基于单片机的串行通信发射机设计
基于串行通信的发射机控制系统设计

信 息 系 统 与 网 络
基 于 串行 通 信 的发 射 机 控 制 系统 设 计
杨 国斌 , 正 予 , 赵 陈 罡 , 时 雨
( 汉大 学 电子 信 息学 院 , 北 武 汉 4 07 ) 武 湖 3 0 9
摘 要 介绍 了 一 种应 用 于 电离 层 探 测 系 统 中 的 固态 发 射 机 。 为 了 实 现 对 该 发 射 机 的 远程 控 制 , 出 了在 w dw 环 境 提 i os n
in s h rc su dig sse o o p e o n n y tm i
0 引言
在一般 的电离 层 探 测 系统 中 ( 主要 分 为 垂 直探
测和斜 向探测 ) 发 射机 工 作在 高 频 段 , 射 功 率 一 , 发
1 系统 的硬 件 设 计
S X 3 M发 射 机具 有 良好 的 自动控 制模 块 , T 10 其
o tie b an d. Ke r s y wo d s ra c mmu iain;sra p r p ga e l o i nc to e l o i t r rmmig;ta s te r moe o to ;RS 一 2 2 o n r n mitr e t c nr l 3 /RS 一 4 2 o v rin n efc 2 c n eso itra e;
关键词 串行通 信 ; 串口编程 ; 发射机远程控制 ;S 3/ S一 2 R 一22 R 4 2转换接 口; 电离层探测系统
中图 分 类 号 T 9 73 N5 . 文 献 标 识 码 A
De i n o a s itr Co to y t m s d o sg fa Tr n m te n r lS se Ba e n t e I m o e S ra m m un c to h t e ilCo ia i n
基于单片机的串行通信发射机设计【文献综述】

毕业设计(论文)文献综述题目:基于单片机的串行通信发射机设计专业:电子信息工程1前言部分1.1意义随着电子技术的快速发展,单片机在自动控制领域的应用越来越广泛[1]。
单片机作为自动控制系统的神经中枢,在自控系统中发挥着核心作用。
单片机与外接设备的联系是通过一个串行通信接口,来实现单片机与其他计算机或外围设备的通信,所以,单片机的串行通信的实现对自控系统的实现有着重要的意义。
随着数据交互需求的进一步提高,对串行通信的通信效率、性能也提出了越来越高的要求[2]。
1.2串行通信的定义串行通信,就是将数据分成一个个的二进制位,然后通过一个通信信道或一条线路,按照已有的规程逐位依次进行传输,实现计算机与计算机或外部设备之间的通信(数据交换)。
由于串行通信占用硬件资源少、可大幅度降低通信线路的成本、简化通信设备、应用灵活等诸多优点,在工业控制、电力通信、智能仪表等领域得到了广泛的应用[3]。
1.3关于单片机单片机是一种集成在电路芯片上的一个小而完善的计算机系统,采用超大规模集成电路技术将具有数据处理能力的中央处理器、CPU随机储存器 RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上[4]。
单片机又称单片微控制器,相当于一个微型的计算机。
和计算机相比,单片机只缺少了I/O设备,概括的讲:一块芯片就是一台计算机。
它的体积小、质量轻、价格便宜,为学习、应用和开发提供了便利条件[5]。
与此同时,掌握单片机是了解计算机原理与结构的最佳选择。
单片机与外界的信息交换及通信通常有两种,分别是串行通信和并行通信。
一次传送多位数据的通信方法叫并行通信,它的传输速度很快,但传输距离有限,而且成本高,难以大规模推广。
因此,现在的单片机系统一般采用串行通信,即信号一位一位地传送[6]。
2主题部分2.1串行通信的发展史随着计算机网络化和微机分级分布式应用系统的快速发展,通信功能越来越重要。
基于单片机技术下的串行收发数据系统设计

基于单片机技术下的串行收发数据系统设计单片机技术在串行收发数据系统中被广泛应用,它可以通过串口与外部设备进行数据通信,实现数据的传输和控制。
在本文中,将介绍如何设计一个基于单片机技术的串行收发数据系统,包括硬件设计和软件实现。
一、硬件设计硬件设计是串行收发数据系统的基础,它包括单片机、串口模块、外部设备和连接线等组成部分。
在硬件设计中,需要考虑以下几个方面:1.单片机选择:选择合适的单片机作为系统的核心控制器,通常选择常见的51系列或AVR系列单片机。
单片机需要具备足够的计算能力和IO口数量,以支持数据的收发和处理。
2.串口模块:串口模块是单片机与外部设备进行数据通信的重要组成部分,通常选择UART串口模块。
串口模块需要具备可调波特率、数据位、停止位和校验位等参数的功能,以满足不同外设的通信要求。
3.外部设备:外部设备包括传感器、显示器、通信模块等,用于与单片机进行数据交换。
外部设备的选择需根据系统需求进行定制,保证系统的性能和稳定性。
4.连接线:连接线用于连接单片机、串口模块和外部设备,需要选择合适的线材和接口,保证数据的稳定传输。
二、软件实现软件实现是串行收发数据系统的关键,它包括单片机程序的编写和调试等步骤。
在软件实现中,需要考虑以下几个方面:1.硬件初始化:在程序启动时,需要对单片机和串口模块进行初始化,包括IO口配置、时钟设置、波特率设置等。
初始化的目的是为了确保系统的正常运行和通信。
2.数据收发:数据收发是系统的核心功能,需要编写接收和发送数据的程序,以实现单片机与外部设备之间的数据交换。
接收数据时需要考虑数据帧的组织和解析,发送数据时需要考虑数据的打包和发送。
3.数据处理:接收到的数据需要进行处理和存储,通常包括数据解析、计算和显示等。
数据处理的目的是提取有效信息,实现系统的功能和应用。
4. 调试测试:在软件实现过程中,需要进行调试和测试,检测程序的运行情况和数据交换是否正常。
通过调试测试可以发现并解决程序中的bug和问题,最终确保系统的正常运行。
单片机串行通信发射机的设计本科学位论文

图书分类号:密级:毕业设计(论文)单片机串行通信发射机的设计THE DESIGN OF SINGLECHIP SERIAL COMMUNICATION TRANSMITTER学生学号学生姓名学院名称信电工程学院专业名称电子信息工程技术指导教师2010年6月3日摘要温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发,本文设计了一种基于AT89C51的温度检测及报警系统。
该系统将多个单总线温度传感器DS18B20并接在控制器的一个端口上,对各个传感器温度进行循环采集,将采集到的温度值与设定值进行比较,当超出设定的上限温度时,通过ISD1420语音电路给出语音提示及报警信号。
文中给出了单根数据线上扩展多个温度传感器的设计方法,并给出了系统实现的硬件原理图及软件流程图。
经实验测试表明,该系统测量精度高、抗干扰能力强、报警及时准确,具有一定的参考价值。
该系统设计和布线简单,结构紧凑,体积小,重量轻,抗干扰能力强,性价比高,扩展方便,在大型仓库,工厂,智能化建筑等领域的多点温度检测中有广阔的应用前景。
关键词:数字温度传感器;单总线;通信协议;DS18B20;AT89C2051;LED显示器;报警信号AbstractTemperature detection and control of industrial production process, one of the more typical applications, with sensors in production and life is more widely used, using a new single-bus digital temperature sensor to achieve the test and control the temperature more rapidly development, this paper is designed based on AT89C51 temperature detection and alarm systems. The system will be more than a single-bus temperature sensor DS18B20 and connected to a port on the controller, the temperature sensors on each loop collection, the temperature will be collected to compare with the set value, when the temperature exceeds the upper limit set , through the ISD1420 voice circuit gives voice prompts and alarm signal. In this paper, a single data lines extend multiple temperature sensor design methods and gives the system implementation of hardware and software flow diagram. The experimental tests show that this high accuracy, strong anti-interference ability, alarm timely and accurate, with a certain reference value. The system design and layout simple and compact structure, small size, light weight, anti-jamming capability, cost-effective to expand convenience, in large warehouses, factories, construction and other areas of intelligent multi-point temperature measurement in a wide range of applications prospects.Key words digital temperature sensor single bus communication protocols DS18B20 AT89C2051 LED display alarm signal目录1绪论 (1)1.1课题背景 (1)1.2温度检测与及报警系统的国内外状况 (1)1.3温度参数、温度检测和语音报警 (3)1.3.1 温度参数 (3)1.3.2 温度检测 (3)1.3.3 语音报警 (3)2 系统总体设计方案 (4)2.1单片机语音温度报警系统的总体设计 (4)2.2系统的基本工作过程 (5)3 单片机温度控制和语音报警系统硬件设计 (6)3.1温度控制和报警主机 (6)3.1.1主控制单片机 (6)3.1.2 AT89S51特点 (6)3.1.3 AT89S51主要功能特性: (7)3.1.4 温度检测和报警主机硬件电路设计 (7)3.1.4单片机及复位键控制模块 (10)3.2语音电路 (12)3.2.1 ISD1420芯片简述 (12)3.2.2 芯片引脚介绍 (13)3.2.3 芯片工作原理 (12)3.2.4 芯片工作模式 (13)3.2.5语音电路设计 (14)3.3DS18B20芯片简介 (14)3.3.1温度传感器的历史及简介 (14)3.3.2 DS18B20性能特点与内部结构 (15)3.3.3 DS18B20工作时序 (19)3.3.4 DS18B20的操作协议 (21)3.3.5 DS18B20序列号编码 (23)3.3.6 DS18B20的测温原理 (24)3.3.7 DS18B20的测温流程 (25)3.3.8 DS18B20数据校验与纠错 (25)3.3.9 DS18B20在测温系统中的应用 (27)3.3.10测温系统的硬件工作原理 (27)3.3.11 注意事项 (28)4 软件设计 (30)4.1设计思路 (30)4.2程序设计 (27)4.2.1 主程序 (31)4.2.2 读出温度子程序 (29)4.2.3温度转化命令子程序 (33)4.2.4计算温度子程序 (33)4.2.5显示数据刷新子程序 (34)4.2.6 LED显示程序模块 (34)5 系统调试 (36)5.1硬件调试 (36)5.1.1 硬件静态的调试 (37)5.1.2 系统硬件调试 (37)5.2软件调试 (37)5.3软硬联调 (37)结论 (38)致谢 (39)参考文献 (40)附录 (41)1 绪论1.1 课题背景测量控制的作用是从生产现场中获取各种参数,运用科学计算的方法,综合各种先进技术,使每个生产环节都能够得到有效的控制,不但保证了生产的规范化、提高产品质量、降低成本,还确保了生产安全。
单片机串行通信的设计

单片机串行通信的设计单片机串行通信是指通过串行接口,将数据一位一位地传输到另一个单片机或外部设备的通信方式。
串行通信相比并行通信具有线路数量少、布线简单的优势,因此在嵌入式系统和通信领域得到广泛应用。
本文将围绕单片机串行通信的设计展开论述。
一、串行通信原理串行通信主要利用两根线路进行数据传输,一条线路作为数据线,一条线路作为时钟线。
发送方按照一定的时钟频率将数据位逐位传输到接收方,接收方根据时钟信号判断数据位的高低状态。
二、串行通信接口串行通信主要有两种接口方式:UART(通用异步收发器)和SPI(串行外设接口)。
1. UART:UART是一种异步通信方式,数据通过单个数据线进行传输。
UART有两个引脚:一根引脚用于数据传输(TXD - 发送,RXD - 接收),另一个引脚用于时钟同步(Baud Rate Generator - 波特率发生器)。
UART通信需要发送方和接收方的波特率一致,否则会导致数据传输错误。
2.SPI:SPI是一种同步通信方式,数据通过多个数据线进行传输。
SPI有四个引脚:主输出/从输入(MISO)、主输入/从输出(MOSI)、时钟信号(CLK)和片选信号(CS)。
SPI通信中的主从关系是由软件决定的,主设备负责控制时序和片选,从设备则根据主设备的控制信号进行数据传输。
三、串行通信的数据传输串行通信的数据传输基本步骤如下:1.初始化串行通信接口:设置波特率、数据位长度、停止位等参数,并打开串行通信开关。
2.发送方数据准备:将需要传输的数据准备好,存储到发送缓冲区中。
3.数据传输:根据数据位长度和波特率设定的时钟频率,将数据位逐位输出到数据线。
4.接收方接收数据:根据时钟信号,逐位读取数据线上的数据位,并存储到接收缓冲区中。
5.结束通信:关闭串行通信开关,并进行后续处理。
四、串行通信的设计考虑因素在设计单片机串行通信时,需要考虑以下因素:1.通信协议:选用合适的通信协议,例如UART协议或SPI协议。
单片机串行通信的设计

单片机串行通信的设计单片机性能稳固、价格低廉、功能强大,在智能仪器、工业装备以及日用电子消费品中得到了越来越广泛的应用。
在单片机的输入输出操纵中,除直截了当接上小键盘和LCD显示屏等方法外,一样都通过串口和上位机PC进行通信,而后一种方法由于能实现远程操纵,同时能够利用PC机强大的数据处理功能以及友好的操纵界面,显得尤为重要。
在一样的利用PC 机对单片机进行操纵的场合,差不多上采纳Windows作为上位机的平台,其优点是界面友好,编程和操作都比较容易,缺点是稳固性太差,这关于需要连续数天或数月运行的装置来讲,专门不合适。
在要求比较苛刻的场合,一样都采纳UNIX工作站作为主控平台,如合肥同步辐射加速器的主控平台采纳的是SUN的Solaris工作站系统,然而UNIX工作站昂贵的价格又大大限制了其使用的范畴。
近年来,随着Linux的迅猛进展,使其逐步从少数人的玩具变成了主流的操作系统。
Linux是遵循GPL协议的免费源代码开放软件,任何人都能够自由的从Internet上取得其源程序,也可在GP L的协议下修改其源代码以适应特定的应用,其运行在一般的PC上,性能稳固,专门适于做工业操纵,因此实现Linux和单片机的串行通信专门有意义,他能够是昂贵的UNIX工作站的一种可选的替代方法。
1硬件原理目前国内使用较多的为MCS-51系列的单片机,因此选用的单片机实验对象为一片AT89C51,图1是硬件原理图,由于要实现符合RS232C 的串行通信,还应该用一片ICL232CPE(MAX232)作为串行通信的电平转换电路。
在实验过程中,为了查看通信是否成功,除了让单片机对上位机回送数据外,还在单片机外围扩展了几片锁存器,几个LED发光二极管和几个小键盘。
串行通信是采纳最简单的TxD,RxD,GND三线制连接,注意TxD和RxD两边应该交叉连线。
上位机是一台一般的PC机,共有2个串行口COM1,COM2,其运行RedHat8.0,实际上,如果不要求运行Gnome或KDE等图形界面,Linux 对系统硬件的要求相当低。
串行通信发射机

单片机串行通信发射机一摘要单片机串行通信发射机采用了串行工作方式,发射并显示两位数字信息,既显示00-99,使数据能够在不同的地方传递。
硬件部分主要分两大块,采用6MHZ 晶振和30pF的电容来组成,控制信号用手动开关来控制,P1来控制,P2﹑P3口产生信号,并通过共阳极数码管来显示,软件采用汇编语言来编写,发射程序在通信协议一致的情况下完成数据的发送。
关键词:晶振控制信号汇编语言焊接技术Single chip microcomputer serial communication transmitter Content abstract:single chip microcomputer serial communication transmitter using a serial mode, launch and display two digital information, which shows 00-99, make the data can be in different places transfer. The hardware part is mainly divided into two parts, adopts 6 MHZ crystal oscillator and 30 pf the capacitance to composition, control signal with manual switch to control, to control the P1, P2, P3 mouth signal generation, and through the common anode digital tube to display, the software using assembly language to write, emission process in communication protocol consistent complete data sending.Keywords: crystal vibration control signal assembly language welding technology二引言1 设计目的设计的目的是,掌握和了解电路的设计过程,丰富自己的动手实践能力,巩固所学单片机有关的设计原理。
单片机串行通信发射机设计

单片机串行通信发射机设计摘要:本文单片机串行通信发射机主要在实验室完成,参考有关的书籍和资料,个人完成电路的设计、焊接、检查、调试,再根据自己的硬件和通信协议用汇编语言编写发射和显示程序,然后加电调试,最终达到准确无误的发射和显示。
关键词:单片机控制信号芯片编程发射机是有线接收的,得却能完成数据在不同地方的传递,也完成了我们毕业设计的要求,但他受到了很多限制。
不如距离太远,导线太长久汇有干扰而且有时还会很大,使得接收到的信号很弱,甚至接收不到。
必须进行无线发射、接收的方面的研究,由于毕业设计的时间有限,就没能完成无线发射、接收的设计。
现在就介绍一下无线发射的原理和电路。
单片机无线串行接口电路由micrf102单片发射器芯片,工作在300~440 mhz ism频段;无线发射电路组成及工作原理。
图1 无线发射电路图无线发射电路如图1所示,电路以micrf102为核心。
micrf102是micrel公司推出的一个单片uhf/ask发射器,采用sop(m)-8封装,芯片内包含有:由基准振荡器、相位检波器、分频器、带通滤波器、压控振荡器构成的合成器,发射偏置控制,rf功率放大器,天线调谐控制和变容二极管等电路,是一个真正的”数据输入-无线输出”的单片无线发射器件。
uhf合成器产生载频和正交信号输出。
输入相位信号(i)用来驱动rf功率放大器。
天线调谐正交信号(q)用来比较天线信号相位。
天线调谐控制部分检测天线通道中发射信号的相位和控制变容二极管的电容,以调谐天线,实现天线自动调谐。
功率放大器输出受发射偏置控制单元控制。
ask/ook调制,提供低功耗模式,数据传输速率为20kb/s。
1、单片机串口接口at89c51(与mcs-51兼容)单片机的串行口在方式0工作状态下,使用移位寄存器芯片可以扩展多个8位并行i/o口。
在led点阵显示屏应用系统中,一般都采用数据同步移位输出方式,并使用移位寄存器芯片(如74ls595)扩展并行i/o口驱动led点阵显示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计任务书一、设计任务以89C51单片机作为主控芯片,设计串行通信发射机。
最终达到以串行工作方式准确无误的发射和显示信号, 能够方便地在单片机与单片机之间,构成一个点对点、一点对多点的无线串行数据传输通道。
二、设计方案及工作原理设计方案:这个系统有如下两个部分:硬件电路部分有A/D转换器及接口电路、单片机的接口电路及A/D转换器与单片机的数据线、无线数据发射电路。
软件部分是A/D转换器的数据采集部分,用软件对A/D0809转换成的数据进行CRC—8编码,然后将采集到的八位数据和转换好的CRC—8编码作为一帧通过无线发送模块发送出去。
工作原理:单片机串行通信发射机采用串行工作方式,发射并显示两位数字信息,既显示00-99,使数据能够在不同地方传递。
硬件部分主要分两大块,由AT89C51和多个按键组成的控制模块,包括时钟电路、控制信号电路,时钟采用6MHZ 晶振和30pF的电容来组成内部时钟方式,控制信号用手动开关来控制,P1口来控制,P2、P3口产生信号并通过共阳极数码管来显示,软件采用汇编语言来编写,发射程序在通信协议一致的情况下完成数据的发射,同时显示程序对发射的数据加以显示目录第一章系统设计要求和解决方案第二章硬件系统第三章软件系统第四章实现的功能第五章缺点及可能的解决方法第六章心得体会附录一参考文献附录二硬件原理图附录三程序流程图第一章系统设计要求和解决方案设计要求:电路主要由AT89C51单片机和由多个按键组成的控制模块、时钟电路、显示电路、电平转换电路等部分组成。
其主要技术指标:○1P1 口来控制,通过按键对系统的各部分进行控制○2P2、P3 口产生信号并通过共阳极数码管显示。
○3软件采用汇编语言编写,发射程序在通信协议一致的情况下完成数据的发射,同时,显示程序对发射的数据加以显示。
解决方案:此设计分为两个部分,硬件部分和软件部分。
硬件部分介绍:单片机串行通信发射机电路的设计,单片机AT89C51的功能和其在电路的作用。
介绍了AT89C51的管脚结构和每个管脚的作用及各自的连接方法。
AT89C51与MCS-51兼容,4K字节可编程闪烁存储器,寿命:1000次可擦,数据保存10年,全静态工作:0HZ-24HZ,三级程序存储器锁定,128*8位内部RAM,32跟可编程I/O线,两个16位定时/计数器,5个中断源,5个可编程串行通道,低功耗的闲置和掉电模式,片内震荡和时钟电路,P0和P1可作为串行输入口,P3口因为其管脚有特殊功能,可连接其他电路。
例如P3.0RXD作为串行输出口,其中时钟电路采用内时钟工作方式,控制信号采用手动控制。
数据的传输方式分为单工、半双工、全双工和多工工作方式;串行通信有两种形式,异步和同步通信。
介绍了串行串行口控制寄存器,电源管理寄存器PCON,中断允许寄存器IE,还介绍了数码显示管的工作方式、组成,共阳极和共阴极数码显示管的电路组成,有动态和静态显示两种方式,说明了不同显示方法与单片机的连接。
再后来还介绍了硬件的焊接过程,及在焊接时遇到的问题和应该注意的方面。
硬件焊接好后的检查电路、不装芯片上电检查及上电装芯片检查。
软件部分:在了解电路设计原理后,根据原理和目的画出电路流程图,列出数码显示的断码表,计算波特率,设置串行口,在与接受机设置相同的通信协议的基础上编写显示和发射程序。
编写完程序还要进行编译,这就必须会使用编译软件。
介绍了编译软件的使用和使用过程中遇到的问题,及在编译后烧入芯片使用的软件PLDA,后来的加电调试,及遇到的问题,在没问题后与接受机连接,发射数据,直到对方准确接收到。
在软件调试过程中将详细介绍调试遇到的问题,例如:通信协议是否相同,数码管是否与芯片连接对应,计数器是否开始计数等。
第二章:硬件系统1.89C51单片机简介AT89C51是美国ATMEL公司生产的低电压,高性能的CMOS8位单片机片内4Kbytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机存储器(RAM),器件采用ATMEL公司的高密度、非易失存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大。
AT89C51单片机可为你提供许多高性价的应用场合,可灵活的应用于各种控制领域。
单片机A T89C512.89C51功能特性描述:AT89C51提供以下标准功能:4k字节Flash闪速存储器,128字节内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量中断结构,一个全双工串行通信口,片内震荡器及时钟电路。
同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件的可选的节电工作模式。
空闲方式停止CPU的工作,但允许RAM,定时/计数器,窜行通信口及中断系统继续工作。
掉电方式保存RAM中的内容,但震荡器停止工作并禁止所有部件工作直到下一个硬件复位。
3. 时钟振荡器AT89C51中有一个构成内部震荡器的高增益反向放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。
这个放大器与作为反馈元件的片外石英或陶瓷震荡器一起构成自激震荡器震荡电路如图。
外接石英晶体(或陶瓷震荡器)及电容C1、C2接在放大器的震荡回路中构成并联震荡电路。
另外还可以采用外部时钟,采用外部时钟如图所示。
在这种情况下,外部时钟脉冲接到XTAL1端,既内部时钟发生器的输入端,XTAL2悬空。
时钟电路:控制电路AT89C51RST/VPD(9脚)复位信号时钟电路工作后,在引脚上出现两个机器周期的高电平,芯片内部进行初始复位。
AT89C81通常采用上电自动复位和开关手动复位,我们采用的是手动复位开关。
如图所示:手动开关未按下之前,电容正极处于家电状态,当按键按下去后,VCC与GND导通,电容放电,从而实现放电。
LED显示要用单片机构成发射机,就需要一个人机界面。
常采用的方式是LED数码管显示测试结果,用一个小键盘执行某些功能,如请零、预置值、改变测量范围等等。
LED显示是用发光二极管显示字段的显示器件,也可称为数码管,它由8个发光二极管构成,通过不同的组合可用来显示0~9,A~F及小数点发光二极管的工作电压为1.5-3.0伏,工作电流为己毫安到几十毫安,寿命很长。
半导体数码管将十位数分成七个字段,每段为一个发光二极管,其字形结构如图所示,选择不同的字段发光,可显示出不同的字型。
例如:当a,b,c,d,e,f,g 七个字段同时亮时,显示8,b、c 段亮时,显示出1。
共阳极:把发光二极管的阳极连在一起构成共阳极。
使用时公共端接Vcc,当某阳极为低电平时,该发光二极管就导通发光。
输出一个段码就可以控制LED 显示器的字型,表给出了段码与字型的关系,假定a、b、c、d、e、f、g、DP分别对应D0、D1、D2、D3、D4、D5、D6、D7。
单片机的串行接口MCS-51单片机内部有一个全双工的串行接收和发射缓冲器(SBUFF),这两个在物理上独立的接收发射器,即可以接收也可以发射数据,可以读出不能写入。
这个通信口即可以用于网络通信,亦可以实现串行异步通信,还可以构成同步移位寄存器使用。
如果在串行口的输入输出引脚上加上电平转换器,就可以方便的构成标准的RS-232接口。
第三章:软件系统软件系统是设计的另一个重要方面。
它的好坏直接关系实验成功与否。
软件是用汇编完成的,需要能熟练的掌握汇编语言,还要熟悉AT89C51单片机。
从程序流程图、通信协议、波特率计算、编写程序、编译、和烧入软件的操作,到最后的调试,是很复杂的通信协议•串行口控制寄存器SCON的设置•定时器的初始化设置•波特率计算串行口控制寄存器SCON的设置串行口控制寄存器的基本情况在前面已经介绍,这里不再重复。
根据我们所做的内容,我们采用了串行工作方式1,REN设置为“1”(允许接收),综上所述我们设SCON的初始值为50H,如下表所示:表3.1 串行口控制寄存器定时器的初始化设置T1 T0GATE:表示1INT不参与控制C/T:选择计数/时钟方式M1MO:选定定时器1工作方式2所以定时器TMOD初始值为20H波特率计算晶震为6M,波特率为1.2K单片机工作方式为串行方式1,T1是方式2,所以1.2=1/16*XX=19.219.2=1/2*(256-Y)Y=217.6把十进制转换成十六进制数为D9,所以初始值为D9。
第四章:实现的功能实现的功能:此次所做的单片机串行通信发射机参考有关的书籍和资料,完成电路的设计、检查、调试,再根据硬件和通信协议用汇编语言编写发射和显示程序,然后加电调试。
最终达到以串行工作方式准确无误的发射和显示信号, 能够方便地在单片机与单片机之间,构成一个点对点、一点对多点的无线串行数据传输通道。
第五章:缺点及可能解决的方法缺点这个发射机是有线接收的,的却能完成数据在不同地方的传递,也完成设计的要求,但他受到了很多限制,比如距离太远,导线太长就有干扰,而且有时还会很大,使得接收到的信号很弱,甚至接收不到。
解决的方法:进行无线发射、接收的方面的研究单片机无线串行接口电路由MICRF102单片发射器芯片,工作在300~440 MHz ISM频段;具有ASK调制和解调能力,抗干扰能力强,适合工业控制应用;采用PLL频率合成技术,频率稳定性好;接收灵敏度高达-96dBm,最大发射功率达-2.5dBm;数据速率可达2Kb/s;低工作电压:4.75~5.5V;功耗低,接收时电流3mA,发射时电流7.75mA,接收待机状态仅为0.5μA,发射待机状态仅为1.0μA;可用于单片机之间的串行数据无线传输,也可在单片机数据采集、遥测遥控等系统中应用。
无线发射电路组成及工作原理:第六章:心得体会通过此次基于单片机串行发射机的设计,我了解了基本电路设计的流程,丰富自己的知识和理论,巩固所学的知识,提高自己的动手能力和实验能力,从而具备一定的设计能力。
对单片机串行发射的理论有一定的理解,明白了发射机的工作原理,为以后在单片机领域的开发和研制打下基础,提高自己的设计能力,培养了创新能力,丰富自己的知识理论,做到理论和实际结合。
本课题的重要收获还在于能进一步了解单片机的工作原理,内部结构和工作状态。
理解单片机的接口技术,中断技术,存储方式,时钟方式和控制方式,更好的利用单片机来做有效的设计。
附录一:参考文献[1] 黄灿胜.基于 51单片机I 2C总线串行通信的应用[M]南宁师范高等专科学校.2009[2] 宋兵跃等.单片机的高效串行通信研究[M] .上海:同济大学现代农业科学与共分成研究院。
2010[3] 薛晓书.单片微机原理及接口技术[M].西安石油大学 2002.3[4] 黄智伟朱卫华.单片机与嵌入式系统应用[M].南华大学.2005.3[5] 付浩AT89C51单片机高速串行输出口设计[A]淮阴师范学院2004.10附录二:硬件原理图附录三:程序流程图程序流程图是编写软件的重要前提,它是在图表上直观的体现拟设计的目的及过程。