物理竞赛电磁感应

合集下载

大学物理竞赛电磁感应部分必做习题

大学物理竞赛电磁感应部分必做习题

电磁感应部分基本要求:1、掌握法拉第电磁感应定律,会用法拉第电磁感应定律求电动势;2、掌握动生电动势计算公式并会用该公式求相关习题;3、掌握感生电动势计算公式,会求两种类型的感生电动势;4、掌握自感、互感的定义,会求自感、互感系数以及自感、互感电动势;5、掌握通电线圈的储能公式,磁场能量计算公式,会计算无限长载流圆柱面、体限定区域内的能量;6、了解真空中麦克斯韦方程组中每个方程的物理意义;7、掌握平面电磁波的性质、能量密度及能流密度公式。

相关习题:一、计算题1.如图所示,一根很长的直导线载有交变电流0i I sin t ω=,它旁边有一长方形线圈ABCD ,长为l ,宽为b a -,线圈和导线在同一平面内,求:(1)穿过回路ABCD 的磁通量m Φ;(2)互感系数;(3)回路ABCD 中的感应电动势。

2.一长直载充导线,电流强度I=10A ,有另一变长L=0.2m 金属棒AB ,在载流导线的平面内以2m ·5-1的速度平行于导线运动。

如图所示:棒的一端离导线a=0.1m ,求运动导线中的电动势εAB ,哪点电势高?ACDlbia3.如图,长度为R 的均匀导体棒OA 绕O 点以角速度ω转动,均匀磁场B 的方向与转动平面垂直。

试求棒中动生电动势的大小并说明方向。

⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯A O ωB4.长直导线与矩形单匝线圈共面放置,导线与线圈的长边平行,矩形线圈的边长分别为a 、b ,它到直导线的距离为c (如图所示),当矩形线圈中通有电流t I I ωsin 0=时,求直导线中的感应电动势。

5.一圆环形线圈a 由1N 匝细线绕成,截面积半径为r ,放在另一个匝数为2N ,半径为R 的圆环形线圈b的中心,其中R r >>,两线圈同轴,求(1)两线圈的互感系数M ;(2)当线圈a 中的电流以dI dt变化时,求线圈b 中的感生电动势(习题16.13)。

6.一无限长直导线,截面各处的电流密度相等,电流为I 。

高二物理竞赛课件:电磁感应

高二物理竞赛课件:电磁感应
安培的分子电流假设:电与磁是同一体,它们的同一性 在电流方面反映出来,即磁由电流产生。
Faraday认为电与磁是一对和谐的对称现象,若认为磁 由电流产生,反而破坏了这种对称和谐,
因而Faraday推理:磁也可产生电流!
在什么条件下,磁场才能产生电流? 感应电动势——动生电动势、感生电动势。
1831年夏, Faraday再次回到磁产生电的课题 上来,终于获得突破,发现了期待已久的电磁 感应现象。
向相同。
电磁感应现象:当穿过一个闭合导体回路的磁通量发生变
化时(不论这种变化是由什么原因引起的),在导体回路中 就有感应电流产生。(感只产生确定的感应电动势
2)当回路不闭合时,没有感应电流,仍存在感应电动势。
电磁感应现象:当穿过一个闭合导体回路的磁通量发生变
化时,在导体回路中就有感应电动势产生。
1831年8月29日,Faraday改用磁铁插入和拉出。 发现电流表的指针偏转。
电磁感应(Electromagnetic Induction)
1831年法拉第总结出以下五种情况都可产生感应电流: 变化着的电流,运动着的恒定电流,在磁场中运动着的导体, 变化着的磁场,运动着的磁铁。
电磁感应的共同规律
电动势的方向由楞次定理给出: 闭合回路中感应电流的方向,总是使得它所激
发的磁场来阻止引起磁感应电流的磁通量的变化。
楞次定理的另一种表述: 当导体在磁场中运动时,导体中由于出现感
应电流而受到的磁场力必然阻碍此导体的运动。 阻碍的意思: (1)磁通增加时,感应电流的磁通与原来磁通
方向相反。 (2)磁通减少时,感应电流的磁通与原磁通方
楞次定理的实质:能量守恒律
线圈中产生感应电流而产生焦耳 热,能量何来?
感应电流的方向服从楞次定律是能量守恒 和转化定律的必然结果

高二物理竞赛电磁感应课件(共45张PPT)

高二物理竞赛电磁感应课件(共45张PPT)

2 一 般 情 况 B 常 矢 量 , v 常 矢 量 , 且 导 体 为
任 意 形 状 d, ii则 LvdiBLdlvB dl
3当导体为闭合回路则时 , iL diLv B d l
二、洛仑兹力传递能量
电子的速度:
v
—随导体运动的速度
u—相对导体的定向运度动速
电子所受到的总的洛仑兹力为
(2)若为铜盘转动, 视为铜棒并联;
(3)用法拉第定律直接求解:
i
d dt
设想回路Oab(如图)
ioab ioa
v a
O
S
b
法二 选l如图所示
S 1 L2
2
BS
ioab
d dt
L
a
o
l S b
1 BL2 d
2 dt
1 BL2
0 随时间减小d/dt0
0 随 时 间 增 大d/dt0
0 随 时 间 减 小 d/dt0
B
nl
N
v
S
d/dt0
(4)由 i d/dt 确定 i 正负
i 0
i方 向 与 l方 向 一 致
i 0 i方 向 与 l方 向 相 反
n
l
B
i i
NN SS v
id/dt0
例:利用法拉第电磁感应定律判断感应电动势 的方向。
三、法拉第电磁感应定律
实验给出 Ii :dd t (磁通量随时间的变
说明有
(感应电动势)存在,
i

i
d dt
i
d dt
SI制
i与ddt有关, 无 与关,与回路关 的。 材料
i的存在与回路无 是关 否, 闭 Ii的 而 合 存在

高二物理竞赛电磁感应定律课件(共14张PPT)

高二物理竞赛电磁感应定律课件(共14张PPT)
i ,电磁与感应反现向象(2)
R dt 引6.起磁导场体对回载路流中导产线生的感作应用电流的原因,是由于电磁感应在回路中建立了感应电动势,比感应电流更本质,即使由于回路中的电阻无限大而电流为零,感应电动势依然存在。
引第六起章导电体磁回感路应中与产暂态生过感程应电流的原因,是由于电磁感应在回路中建立了感应电动势,比感应电流更本质,即使由于回路中的电阻无限大而电流为零,感应电动势依然存在。
引18起20导年体,回奥路斯中特产(生丹感麦应) ,电电流流的磁原效因应,。是由于电磁感应在回路中建立了感应电动势,比感应电流更本质,即使由于回路中的电阻无限大而电流为零,感应电动势依然存在。
1 dΦ 13.顺电磁磁质感抗应磁定质律铁磁质
电第五磁章感应电现磁象感(应2和) 暂态过程
I 他1 是电电磁磁理感论应的定创律始人之一,于1831年发现电磁感应现象。
t t 2 1电线,1电(,法感第2.2磁拉圈磁生六)电感 第 法电不与与感感电章磁应(拉应磁动应动感现M电,电感电应i现势象动c同同磁h磁定应磁势(象a2向 向感铁律大e感定感)(l小插生3F应律应与a)入电r定与磁a或场d通津暂a拔量y态,变出1化过时7的9程,1快-慢18有6关7;),伟大的英国物理学家和化学家。
v
v
D
导体切割磁力线运动时产生感应电流
结论:闭合回路磁通量变化时产生感应电动势
1 电磁感应定律
法拉第定律(1)
法拉第通过各种实验发现了电磁感应现象,并总结了电磁感应的共同规律:
(1)通过导体回路的磁通量随时间发生变化时,回路中就有感应电动势产生, 从而产生感应电流。磁通量的变化可以是磁场变化引起的,也可以是导体在 磁场中运动或导体回路中的一部分切割磁力线的运动产生的,

电磁感应物理竞赛课件

电磁感应物理竞赛课件
感应电动机结构简单、维护方 便、成本低廉,广泛应用于工 业、农业、交通运输等领域。
电磁炉
电磁炉是利用电磁感应原理加热 食物的厨房电器,主要由加热线 圈、铁磁性锅具和控制系统组成

当加热线圈中通入交变电流时, 会在周围产生交变磁场,该磁场 与铁磁性锅具的相互作用产生热
量,使食物加热。
电磁炉具有高效节能、安全环保 、使用方便等优点,已成为现代
楞次定律
总结词
楞次定律是关于感应电流方向的规律,它指出感应电流的方向总是阻碍引起感应 电流的磁通量的变化。
详细描述
楞次定律是电磁感应中感应电流方向的判断依据。当磁通量增加时,感应电流的 磁场方向与原磁场方向相反;当磁通量减少时,感应电流的磁场方向与原磁场方 向相同。这个定律是能量守恒定律在电磁感应现象中的具体体现。
变压器在电力系统、电子设备和工业自动化等领域 有广泛应用,是实现电能传输和分配的重要设备。
感应电动机
感应电动机是利用电磁感应原 理实现电能和机械能转换的电 动机,主要由定子、转子和气 隙组成。
当定子绕组中通入三相交流电 时,会在气隙中产生旋转磁场 ,该磁场与转子导体的相互作 用产生转矩,使转子转动。
总结词
掌握解决物理竞赛中电磁感应问题的技巧
详细描述
解决物理竞赛中的电磁感应问题需要一定的技巧 和经验。例如,利用楞次定律判断感应电流的方 向、利用法拉第电磁感应定律计算感应电动势的 大小等。通过多做练习和总结经验,提高解决这 类问题的能力。
05
电磁感础题目主要考察学生对电磁感应基本概念的掌握情况,包括法拉第电磁感应定 律、楞次定律等核心知识点。通过解答这些题目,学生可以加深对电磁感应现象 的理解,为解决更复杂的问题打下基础。
厨房中不可或缺的电器之一。

高二物理竞赛课件:电磁感应定律

高二物理竞赛课件:电磁感应定律

Ψ NΦm
B
i
N
d Φm dt
步骤: 1)确定回路所在空间的磁场的分布;
dS n
2)选择回路的绕行方向,所围曲面
的正法向方向与回路绕行方向
满足右手螺旋法则;
3)计算回路所围曲面的磁通量Φm;
L
4)根据电磁感应定律: i
dΦm dt
,计算感应电动势。
i>0 时,电动势的方向与回路绕行方向相同。 i<0 时,电动势的方向与回路绕行方向相反;
实验与探究 1
检流计
N
S
A
现象: 1)当条形磁铁插入螺线管或从螺线管中抽出时, 灵敏检流计的指针偏转,说明闭合回路中产生了电流。 2)当条形磁铁与螺线管保持相对静止时, 灵敏检流计的指针不偏转,说明闭合回路中没有电流。
实验与探究 2
电源
A
A
检流计
现象: 1) 开关接通或断开瞬间, 2) 开关接通,变阻器滑片不动, 3) 开关接通,变阻器滑片移动,
电磁感应定律
一、电磁感应定律
奥斯特在1820年发现的电流磁效应,使整个科学界 受到了极大的震动,它证实电现象与磁现象是有联系的。
1) 既然电能生磁,那么,磁是否能生电呢? 2) 如果磁能生电,那么,怎样才能实现呢?
法拉第经过十年的不懈 努力终于在1831年发现了
---电磁感应现象。
法拉第(Michael Faraday)
例 : 一长直导线通以电流 i I0 sin t (ω、I0为常数),
近旁共面有一个边长分别为l1和l2的单匝矩形线圈abcd, ab边距直导线的距离为r,求矩形线圈中的感应电动势。
解: 当 i 0 时,设电流方向如图
建立坐标系Ox如图,
x处的磁感应强度为: B 0i , 方向 2x

高二物理竞赛资料——电磁感应(学生)

高二物理竞赛资料——电磁感应(一)楞次定律的理解和应用【例1】如图所示,ab 是一个可以绕垂直于纸面的轴O 转动的闭合矩形导线框,当滑动变阻器的滑片P 自左向右滑动时,从纸外向纸里看,线框ab 将( )A.保持静止不动 B.逆时针转动 C.顺时针转动D.发生转动,但电源极性不明,无法确定转动方向(二)电磁感应中的电路问题【例2】如图所示,在倾角为300的光滑斜面上固定一光滑金属导轨CDEFG ,OH ∥CD ∥FG ,∠DEF =600,L AB OE FG EF DE CD ======21.一根质量为m 的导体棒AB 在电机牵引下,以恒定速度v 0沿OH 方向从斜面底端开始运动,滑上导轨并到达斜面顶端,AB ⊥OH .金属导轨的CD 、FG 段电阻不计,DEF 段与AB 棒材料与横截面积均相同,单位长度的电阻为r , O 是AB 棒的中点,整个斜面处在垂直斜面向上磁感应强度为B 的匀强磁场中.求:(1)导体棒在导轨上滑动时电路中电流的大小;(2)导体棒运动到DF 位置时AB 两端的电压.(三)电磁感应中的动力学问题【例3】如图所示,abcd 为质量M =2 kg 的导轨,放在光滑绝缘的水平面上,另有一根重量m =0.6 kg 的金属棒PQ 平行于bc 放在水平导轨上,PQ 棒左边靠着绝缘的竖直立柱ef (竖直立柱光滑,且固定不动),导轨处于匀强磁场中,磁场以cd 为界,左侧的磁场方向竖直向上,右侧的磁场方向水平向右,磁感应强度B 大小都为0.8 T.导轨的bc 段长L =0.5 m ,其电阻r =0.4Ω,金属棒PQ 的电阻 R =0.2Ω,其余电阻均可不计.金属棒与导轨间的动摩擦因数μ=0.2.若在导轨上作用一个方向向左、大小为F =2 N 的水平拉力,设导轨足够长,重力加速度g 取 10 m/s 2,试求:(1)导轨运动的最大加速度;(2)导轨的最大速度;(3)定性画出回路中感应电流随时间变化的图线.(四)电磁感应中的能量问题【例4】如图所示,固定的水平光滑金属导轨,间距为L,左端接有阻值为R的电阻,处在方向竖直、磁感应强度为B的匀强磁场中,质量为m的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.(1)求初始时刻导体棒受到的安培力。

高中物理竞赛《电磁感应》内容讲解

电磁感应全国物理竞赛知识要点:法拉第电磁感应定律。

楞次定律。

自感系数。

互感和变压器。

交流发电机原理。

交流电的最大值和有效值。

纯电阻、纯电感、纯电容电路。

整流和滤波。

一、感应电动势、感应电流的计算基本原理:法拉第电磁感应定律、麦克斯韦电磁场理论、电路分析的原理1、如图OC为一绝缘杆,C端固定着一金属杆ab,已知ac=cb,ab=oc=R,∠aco=600,此结构整体可绕O 点在纸面内沿顺时针方向以角速度ω匀速转动,设有磁感应强度为B,方向垂直于纸面向里的匀强磁场存在,则a、b间的电势差U ab是多少?2、如图所示,六根长度均为a的导线组成一个正三棱锥形,绕过O点且垂直于OBC所在平面的轴,以角速度ω匀速转动,匀强磁场B垂直于OBC平面向下,求导线AC中产生的电动势大小。

3、如图所示,在垂直与纸面向里磁感应强度为B的匀强磁场中,有一细金属丝环,环上A点有长度为L的很小缺口,环面与磁场垂直,当环作无滑动地滚动时,环心以速度v匀速向右运动,半径OA与竖直方向成的角θ不断增大,试求缺口处感应电动势与θ的关系。

(A即为缺口)4、如图所示,匀强磁场分布在半径为R 的圆形区域中,磁场以k tB=∆∆均匀增加,AC=CD=R ,如何求A 、C 间、A 、D 间的电压?5、圆abcd 的半径为圆形磁场区域的2倍,磁场以k tB=∆∆(常数)均匀增加,已知bad 、bd 、bcd 及电流计电阻均为R ,其余电阻不计磁场区域的直径为D ,。

求电流计中的感应电流(RkD 162π)将右半回路(bcd)以bd 为轴转900(与上述相同)、将右半回路以bd 为轴转1800(RkD 82π)6、一横截面积为矩形的水平金属板,宽为d,两侧由滑动接头e和f通过细金属杆与小伏特表相连,金属杆ab长为2d,位于水平位置,整个装置处在方向竖直向上、磁感应强度为B的匀强磁场中,不计金属板和金属杆的电阻,在下列情况下,问伏特表的读数为多少?a点的电势比b点高多少?b点的电势比e点高多少?(1)若金属板以恒定的速度v向右运动,但伏特表和金属杆保持静止;(2)若金属杆和伏特表一起以恒定的水平速度v向左运动,但金属板保持静止;(3)若整个装置一起以恒定的水平速度v向右运动。

高中物理竞赛讲义:电磁感应.

电磁感应【拓展知识】1.楞次定律的推广 (1)阻碍原磁通量的变化; (2)阻碍(导体的)相对运动; (3)阻碍原电流的变化。

2.感应电场与感应电动势磁感应强度发生变化时,在磁场所在处及周围的空间范围内,将激发感应电场。

感应电场不同于静电场:(1)它不是电荷激发的,而是由变化的磁场所激发;(2)它的电场线是闭合的,没有起止点。

而静电场的电场线是从正电荷出发终止于负电荷;(3)它对电荷的作用力不是保守力。

如果变化的磁场区域是一个半径为R 的圆形,则半径为r 的回路上各点的感应电场的场强大小为⎪⎪⎩⎪⎪⎨⎧∆∆∙≤∆∆∙=.,2;,22R r tB r R R r tBr E 方向沿该点的切线方向。

感应电场作用于单位电荷上的电场力所做的功就是感应电动势。

【试题赏析】1.如图所示,在一无限长密绕螺线管中,其磁感应强度随时间线性变化(tB∆∆=常数),求螺线管内横截面上直线段MN 的感应电动势。

已知圆心O 到MN 的距离为h 、MN 的长为L 以及tB∆∆的大小。

解:求感生电动势有两种方法。

(1)根据电动势的定义:某一线段上的感生电动势等于感生电场搬运单位正电荷沿此段运动时所做的功。

在MN 上任选一小段l ∆,O 点到l ∆距离为r ,l ∆处的感E如图4-4-8所示,与l ∆的夹角为θ,感生电场沿l ∆移动单位正电荷所做的功为θ∆=∆cos l E A 感, 而t B r E ∆∆=2感则θ∆⋅∆∆=∆cos 2l t Br A而 h r =θcos故 lt B h A ∆∆∆=∆2把MN 上所有l ∆的电动势相加,t Bhl l t B ∆∆=∆∆∆=ε∑2121(2)用法拉第定律求解。

连接OM ,ON ,则封闭回路三角形OMN 的电动势等于其所包围的磁通量的变化率。

lhBBS 21==Φ t B hlt ∆∆=∆∆Φ=ε21OM 和ON 上各点的感生电场感E均各自与OM 和ON 垂直,单位正电荷OM 和ON上移动时,感生电场的功为零,故OM 和ON 上的感生电动势为零,封闭回路OMNO 的电动势就是MN 上的电动势。

高二物理竞赛电磁感应的基本定律课件


第7章 电磁感应与电磁场
1833年,楞次总结出:
闭合回路中感应电流的方向,总是使得它所
激发的磁场来阻止或补偿引起感应电流的磁通量
的变化.
产生 磁通量变化
感应电流
阻碍
产生
导线运动
感应电流
f
a
b
阻碍
楞次定律是能量守恒定律在电磁
感应现象上的具体体现。
6
第7章 电磁感应与电磁场
例:一无限长直导线载有交变电流i=i0sint,旁边有 一个和它共面的矩形线圈abcd,如图所示.求线圈中
dl
S
B t
dS
r Er
l
l E涡dl cos00
S
B dS cos1800 t
E涡 2r
B t
r 2
E涡
r 2
B t
B 0
E涡与 l积分方向切向同向
17
t
第7章 电磁感应与电磁场
若 r>R
因圆柱外B=0 ,故对任一 回路均有
lE 涡 mdl Rs2 dB B tdS
E涡2rR2
③若N匝线圈串联: ,则
i d dm 1 td dm 2 t d dmtN
i ddt
j
mj
d dt
m
3
式中
m mj ——磁通链
j
i
dm dt
第7章 电磁感应与电磁场
感应电流
如果闭合回路为纯电阻R回路时,则
Ii
i 1dm
R R dt
i
感应电流的方向与感应电动势 的方向总是一致的。
t1 ~ t2 时间内通过导线上任一截面的电量
t
B
t
E涡
注意:E涡是与B/t,而不是B组成左螺旋。 (4) 感生电场是非保守场 (涡旋电场)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12 S
M l2UCPl1NBlQ
(1)当电键S由1扳向2后,电容器对闭合回路放电, 使两个小棒向右作加速运动。初始时分两小棒的安培 力相同,但由于质量不等,故速度不等,最终会导致 两小棒以相同速度运动,并使两端电压等于电容器两 端电压,此时电流等于零,两小棒作匀速运动。 对于中间过程的任一时刻,设l1电流为i1,l2电流为i2, 安培力分别为F1=Bli1和F2=Bli2,由动量定理,得
dt
在 SI 制中 k =1
确定回路的绕行方向, 0 与回路 L绕向相反 ; 0 与回路L绕向同向;
感应电流和感应电量 I 1 d R dt
感应电流的大小与 随时间变化率有关
I dq dt
q
1 R
( 2
1 )
感应电量只与回路中磁通量的变化量有关,与磁通量 变化率无关。
3.动生电动势
4.动生电动势的相关应用
(1)含电容器问题,应用微元(微积分)叠加处理
(2)含源问题,应用基尔霍夫定律
(3)定轴转动的导体杆切割磁感线问题的灵活应用, 特别是对非匀强磁场问题。尤其是法拉第圆盘发电机 (或电动机)
(4)功、功率和能量问题,电路产生的电能等于 克服安培力做功
(5)数学基础:微元法(微积分)的应用
(4)这里的速度v实际上导体相对于磁场的做切割磁感 线的运动速度。
例、长为l直导体在磁场B中做匀角速的转动, 已知转轴通过导体的端点,角速度为ω,若磁 场沿径向的变化规律为B=kr2,其中k为常数,
求动生电动势。
Brr kr 3 r
d l kr 3dr 1 kl 4
0
4
ω Ol B
其中Q为初始时刻电容器所带电量,q为最终速度时电容器所带 电量
由于 Q CU q CBlv
最终有
BlCU v m1 m2 B2l 2C
(2)在整个过程中的焦耳热损耗。
由能量关系,得
12 S
M l2
UC
P
l1
N
Bl
Q
W
W0
W1
1 2 (m1
m2 )v 2
(m1 m2 )CU 2 2(m1 m2 B2l 2C )
F1t Bli1t m1v1 F2t Bli2t m2v2
由于两棒开始时刻静止,而最终速度又等于v,则
Bli1t m1v
Bli2t m2v
两式相加等于 Bl(i1 i2 )t (m1 m2 )v
任何时刻,通过l1和l2的电流的代数和等于电容器的 放电电流i,即有
(i1 i2 )t it Q q
2、如图所示,水平放置的金属细圆环半径为a,竖直放 置的金属细圆柱(其半径比a小得多)的端面与金属圆环 的上表面在同一平面内,圆柱的细轴通过圆环的中心 O.一质量为m,电阻为R的均匀导体细棒被圆环和细圆 柱端面支撑,棒的一端有一小孔套在细轴O上,另一端A 可绕轴线沿圆环作圆周运动,棒与圆环的摩擦系数为 µ.圆环处于磁感应强度大小为B=kr、方向竖直向上的 恒定磁场中,式中k为大于零的常量,r为场点到轴线的 距离.金属细圆柱与圆环用导线ed连接.不计棒与轴及 与细圆柱端面的摩擦,也不计细圆柱、圆环及导线的电 阻和感应电流产生的磁场.问沿垂直于棒的方向以多大 的水平外力作用于棒的A端才能使棒以角速度ω匀速转 动.
一、动生电动势
1.电磁感应现象
当回路磁通量发生变化时在回路中产生电流的现象 称为电磁感应现象。产生的电流叫感应电流。
磁通量的变化量
(BS) (B)S B(S)
感生电动势
动生电动势 交流发电机
2.法拉第电磁感应定律
内容:导体回路中的感应电动势的大小与穿过 导体回路的磁通量的变化率成正比.
k d
离中心r处的电阻率与r成正比,即 =0r,0为常量。
整个环形圆盘处在与盘面垂直的恒定磁场中,磁感应强
度大小为B。图中的电源S是一个不论负载如何变化,
均能提供恒定不变的电流I的恒流源,电阻R0是跨接在 电源S两端的固定电阻。电源一端接在固定金属轴上端
面的中心X处,另外一端通过无摩擦的电刷Y与圆盘保
持良好接触,此装置可以作为“圆盘电动机”。
1、如图所示,电源的电动势为U,电容器的电容为 C,S 是单刀双掷开关。MN、PQ 是两根位于同一水平面的平行 光滑长导轨,它们的电阻可以忽略不计。两导轨间距为l, 导轨处磁感应强度为B的均匀磁场中,磁场方向垂直于两 导轨所在的平面并指向图中纸面向里的方向。l1 和 l2 是两 根横放在导轨上的导体小棒,它们在导轨上滑动时与导轨 保持垂直并接触良好,不计摩擦。两小棒的电阻相同,质 量分别为 m1和m2,且m1<m2,开始时两根小棒均静止在 导轨上,现将开关S先接通1,然后接通2。求: (1)两根小棒最终速度大小;
(BS) (Blx) Bl x Blv
t t
t
t
d
a
B
v
c b
(1)它既可以表示是瞬时电动势,也可以表示平均电 动势; (2)若速度v的方向与磁场B方向不垂直,则动生电动
势=Blvsin
(3)若磁场不是匀强磁场,或切割磁感线的导体杆上 各点速度不相等,可以用微元法处理,
Bvsinl
求安培力矩再次用到积分方法
利用外力力矩等于安培力 矩与摩擦力矩之和即得
本题也可以由 能量关系计算, 外力的功率等 于电功率与克 服摩擦力功率 之和
3、如图所示,OO为一固定不动的半径为a1的圆柱形金 属轴,其电阻可忽略不计。一个内半径为a1、外半径为 a2、厚度为h(h<<a1)的匀质环形导体圆盘套在OO上, 与OO接触良好,并可绕OO无摩擦地转动。圆盘上距
分析:哪些是常量?哪些是变量?
对于在匀强磁场中,做 定轴转动的导体杆切割 磁感线,可以简单地用 平均速度求解,现在还 可以吗?
B O e
B
A a
d
下面用积分方法求做
dx
O
x x+dx
x
长度微元dx的动生电动势d =Bvdx=kx2dx
故总电动势大小为
d a kx2dx 1 ka3
0
3
高中物理竞赛系列讲座
电磁感应
王玉水
物理竞赛大纲规定的考试内容:法拉第电磁感 应定律,Lenz定律,感应电场,自感系数和互 感等。从考点内容看,电磁感应所涉及到的知 识点与常规教学基本相同,但对学生能力的要 求较高,同时对数学的要求和物理方法的应用 都很高,希望同学们对于一些经典问题有全面 的理解。
相关文档
最新文档