圆柱圆锥侧面展开图中考有关计算题(1)
圆柱圆锥练习题和答案

圆柱圆锥练习题和答案一、选择题1. 圆柱的体积公式是()A. V = πr²hB. V = πr² + hC. V = πr² - hD. V = πrh2. 圆锥的体积公式是()A. V = 1/3πr²hB. V = 3πr²hC. V = πr²h/3D. V = πr²h3. 圆柱的表面积公式是()A. S = 2πrh + 2πr²B. S = πrh + πr²C. S = 2πrhD. S = πr²4. 圆锥的侧面展开图是()A. 圆形B. 长方形C. 扇形D. 三角形5. 圆柱和圆锥的底面都是()A. 圆形B. 长方形C. 扇形D. 三角形二、填空题6. 一个圆柱的底面半径为3厘米,高为5厘米,其体积是_________立方厘米。
7. 一个圆锥的底面半径为4厘米,高为9厘米,其体积是_________立方厘米。
8. 一个圆柱的底面周长为12.56厘米,高为4厘米,其表面积是_________平方厘米。
9. 一个圆锥的底面半径为2厘米,高为6厘米,其表面积是_________平方厘米。
三、计算题10. 一个圆柱形容器的底面直径为20厘米,高为30厘米,求其容积。
11. 一个圆锥形沙堆,底面半径为5米,高为3米,如果将沙堆铺在长10米,宽6米的长方形地面上,求铺成的沙堆高度。
四、解答题12. 一个圆柱形油桶,底面半径为0.8米,高为1.5米,求油桶的表面积和体积。
13. 一个圆锥形漏斗,底面半径为0.6米,高为0.9米,求漏斗的体积。
答案:1. A2. A3. A4. C5. A6. 141.37. 75.368. 150.729. 37.6810. 圆柱形容器的容积为3.14 × (20/2)² × 30 = 3000π 立方厘米。
11. 圆锥形沙堆的体积为1/3 × 3.14 × 5² × 3 = 78.5π 立方米。
六年级数学《圆柱和圆锥》经典例题

答:可以铺 62.8 米长。
10、一个容器形状如图,水面的高度如图所示。如果把这个容器倒过来,水 面的高会是多少厘米?
解析:图中装水的部分下面是一个圆锥, 上面是一个圆柱, 并且圆柱和圆锥的底 面积相等, 如果把这个容器倒过来, 水的体积没有变。 所以可以先求出装水的部 分下面的圆锥的体积和上面的圆柱的体积, 容器倒过来装水的部分全是圆柱, 水 的体积没有变,底面积也没有变,用体积除以底面积求出水面的高。
8、一箱圆柱形饮料,每排摆 2 筒,共 6 排。这种圆柱形饮料筒的底面直径 是 8.5 厘米,高是 12 厘米。这个纸箱的体积至少是多少立方厘米?
解析:装饮料的纸箱是一个长方体, 要想求纸箱的体积, 必须知道长方体纸 箱的长、 宽和高, 而纸箱的长是 6 筒饮料的直径的长度, 纸箱的宽是 2 筒饮料的
答:这个圆柱的底面半径是 3 厘米。
4、把一个圆柱的侧面展开, 得到一个边长 31.4 厘米的正方形, 求这个圆柱 的表面积。
解析:因为圆柱的侧面展开后是正方形, 所以圆柱的底面周长等于正方形的 边长,由此可求出圆柱的底面半径, 进而可求出圆柱的底面积。 再根据正方形的 边长求出正方形的面积,也就是圆柱的侧面积,最后用 圆柱的侧面积加上两个 底面积得到圆柱的表面积。
答:较粗的木棒体积大,比较细木棒的体积大
2 倍。
7、把一块长 12.56 分米,宽 4 分米的铁板做成一个圆筒,再给它配上适当 的底成为一个水桶,最多大约能装多少升水?(除不尽的保留一位小数)
解析:求最多大约能装多少升水, 就是求水桶的容积最大是多少。 铁板的长 和宽都可以作为底面周长,求出相应的底面积,再乘相应的 高即可。
九年级上人教新课标圆柱和圆锥的侧面展开图习题

九年级上人教新课标圆柱和圆锥的侧面展开图习题Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第七章第二十一节圆柱和圆锥的侧面展开图习题精选例1 (1)若圆锥的底面半径是3cm,母线长是5cm,则它的侧面展开图的面积是 .(2)若圆锥的母线长为5cm,高为3cm,则其侧面展开图中扇形的圆心角是_______度.分析首先弄清圆的侧面展开图是扇形,(1)中可直接用求得,(2)中先求底面圆半径,扇形弧长,再由弧长公式求圆内角为288°.例2 (1)如果圆柱底面半径为4cm,它的侧面积为,那么圆柱的母线长为().(A)16cm (B)16 cm(C)8cm (D)8 cm(2)如果圆柱底面直径为6cm,母线长为10cm,那么圆柱的侧面积为()(A)30(B)60(C)90(D)120分析圆柱侧面展开图是矩形,(1)可直接用公式求出母线长为8cm,故选(C),(2)中,由直径求出半径是关键,应选(B).例3 一个圆锥的高是10㎝,侧面展开图是半圆,求圆锥的侧面积.分析:如图,欲求圆锥的侧面积,即求母线长l,底面半径r.由圆锥的形成过程可知,圆锥的高、母线和底面半径构成直角三角形即,且关键找出l与r的关系,又其侧面展开图是半圆,可得关系,即 .解:设圆锥底面半径r,扇形弧长为C,母线长为l,由题意得又得①在中,②由①、②得:∴所求圆锥的侧面积为例4 圆锥的轴截面是等腰,EG是AB上一点,且,那么在锥面上A、M两点间的最短距离是多少分析:设圆锥的侧面展开图是扇形 A点落在点,则所求、M之间的最短距离就是侧面展开图中线段 M的长度.解:如图,扇形的圆心角,在中,过作于N,则中,习题精选一、选择题1.一个圆柱的侧面展开图是正方形,那么它的侧面积和底面积的比是()(A)1 (B)(C)(D)42.在△ABC中,把△ABC绕直线AC旋转一周得到一个圆锥,其表面积为;把△ABC绕直线AB一周得到另一个圆锥,其表面积为,则()(A)(B)(C)(D)3.已知一个扇形的半径为60厘米,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()(A)12.5厘米(B)25厘米(C)50厘米(D)75厘米4.一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是()(A)60°(B)90°(C)120°(D)180°二、填空题5.用边长分别为和的矩形卷成圆柱,则圆柱的底面面积是_________。
【中考冲刺】圆柱的计算

【中考冲刺】圆柱的计算【中考冲刺】圆柱的计算一、选择题(共15小题)1.(2012•龙岩)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD绕AB所在直线旋转一周所得圆柱的侧面积为()2.(2011•北海)若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()3.(2004•威海)已知矩形ABCD的一边AB=4cm,另一边BC=2cm,以直线AB为轴旋转一周,所得到的圆柱的4.(2011•玉溪)如图,是一个有盖子的圆柱体水杯,底面周长为6πcm,高为18cm,若盖子与杯体的重合部分忽略不计,则制作10个这样的水杯至少需要的材料是()5.(2011•山西)如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()7.(2011•百色)如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,则圆柱B的体积为()10.(2004•锦州)如图,一个圆柱形笔筒,量得笔筒的高是20cm,底面圆的半径为5cm,那么笔筒的侧面积为()2πDD..C或13.(2004•枣庄)某杂技团要订做一批无底无盖的圆柱形桶作道具(如图所示),为使小演员表演顺利并且有观赏效果,需圆柱的底面直径为50cm,高为60cm.如果接缝处材料忽略不计,那么一个桶所需材料的面积为()二、填空题(共16小题)(除非特别说明,请填准确值)16.(2006•宁德)数学活动课上,老师出示如图所示的圆柱形笔筒,让同学们测量并计算笔筒的侧面积,丽丽测得笔筒的底面直径和高分别是8cm和11cm,则笔筒的侧面积是_________cm2(精确到1cm2)17.(2011•南平)如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为_________.(结果保留π)18.(2004•临汾)张师傅要用铁皮制做一个高为40cm,底面半径为15cm的圆柱形无盖水桶,需要铁皮.(接缝与边沿折叠部分不计,结果保留π)_________cm2.19.(2010•湛江)一个高为15cm的圆柱形笔筒,底面圆的半径为5cm,那么它的侧面积为_________cm2(结果保留π).20.(2006•临汾)为庆祝“六•一”儿童节,幼儿园要用彩纸包裹底圆直径为1m,高为2m的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需_________元.(接缝忽略不计,π≈3.14)21.(2005•宜宾)一个圆柱的侧面展开图是一个正方形,则这个圆柱的侧面积与上、下两底面积之和的比值是_________(结果不取近似值).22.(2005•海淀区)已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为_________cm2.23.(2005•毕节地区)要做一个底面直径为acm,高为bcm的圆柱侧面模型,要剪裁的长方形纸片的面积为_________cm2.24.(2004•海淀区)如果圆柱的底面半径为3cm,母线长为3cm,那么这个圆柱的侧面展开图的面积是_________ cm2.25.(2004•丰台区)如果圆柱的高为4cm,底面半径为3cm,那么这个圆柱的侧面积是_________cm226.(2009•南平)若圆柱的底面半径2cm,高为3cm,则它的侧面积是_________cm2.27.(2008•湛江)圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是_________.28.(2005•泉州)已知圆柱底面半径为4cm,母线长为10cm,则其侧面展开图的面积是_________cm2.29.(2004•泉州)一个圆柱形的保温杯底面半径为3cm,高为16cm,则保温杯的侧面积为_________cm2.30.(2006•南平)圆柱的底面半径是3cm,圆柱的高是5cm,则圆柱的侧面积是_________cm2.(结果保留π)31.(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是_________cm.【中考冲刺】圆柱的计算参考答案与试题解析一、选择题(共15小题)1.(2012•龙岩)如图,矩形ABCD中,AB=1,BC=2,把矩形ABCD绕AB所在直线旋转一周所得圆柱的侧面积为()2.(2011•北海)若一个圆柱的底面半径是1,高是3,则该圆柱的侧面展开图的面积是()3.(2004•威海)已知矩形ABCD的一边AB=4cm,另一边BC=2cm,以直线AB为轴旋转一周,所得到的圆柱的4.(2011•玉溪)如图,是一个有盖子的圆柱体水杯,底面周长为6πcm,高为18cm,若盖子与杯体的重合部分忽略不计,则制作10个这样的水杯至少需要的材料是()5.(2011•山西)如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是()7.(2011•百色)如图,用高为6cm,底面直径为4cm的圆柱A的侧面积展开图,再围成不同于A的另一个圆柱B,则圆柱B的体积为()10.(2004•锦州)如图,一个圆柱形笔筒,量得笔筒的高是20cm,底面圆的半径为5cm,那么笔筒的侧面积为()2πDD..C或13.(2004•枣庄)某杂技团要订做一批无底无盖的圆柱形桶作道具(如图所示),为使小演员表演顺利并且有观赏效果,需圆柱的底面直径为50cm,高为60cm.如果接缝处材料忽略不计,那么一个桶所需材料的面积为()二、填空题(共16小题)(除非特别说明,请填准确值)16.(2006•宁德)数学活动课上,老师出示如图所示的圆柱形笔筒,让同学们测量并计算笔筒的侧面积,丽丽测得笔筒的底面直径和高分别是8cm和11cm,则笔筒的侧面积是276cm2(精确到1cm2)17.(2011•南平)如图是一个几何体的三视图,根据图中标注的数据可得该几何体的体积为3π.(结果保留π)=118.(2004•临汾)张师傅要用铁皮制做一个高为40cm,底面半径为15cm的圆柱形无盖水桶,需要铁皮.(接缝与边沿折叠部分不计,结果保留π)1425πcm2.19.(2010•湛江)一个高为15cm的圆柱形笔筒,底面圆的半径为5cm,那么它的侧面积为150πcm2(结果保留π).20.(2006•临汾)为庆祝“六•一”儿童节,幼儿园要用彩纸包裹底圆直径为1m,高为2m的一根圆柱的侧面.若每平方米彩纸10元,则包裹这根圆柱侧面的彩纸共需62.8元.(接缝忽略不计,π≈3.14)21.(2005•宜宾)一个圆柱的侧面展开图是一个正方形,则这个圆柱的侧面积与上、下两底面积之和的比值是2π(结果不取近似值).22.(2005•海淀区)已知圆柱的底面半径为2cm,母线长为3cm,则该圆柱的侧面展开图的面积为12πcm2.23.(2005•毕节地区)要做一个底面直径为acm,高为bcm的圆柱侧面模型,要剪裁的长方形纸片的面积为abπcm2.24.(2004•海淀区)如果圆柱的底面半径为3cm,母线长为3cm,那么这个圆柱的侧面展开图的面积是18πcm2.25.(2004•丰台区)如果圆柱的高为4cm,底面半径为3cm,那么这个圆柱的侧面积是24πcm226.(2009•南平)若圆柱的底面半径2cm,高为3cm,则它的侧面积是12πcm2.27.(2008•湛江)圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是6π.28.(2005•泉州)已知圆柱底面半径为4cm,母线长为10cm,则其侧面展开图的面积是80πcm2.29.(2004•泉州)一个圆柱形的保温杯底面半径为3cm,高为16cm,则保温杯的侧面积为96πcm2.30.(2006•南平)圆柱的底面半径是3cm,圆柱的高是5cm,则圆柱的侧面积是30πcm2.(结果保留π)31.(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.=2cmR=2﹣﹣+4。
2020届初三数学复习 直棱柱、圆锥的侧面展开图 专题练习包含答案

直棱柱、圆锥的侧面展开图1. 下列图形中,是圆锥侧面展开图的是( )2. 下面的图形中,是三棱柱的侧面展开图的是( )3. 经过圆锥顶点的截面的形状可能是( )4. 如图是某个几何体的展开图,该几何体是( )A.圆柱 B.圆锥 C.四棱柱 D.三棱柱5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )6. 如图是一个长方体包装盒,则它的平面展开图是( )7. 如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A.1B.34C.12D.138. 若圆锥的侧面展开图为半圆,则该圆锥的母线l 与底面半径r 的关系是( )A .l =2rB .l =3rC .l =rD .l =329. 用一圆心角为120°,半径为6 cm 的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是( )A .1cmB .2cmC .3cmD .4cm10. 将一个圆心角是90°的扇形围成圆锥的侧面,则该圆锥的侧面积S 侧和底面积S 底的关系为( )A .S 侧=S 底B .S 侧=2S 底C .S 侧=3S 底D .S 侧=4S 底11. 若一个圆锥的底面积是侧面积的13,则该圆锥侧面展开图的圆心角度数是_______度.12. 如果圆锥的母线长为5cm ,底面半径为3cm ,那么圆锥的全面积为____ cm 2. 13. 若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是___________.14. 如图,扇形OED 的半径为3,边长为3的菱形OABC 的顶点A ,C ,B 分别在OD ,OE ,DE ︵上,若把扇形OED 围成一个圆锥,则此圆锥的高为_________.15. 在学校组织的实践活动中,小新同学用纸板制作了一个圆锥模型,它的底面半径为1,高为22,则这个圆锥的侧面积是_________.16. 如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于_________.17. 如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_________ cm.18. 如图,如果从半径为5 cm 的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是______cm.19. 已知一个扇形的半径为60厘米,圆心角为150°.用它围成一个圆锥的侧面,那么圆锥的底面半径为_______厘米.20. 如图所示,沿虚线折成正方体,对面数字之和为2的数有 对.21. 如图,已知圆锥的母线AB=6,底面半径r=2,求圆锥的侧面展开图的扇形圆心角.22. 要在如图①所示的一个机器零件(尺寸如图②所示,单位:mm)的表面涂上防锈漆,请你帮助计算一下这个零件的表面积.(参考公式:S圆柱侧=2πrh,SS圆=πr2,其中r为底面圆半径,h为高,l为母线长,π取3.14) 圆锥侧=πrl,23. 如图所示的是一个食品包装盒的平面展开图.(1)请写出这个包装盒的多面体形状的名称;(2)请根据图中所标的尺寸,计算这个多面体的侧面积和全面积(侧面积与两个底面积之和).24. 如图,在半径为50cm的圆形铁片上剪一块扇形铁片,用它制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,求剪下来的扇形的圆心角的度数.25. 如图,有一直径为2m的圆形纸片,要从中去一个最大的圆心角是90°的扇形ABC.(1)求被剪掉的阴影部分的面积;(2)用所留的扇形纸片围成一个圆锥,该圆锥的底面圆的半径是多少?26. 圆锥形烟囱帽的底面直径是100cm,母线长为60cm,求它的侧面展开图中扇形的圆心角及面积.27. 如图,在⊙O中,AB=43,AC是⊙O的直径,AC⊥BD于点F,∠A=30°.(1)求图中阴影部分的面积;(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.28. 如图,有一圆锥形粮堆,其轴截面示意图是边长为6 m的正△ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路径是多少?答案:1---10 BABDC ACABD11. 12012. 24π13. 15π 14. 35215. 3π16. 15π17. 4218. 319. 2520. 321. 解:设圆心角为n°,则有2πr=180n π·AB ∴4π=180n π×6,∴n=120,扇形的圆心角α=120° 22. 解:36424mm 223. (1)这个多面体是直六棱柱(2)S 侧=6ab S 全面积b 224. 解:母线l =50,底面半径r =40,∴圆心角度数θ=r l·360°=288° 25. 解:(1)14πm 2 (2)14m 26. 解:设其展开图中扇形的半径为R ,弧长为l ,圆心角为α,则R =60cm ,l =100πcm.由弧长公式l =n πR 180,得n =180×100π60π=300,即α=n °=300°,S 扇形=12×60×100π=3000π(cm 2) 27. 解:(1)163π (2)4328. 解:设圆锥的底面半径为r ,母线长为l ,展开后所得扇形的圆心角的度数为n °,则底面圆的周长为2πr ,侧面展开图的弧长为n πl 180,∴2πr =n πl 180.由题意知,轴截面△ABC 为等边三角形,∵AB =BC ,即l =2r =6.∴r=3,∴2π×3=n π×6180,∴n =180,即其侧面展开图为半圆,如图,则△ABP 为直角三角形,BP 为最短线路.在Rt △ABP 中,BP =AB 2+AP 2=62+32=35(m),即小猫所经过的最短路程是35m。
备考2022年中考数学一轮复习(湘教版)专题63 直棱柱、 圆锥的侧面展开图

备考2022年中考数学一轮复习(湘教版)专题63 直棱柱、圆锥的侧面展开图一、单选题1.将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与数字5所在的面相对的面上标的数字为()A. 1B. 2C. 3D. 42.下列四个图形中,不能作为正方体的展开图的是()A. B. C. D.3.用一个半径为面积为的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径为()A. B. C. 2 D. 14.如图,正方形的边长为4,以点A为圆心,为半径画圆弧得到扇形(阴影部分,点E在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A. B. 1 C. D.5.下列正方体的展开图上每个面上都有一个汉字.其中,手的对面是口的是()A. B. C. D.6.如图所示,正方体的展开图为()A. B. C. D.二、填空题7.用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为 .8.底面半径为3,母线长为4的圆锥的侧面积为 .(结果保留)9.如图是某圆柱体果罐,它的主视图是边长为的正方形,该果罐侧面积为.10.如图,小梅把一顶底面半径为的圆锥形小丑纸帽沿一条母线剪开并展平,得到一个圆心角为的扇形纸片,那么扇形纸片的半径为.11.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为.(用含π的代数式表示),圆心角为度.12.一个圆柱形橡皮泥,底面积是.高是.如果用这个橡皮泥的一半,把它捏成高为的圆锥,则这个圆锥的底面积是三、作图题13.如图是一张长方形硬纸片,正好分成15个完全相同的小正方形,现要把它们剪切成3份,使每份有5个小正方形相连,折起来都可以围成一个没有盖的正方体纸盒.请在图中用实线画出一种剪切线.14.将立方体纸盒沿某些棱剪开,且使六个面连在一起,然后铺平,可以得到其表面展开图的平面图形. (1)以下两个方格图中的阴影部分能表示立方体表面展开图的是________(填A或B).(2)在以下方格图中,画一个与(1)中呈现的阴影部分不相似(包括不全等)的立方体表面展开图.(用阴影表示)(3)如图中的实线是立方体纸盒的剪裁线,请将其表面展开图画在右图的方格图中.(用阴影表示)15.一个等腰Rt△ABC如图所示,将它绕着直线AC旋转一周,形成一个几何体.(1)画出这个几何体的三视图.(2)依据图中的测量数据,计算这个几何体的表面积.16.画一个正方体的三种平面展开图,要求展开图是中心对称图形.四、解答题17.如图所示,在Rt△ABC中,∠C=90°,AC=4 ,BC=3 .求以直角边所在直线为轴,把△ABC旋转一周得到的圆锥的侧面积.18.如图①是山东舰徽的构图,采用航母度破浪而出的角度,展现山东舰作为中国首艘国产舰母横空出世的气势,将舰徽中第一条波浪抽象成几何图形,则是一条长为的弧,若该弧所在的扇形是高为的圆锥侧面展开图(如图②),则该圆锥的母线长为多少?19.如图,为正方形,,以点为圆心,为半径画弧得到扇形,现将该扇形围成一圆锥的侧面,求该圆锥底面圆的半径.20.如图从一块半径为的圆形铁皮上剪出一个圆心角为的扇形,再把此扇形围成一个圆锥,求圆锥的底面半径.五、综合题21.如图①,已知圆锥的母线长l=16cm,若以顶点O为中心,将此圆锥按图②放置在平面上逆时针滚动3圈后所形成的扇形的圆心角θ=270°.(1).求圆锥的底面半径;(2).求圆锥的表面积.22.如图,一个圆锥的高为3 cm,其侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)∠BAC的度数;(3)圆锥的侧面积(结果保留π).23.一个圆锥的侧面展开图是半径为,圆心角为120°的扇形,求:(1).圆锥的底面半径;(2).圆锥的全面积.24.已知圆锥的侧面积为16πcm2.(1).求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;(2).写出自变量r的取值范围;(3).当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.答案解析部分一、单选题1.【答案】B2.【答案】D3.【答案】D4.【答案】D5.【答案】B6.【答案】A二、填空题7.【答案】8.【答案】12π9.【答案】100π10.【答案】3011.【答案】;12.【答案】18三、作图题13.【答案】解:根据题意画图如下:14.【答案】(1)A(2)解:立方体表面展开图如图所示:(3)解:将其表面展开图画在方格图中如图所示:15.【答案】(1)解:如图所示:;(2)解:这个几何体的表面积为:×2π×2×2 +π×22=(4 +4)π.16.【答案】解:符合条件的正方体的平面展开图如图所示:四、解答题17.【答案】解:∵∠C=90°,AC=4 ,BC=3,∴AB=5若以直角边AC所在直线为轴,则所得圆锥侧面积为π·BC·AB=15π若以直角边BC所在直线为轴,则所得圆锥侧面积为π·AC·AB=20π18.【答案】解:圆锥底面周长侧面展开后扇形的弧长在中,,所以该圆锥的母线长为.19.【答案】解:设底面圆的半径为,根据题意得:,解得:,所以该圆锥的底面圆的半径为1.20.【答案】解:如图从一块半径为的圆形铁皮上剪出一个圆心角为的扇形,再把此扇形围成一个圆锥,求圆锥的底面半径.解:扇形的圆心角为,为圆的直径。
圆的有关计算(例题+练习+详解)

知识框架知识点一:扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:180n Rl π=; (2)扇形面积公式: 213602n R S lR π== n :圆心角 R :扇形多对应的圆的半径 l :扇形弧长 S :扇形面积2、圆柱:(1)圆柱侧面展开图2S S S =+侧表底=222rh r ππ+(2)圆柱的体积:2V r h π= 3 .圆锥侧面展开图(1)S S S =+侧表底=2Rr r ππ+ (2)圆锥的体积:213V r h π=知识点二:圆内正多边形的计算(1)正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =;(2)正四边形S lBAO母线长底面圆周长C 1D 1DCBAB1RrCBAODCBAOECBADOD(B ')A(A ')D 'C 'CBCBDOA 同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =:(3)正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.【例题经典】考点1:圆的周长、弧长中考中对圆的周长及弧长公式的考查内容难度较小,常以填空选择题出现。
[例1]如图,一块边长为8cm 的正方形木板ABCD,在水平桌面上绕点A 按逆时针方向旋转至A ′B ′C ′D ′的位置,则顶点C•从开始到结束所经过的路径长为( ) A.16cm B.162cm C.8πcm D.42πcm[例2] 如图,Rt △ABC 的斜边AB=35,AC=21,点O 在AB 边上,OB=20,一个以O 为圆心的圆,分别切两直角边边BC 、AC 于D 、E 两点,求DE 的长度.【分析】求弧长时,只要分别求出圆心角和半径,特别是求半径时,要综合应用所学知识解题,如此题求半径时,就用到了相似.考点2:扇形及不规则图形的面积求不规则图形的面积一直是历年来中考考查的主要内容,一般方法是运用割补法和整体减局部的方法把不规则图形转化为规则图形,从而利用扇形公式等计算,从而达到考查目的。
20128.4圆锥圆柱侧面(含答案)

选择题(每小题x 分,共y 分)----圆锥圆柱侧面(含答案)(2012•铁岭)7.如图,⊙O 中,半径OA=4,∠AOB=120°,用阴影部分的扇形围成的圆锥底面圆的半径长是(B )A. 1B.C.D.2(2012•岳阳)11.圆锥底面半径为,母线长为2,它的侧面展开图的圆心角是 90° .(2012•东营市)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( A ) A . 4cm B . 6cm C . 8cm D . 2cm(2012无锡)7.已知圆锥的底面半径为3cm ,母线长为5cm ,则圆锥的侧面积是(D )A . 20cm 2B . 20πcm 2C . 15cm 2D . 15πcm 2(2012娄底)10.如图,矩形绕它的一条边MN 所在的直线旋转一周形成的几何体是(C )A .B .C .D .(2012•连云港)6.用半径为2cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径为【 A 】A .1cmB .2cmC .πcmD .2πcm(2012绍兴)8.如图,扇形DOE 的半径为3OABC 的顶点A ,C ,B 分别在OD ,OE ,上,若把扇形DOE 围成一个圆锥,则此圆锥的高为( D )A . 12B .C .2 D.2(2012•铜仁)6.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作一个底面半径为9cm,母线长为30cm 的圆锥形生日礼帽,则这个圆锥形礼帽的侧面积为( A )A .270πcm 2B .540πcm 2C .135πcm 2D .216πcm 2(2012•南充)9.一个圆锥的侧面积是底面积的2倍。
则圆锥侧面展开图的扇形的圆心角是BA .1200 B.1800 C.2400 D.3000(2012•衢州)9.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( C )A .cmB .3cmC .4cmD .4cm(2012•嘉兴)7.已知一个圆锥的底面半径为3cm ,母线长为10cm ,则这个圆锥的侧面积为( B ) O B A (第7题图) 5cm 3435A .15πcm2 B .30πcm 2 C .60πcm 2 D .3cm 2二、填空题(每小题x 分,共y 分)(2012攀枝花)13.底面半径为1,高为的圆锥的侧面积等于 4π .(2012•河南省)11、母线长为3,底面圆的直径为2的圆锥的侧面积为 3π(2012•杭州)15.已知一个底面为菱形的直棱柱,高为10cm ,体积为150cm 3,则这个棱柱的下底面积为15 cm 2;若该棱柱侧面展开图的面积为200cm 2,记底面菱形的顶点依次为A ,B ,C ,D ,AE 是BC 边上的高,则CE 的长为 1 cm .(2012•福建省南安)16.用圆心角为︒120,半径为cm 6的扇形做成一个无底的圆锥侧面,则此圆锥的底面半径为2cm ____.(2012•四川巴中市)17. 有一个底面半径为3cm ,母线长10cm 的圆锥,则其侧面积是_____30π_____cm 2(2012•成都)22.一个几何体由圆锥和圆柱组成,其尺寸如图所示,则该几何体的全面积(即表面积)为_____68π___ (结果保留π )(2012•达州)11.已知圆锥的底面半径为4,母线长为6,则它的侧面积是 24π .(不取近似值) (2012•扬州) 17.已知一个圆锥的母线长为10cm ,将侧面展开后所得扇形的圆心角是144°,则这个圆锥的底面圆的半径是 4 cm .(2012张家界市)14、已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为 50π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱、圆锥的侧面展开图
班级: 姓名: 学号 :
一、选择题
1. 已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是( ) A .20cm 2 B .20πcm 2 C .10πcm 2 D .5πcm 2
2. 已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为( )
A 、2
B 、4
C 、2π
D 、4π
3. 如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母
线BC 上一点且
PC =23
BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )
A .(64π+)cm
B .5cm
C ..7cm 4. 露露从纸上剪下一个圆形和一个扇形的纸片(如图),用它们恰好能围成一个圆锥
模型,若圆的半径为1.扇形的圆心角等于120°,则此扇形的半径为( )
A 、
31 B 、
C 、 3
D 、6
5. 一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体
侧面展开图的面积为( )
A 、2π
B 、 12π
C 、4π
D 、8π
6.如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为( )
A .9
B .339-
C .3259-
D .32
39-
7. 一个圆锥的底面圆的周长是2π,母线长是3,则它的侧面展开图的圆心角等于( )
A 、150°
B 、120°
C 、90°
D 、60°
8. 若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线l 与底面半径r 之间的函数关系的是( )
A 、
B 、
C 、
D 、
6
9.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()
A、1
B、3
4
C、
1
2
D、
1
3
10.将一个圆心角是90°的扇形围成一个圆锥的侧面,则该圆锥的侧面积S侧和底面积S底的关系是()
A、S侧=S底
B、S侧=2S底
C、S侧=3S底
D、S侧=4S底
11.如图是一圆锥的主视图,则此圆锥的侧面展开图的圆心角的是()
A、60°
B、90°
C、120°
D、180°
第11题第12题
12.如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()
A. 17cm
B. 4cm
C. 15cm
D. 3cm
13.一圆锥的侧面展开图是半径为2的半圆,则该圆锥的全面积是()
A.5πB.4π C.3πD.2π
14.如图,矩形ABCD中,AB=4,以点B为圆心,BA为半径画弧交BC于点E,以
点O为圆心的⊙O与弧AE,边AD,DC都相切.把扇形BAE作一个圆锥的侧面,该
圆锥的底面圆恰好是⊙O,则AD的长为()
A.4
B.9
2
C.
11
2
D.5
15.如果圆锥的底面周长为20π,侧面展开后所得扇形的圆心角为120°,则该圆锥的全面积为()
A.100π
B.200π
C.300π
D.400π
16.已知圆锥底面圆的半径为6厘米,高为8厘米,则圆锥的侧面积为()
A.48厘米2 B. 48π厘米2 C. 120π厘米2 D. 60π厘米2
17.如图,Rt△ABC中,∠ACB=90°,AC=BC=22,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为()
A、4π
B、42π
C、8π
D、82π
1. 如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是 cm .
2. 如图是一个几何体的三视图,这个几何体的全面积为 .( π取
3.14)
3. 如图,圆柱底面半径为2cm ,高为9cm ,点A B 、分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一棉线从A 顺着圆柱侧面绕3圈到B ,求棉线最短为 cm .
4. 母线长为2,底面圆的半径为1的圆锥的侧面积为 .
5.已知一个圆锥形的零件的母线长为3cm ,底面半径为2cm ,则这个圆锥形的零件的侧面积为 cm 2
.(用π表示). 6.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.
则圆锥的母线是
7.用半径为9cm ,圆心角为120°的扇形纸片围成一个圆锥,
则该圆锥的高为 cm .
8.一个圆锥形的零件的母线长为4,底面半径为1,则这个圆锥形零件的全面积是 .
9.在Rt △ABC 中,∠C =90°,AC =3,BC =4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,
则该圆锥的侧面积是 .
10.若圆锥的侧面展开时一个弧长为l6π的扇形,则这个圆锥的底面半经是 .
11.将一个半径为6cm ,母线长为15cm 的圆锥形纸筒沿一条母线剪开并展平,
所得的侧面展开图的圆心角是 度.
12.已知一个圆锥的底面半径长为3cm 、母线长为6cm ,则圆锥的侧面积是 cm 2.
13.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,
母线长为15cm ,那么纸杯的侧面积为 cm 2.
14.若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略
不计),则这个圆锥底面圆的半径的长 .
15.如图,将半径为3cm 的圆形纸片剪掉三分之一,余下部分围成一个圆
锥的侧面,则这个圆锥的高是
1.如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.
(1)请完成如下操作:
①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD.
(2)请在(1)的基础上,完成下列问题:
①写出点的坐标:C、D;
②⊙D的半径= (结果保留根号);
③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);
④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由.
2.在△ABC中,AB= 3,AC= 2,BC=1.
(1)求证:∠A≠30°;
(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.。