纳米羟基磷灰石复合支架材料的研究与应用

合集下载

羟基磷灰石研究进展

羟基磷灰石研究进展

羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。

同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。

对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。

主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。

关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。

从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。

HA 属六方晶系, 空间群为P63/m。

其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。

单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。

磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。

其中,羟基磷灰石(hydroxyapatite,缩写为HA或HAp)的研究和应用最广泛。

羟基磷灰石生物复合材料的研究进展

羟基磷灰石生物复合材料的研究进展

万方数据・70・材料导报:综述篇2010年8月(上)第24卷第8期未分化间充质细胞和骨母细胞分化为成骨细胞和软骨细胞,从而诱导骨和软骨的形成K]。

但由于BMP在体内扩散快,易被蛋白酶分解,无支架和填充作用,目前多使用载体与其结合,形成BMP缓释系统。

目前,具有骨传导作用的多孔型羟基磷灰石材料与具有诱导异位成骨作用的BMP复合制成的HA—BMP已进行动物实验。

Magin等¨。

研究rhBMP7(成骨蛋白1)复合羟基磷灰石后发现,羟基磷灰石复合rhBMP7可诱导更多的骨形成。

KubokiL73证实多孔状羟基磷灰石中0.35mm孔径可直接诱导骨形成。

但羟基磷灰石不易完全降解,影响进一步吸收。

Tao等№o对一种新型HA—BMP复合人工听小骨的临床应用效果进行评价,结果显示,新型HmBMP复合人工听小骨具有良好的生物相容性和优异的传音性能,术后成功率为92.3%,随访均未见听骨脱出。

充分表明HA—BMP复合材料明显优于自体组织,临床应用效果稳定,具有广阔的应用前景。

图1羟基磷灰石的晶体结构及(0001)面的投影[21Fig.1Crystalstructureofapatiteandprojectionontothe(0001)plane[2]蚕丝蛋白(丝素)及其纤维由于具有优异的力学特性、生物相容性、生物可降解性以及本质是蛋白质的结构特点,在生物医学领域表现出极大的应用潜力,是近年来医学组织工程感兴趣的一类特殊的生物材料。

卢神州等[9]以羟基磷灰石/丝素蛋白复合凝胶为基体,以蚕丝短纤维和NaCI颗粒作为增强材料和致孔剂,制备羟基磷灰石/丝素蛋白多孔复合材料,结果表明,材料中含有少量蚕丝短纤维对材料抗弯强度和断裂能力的提高有显著效果。

2.1.2多元体系的复合骨修复是一个极其复杂有序的过程。

近年的研究表明,生长因子在骨愈合过程中起重要作用。

骨形态发生蛋白(BMP)是骨生长的启动因子,对骨愈合有明显促进作用。

纳米羟基磷灰石生物复合材料

纳米羟基磷灰石生物复合材料

羟基磷灰石复合生物材料种类
1.纳米羟基磷灰石与甲壳素及其衍生物壳聚糖等多糖类 材料的复合; 2.纳米羟基磷灰石与聚酰胺的复合; 3.纳米羟基磷灰石与聚酯的复合; 4.纳米羟基磷灰石与聚乙烯醇的复合等。
Kikuchi等将纳米级羟基磷灰石材料和胶原按照 93:7,83:17,81:19比例混合,形成密度为 2.8g/cm3的复合物,体内实验表明,该材料可被破骨 细胞样细胞的吞噬作用降解,并可诱导成骨细胞形成 新的骨组织。弹性模量与自体松质骨相当,可以满足 骨缺损移植的需要。 Nukavarapu等设计了一种可生物降解的纳米羟 磷灰石 +多聚磷酸盐,有望应用于骨组织工程,它是 一种三维结构的球形微粒,具有合适的机械性能和细 胞兼容的特性。小鼠体内实验表明,与未涂纳米羟磷 灰石的钽相比,涂有纳米羟磷灰石的钽加速了骨的形 成。
羟基磷灰石复合生物材料主要种类
1.纳米羟基磷灰石与胶原蛋白的复合 胶原蛋白或称胶原,是人体内含量最丰富的蛋白质, 胶原 蛋白在体内以胶原纤维的形式存在。具有无抗原性、生物相容 性好, 可参与组织愈合过程, 在止血、促进伤口愈合、作为烧 伤创面敷料、骨移植替代材料、组织再生诱导物方面得到广泛 应用。 2.纳米羟基磷灰石与骨形态发生蛋白的复合 骨形态发生蛋白是一种存在于骨基质中的生物活性物质, 为小 分子酸性多肽类物质,具有高效骨诱导作用,并呈现非种属特 异性诱导骨形成的生物学特性,可以诱导血管周围未分化的间 充质细胞及骨髓细胞分化成软骨细胞和骨细胞。
骨是自然界中结构最复杂的生物矿化材料之一,由磷 酸钙盐晶体(主要以结晶羟基磷灰石的形式存在)弥散 分布在胶原蛋白以及其它生物聚合物中构成的连续多 相复合体。
骨骺线
纳米羟基磷灰石,why?
1.骨组织本就由大量纳米级的胶原分子和羟基磷灰石组 成,骨细胞外基质中其他的蛋白也都是纳米级别的。 2.研究表明,羟基磷灰石的生物活性与其粒度大小密切 相关。其纳米条件下表现出更强的生物活性。 3.纳米HA粉体不仅提供了优良的性能,而且在治疗癌症 方面表现出一些特异性能。

羟基磷灰石的影响

羟基磷灰石的影响

,纳米填料的分散状况和两相间的界面结合会极大影响复合材料的性能,近年来,纳米级填料在聚合物改性方面得到了大量研究和应用。

与普通填料相比,纳米级填料表面缺陷少,表面活性高,与聚合物发生物理或化学作用的可能性大,界面结合也较强。

但由于其大的界面张力,高的表面活性同时使得其极易团聚,难以在聚合物基体中分散均匀,或者说是很难以纳米尺度与聚合物结合,显现纳米效应。

常用的纳米材料表面处理方法,如加入偶联剂等,会降低复合材料的生物相容性。

由于羟基磷灰石中的羟基、钙离子等可以与聚乙烯醇中的羟基等产生强烈的相互作用,使二者之间的界面粘合增加,为此,我们对纳米羟基磷灰石进行大功率超声预先分散后,对其循环冷冻一解冻处理,进一步增加聚乙烯醇分子与羟基磷灰石之间的相互作用,从而在赋予材料生物活性和生物相容性的同时,提高其他性能。

,说明HA与PVA的羟基间存在相互作用。

已有研究表明PVA的羟基与HA中的ca2+之间能形成一种配位结构,具有相互作用,可引起PVA羟基伸缩振动峰向低波数移动。

这也说明凝胶复合材料中n-HA与PVA不是简单的物理共混,而是以某种化学形式相结合。

郭玉明等[11的研究结果表明HA中的Ca2+和PVA分子中的羟基之蜘形成了一种配位结构,具有相互作用,从而导致PVA分子中的羟基伸缩振动峰向低频方向移动。

同时,HA同PVA分子间的氢键作用使得PVA分子的空间立构规整度有所下降,从而导致加入n.HA后PVA分子中各基团特征峰的位置有所改变。

在n-HA/PVA凝胶复合材料中,均可观察到大量的羟基磷灰石粒子分布在PVA基体之中。

同时,当HA含量较少时(图4_4b1和r图4.4c),HA粒于在PVA基体中呈均匀分布状态:随着HA粒子含量的增加f图4-4d),部分HA粒子在PVA基体中呈团聚状态。

无机纳米粒子具有较高的表面能和比表面,当n-HA粒子在PVA中的含量较低时.一方面PVA溶液可作为纳米羟基磷灰石粒子的分散剂.使HA粒子均匀分布在PVA基体之中:另一方面,n-HA粒子的高表面能和比表面,可有效提高n-HA粒子同PVA基体问的界面结合强度.有利于改善复合材料的力学性能。

纳米羟基磷灰石的制备及其在医学领域的应用

纳米羟基磷灰石的制备及其在医学领域的应用
纳米羟基磷灰石的制备及其在 医学领域的应用
漳 州 师 范 学 院 化学与环境科学系
HA的简 的简 介
方法制 备
结论和 展望 在物理 方向上 的单独 应用
测试表 征
在医学 领域的 应用
1、羟基磷灰石简介 、
羟基磷灰石( 羟基磷灰石(Hydroxyapatite,HA)是 , ) 动物和人体骨骼的要无机矿物成分, 动物和人体骨骼的要无机矿物成分,具 有良好的生物活性和生物相容性。 有良好的生物活性和生物相容性。当羟 基磷灰石的尺寸达到纳米级时将现出一 系列的独特性能, 系列的独特性能,如具有较高的降解和 可吸收性。研究表明: 可吸收性。研究表明:超细羟基磷灰石 颗粒对多种癌细胞的生长具有抑制作用, 颗粒对多种癌细胞的生长具有抑制作用, 而对正常细胞无影响。 而对正常细胞无影响。因此纳米羟基磷 灰石的制备方法及应用研究已成为生物 医学领域中一个非常重要的课题, 医学领域中一个非常重要的课题,引起 国内外学者的广泛关注[4]
图5
n-HA粒子的SEM图
由图5可以看出采用冷冻干燥法避免了高温煅 由图 可以看出采用冷冻干燥法避免了高温煅 粉末, 烧,得到了分散性较好的 n-HA 粉末,直径为 20~25 nm,长度 ~80nm,其分散均匀, ~ ,长度75~ ,其分散均匀, 没有严重的团聚现象。 没有严重的团聚现象。
4.1 物理性质方面应用[5]
功效主要体现在: 功效主要体现在:
(1)吸附及抑菌作用。抑制牙菌斑,预防 龋 吸附及抑菌作用。抑制牙菌斑, 吸附及抑菌作用 齿。 (2)双重脱敏作用,有效防止牙本质过敏。 双重脱敏作用, 双重脱敏作用 有效防止牙本质过敏。 (3)再矿化及美白作用,修复受损牙釉质, 再矿化及美白作用, 再矿化及美白作用 修复受损牙釉质, 恢复牙齿自然光泽。 恢复牙齿自然光泽。

纳米羟基磷灰石及其复合材料的研究进展_李志宏

纳米羟基磷灰石及其复合材料的研究进展_李志宏

医疗卫生装备·2007年第28卷第4期ChineseMedicalEquipmentJournal·2007Vol.28No.4纳米羟基磷灰石及其复合材料的研究进展李志宏武继民李瑞欣许媛媛张西正(军事医学科学院卫生装备研究所天津市300161)摘要纳米羟基磷灰石具有良好的生物相容性和生物活性,是较好的生物材料,被广泛应用于骨组织的修复与替代技术。

但是,由于材料本身力学性能较差制约了羟基磷灰石的进一步应用,因此,提高及制备综合性能优越的纳米羟基磷灰石复合生物材料是当今研究的重心和热点。

综述了纳米羟基磷灰石制备的主要方法及其复合生物材料的研究进展,并探讨了纳米羟基磷灰石骨修复材料的发展方向。

关键词纳米羟基磷灰石;复合材料;骨修复Advancesinnano-hydroxyapatiteanditscompositeLIZhi-hong,WUJi-min,LIRui-xin,XUYuan-yuan,ZHANGXi-zheng(InstituteofMedicalEquipment,AcademyofMilitaryMedicalSciences,Tianjin300161,China)AbstractNano-hydroxyapatitehasbeenwidelyusedasreconstructiveandprostheticmaterialforosseoustissue,owingtoitsexcellentbiocompatibilityandtissuebioactivity.Butthepoormechanicalpropertyofhydroxyapatiterestrictsitsfurtherapplication.Inordertoenhancethecomprehensiveperformanceofthematerial,manyresearcheshavebeendedicatedtothesynthesizationofthecompositematerials.Thisarticlereviewsthemainpreparationmethodsofnano-hydroxyapatiteandtheadvancementinresearchofitscomposite.Thedirectionsinthisresearchareaaredescribedaswell.Keywordsnano-hydroxyapatite;compositematerial;bonerepair作者简介:李志宏,硕士,主要从事高分子材料和生物材料方面的研究;武继民,博士,硕士生导师,副研究员。

纳米复合羟基磷灰石在口腔治疗中的应用

纳米复合羟基磷灰石在口腔治疗中的应用

纳米复合羟基磷灰石在口腔治疗中的应用王宏峰【摘要】Objective Assessment of nano hydroxyapatite composite in periodontitis treatment effect.Methods Control group and experimental group included 45 patients were treated with root planing,the experiment group filed with nano hydroxyapatite composite.ResultsAfter 2 weeks,the experimental group cure rate was higher than the contrast group,no efficiency was lower than that of the control group. After 12 weeks, the experimental group cure rate was higher than that of control group, the difference is statisticaly significant(P<0.05).Conclusion Hydroxyapatite nano composite can be as filing materials of oral treatment,and enhance the therapeutic effect.%目的:评价纳米复合羟基磷灰石在牙周炎治疗的应用效果。

方法对照组、实验组入选患者45例,均给予根面平整术,实验组填充纳米复合羟基磷灰石。

结果2周后,实验组痊愈率高于对照组、无效率低于对照组,12周后,实验组痊愈率高于对照组,差异具有统计学意义(P<0.05)。

结论纳米复合羟基磷灰石可作为口腔治疗填充材料,增进疗效。

羟基磷灰石在生物医用材料中的研究进展

羟基磷灰石在生物医用材料中的研究进展

《生物医用材料》期末论文学院:材料与化工学院专业:材料科学与工程学生姓名:学号:任课教师:唐敏2010年6月20日羟基磷灰石在生物医用材料中的研究进展材料与化工学院07材料科学与工程卢仁喜摘要:羟基磷灰右是一种优质的医用生物材料,在生物医用材料和医学研究领域有着广泛的应用和研究。

本文在综合了一些文献的基础上,对羟基磷灰石在生物医用材料的研究上做了总结和概括,并且提出了一些自己的看法。

关键字:羟基磷灰石生物医用材料进展1.引言生物材料(biomaterials)是对生物体进行治疗和置换损坏的组织、器官或增进其功能的材料。

随着材料科学、生命科学与生物技术的发展,越来越多的生物材料得到广泛应用,人们开始在分子水平上去认识材料和机体问的相互作用,力求使无生命的材料通过参与生命组织的活动,成为有生命组织的一部分。

其中金属材料、生物陶瓷材料、高分子材料、聚合物及其复合材料是应用最广泛的生物材料。

近年来,常用的骨骼替代品是金属、塑料以及陶瓷等,其中以钛和钛合金为主。

但是由于它们的惰性,它们不能很好的与生物体本身产生相容性,作为硬组织植入材料,它们与骨之间只是一种机械嵌连的骨整合,而非化学骨性结合,致使植入后与骨组织之间结合较差,常引起植入失效。

同时金属的耐磨性和耐腐蚀性较差,腐蚀产牛的离子会对人体组织产生不良影响。

羟基磷灰石(Hydroxyapatite,HA)生物陶瓷材料具有优良的生物活性和生物相容性,被认为是一种最具潜力的人体硬组织替换材料。

但是HA的力学性能较差,抗弯强度和断裂韧性指标均低于人体致密骨,限制了它们单独在人体负重部位的使用。

但是由于它本身的特点,以及自然界再也找不出与它具有类似生物相容性的陶瓷材料,同时他又可以同多种材料进行复合来改变它在某一方面的劣势。

所以,近年来羟基磷灰石及其复合物的研究受到广泛关注。

2.羟基磷灰石及特点羟基磷灰石(Hydroxyapatite,HA)是一种微溶于水的弱碱性磷酸钙盐,它是脊椎动物骨和齿的主要无机成分,在人骨中约占72%,齿骨中则高达97%,其生物相容性及活性良好,对人体无毒副作用,可增强骨愈合作用,能与自然骨产生化学结合,被认为是最有前途的人工齿及人工骨的替代材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档