习
复习回顾
1.什么叫平均数?有什么意义?
2.什么叫中位数?有什么意义?
3.什么叫众数?有什么意义?
练习1:某公司员工的月工资情 况如表所示:
月工资/元
8000
500 0
4000
2000
1000
800
700
600
500
员 工/ 人
1
2
4
6
12
8
20
5
2
(1)分别计算该公司员工月工资的平均数、中位数、和众数。
(2) 公司经理会选取上面哪个数来代表该公司员工的月工资情况?税务 官呢?工会领导呢?
【解】
4.什么叫极差?有什么意义?
5.什么叫方差?有什么意义?
练习2:在上一节中,从甲、乙两个城市随机抽取的16台自动售 货机的销售额可以用茎叶图表示,如图
(1)甲乙两组数据的中位数、众数、极差分别是多少?
(2)你能从图中分别比较甲乙两组数据平均数和方差的大小吗?
精讲互动
例1甲、乙两台机床同时生产直径是40mm的零件。为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示
达 标训练
1.课本31页练习
2.教辅资料
作业
布置
习题1-4 1,2
学习小结/教学
反思
相关文档
最新文档