圆轴的扭转

合集下载

第八章圆轴扭转

第八章圆轴扭转
§8 扭 转
如图所示汽车发动机将功率通过主轴AB传递给后桥,驱动车轮行使。
如果已知主传动轴所承受的外力偶矩、主传动轴的材料及尺寸情况 下,请分析(1)主传动轴承受的载荷;(2)主传动轴的强度是否 足够?
§8.1 圆轴扭转的概念 工程实例分析:工程上传递功率的轴大多数为圆轴。
改锥拧螺母-力偶实例
钻探机钻杆
大小不变,仅绕轴线发生相对转动(无轴向移动),这一 假设称为圆轴扭转的刚性平面假设。
圆轴变形试验
按照平面假设,可得如下两点推论: (1)横截面上无正应力; (2)横截面上有切应力; (3)切应力方向与半径垂直; (4)圆心处变形为零,圆轴表面变形最大。
二、扭转横截面切应力分布规律
(1)切应力的方向垂直于半径,指向与截面扭矩的转向 相同。
圆轴扭转的刚度计算
圆轴扭转变形的程度,以单位长度扭转角θ度量,其刚度条 件为:整个轴上的最大单位长度扭转角θmax不超过规定的单位长度 许用扭转角[θ] ,即
max
l
T GI p
[ ]
式中:θmax—轴上的最大单位长度扭转角;单位rad/m [θ] —单位长度许用扭转角;单位rad/m
工程上,单位长度许用扭转角常用单位为°/m ,考虑单位换
二、圆轴扭转时横截面上的内力—扭矩 (一)用截面法确定发生圆轴扭转变形截面的内力—扭矩,
用符号T 表示。
T=截面一侧(左或右)所有外力偶矩的代数和
(二)扭矩正负号的规定
按“右手螺旋法则”确定扭矩的正负:用四指表示扭矩的转向, 大拇指的指向与该截面的外法线方向相同时,该截面扭矩为正,反 之为负。
(三)扭矩图
三、举例应用
传动轴如图6-8a所示,主动轮A输入功率PA=120kW,从动轮B、C、D 输 出 功 率 分 别 为 PB=30kW , PC=40kW , PD=50kW , 轴 的 转 速

04. 圆轴的扭转解析

04. 圆轴的扭转解析

在工厂里当看到一套传动装置时,往往可从轴径的 粗细来判断这一组传动轴中的低速轴和高速轴。
§4-1圆轴扭转时所受外力的分析与计算
一、搅拌轴的三项功能 二、n , P, m 之间的关系(重点)
一、搅拌轴的三项功能
1.传递旋转运动 : 将电动机或减速机输出轴的旋转运动传递给搅拌物 料的桨叶。 2.传递扭转力偶矩: 将轴上端作用的驱动力偶传至轴的下端,用以克服 桨叶旋转时遇到的阻力偶;力偶通过轴传递时,其力偶 矩称为扭矩,扭矩属于内力,其值可借助外力偶矩求出; 3.传递功率: 转轴带动桨叶旋转时要克服流体阻力作功,所需功 率也是从转轴的上端输入后,通过轴传递给浆叶的。
(KN*m)
圆轴传递的功率P和转数n为已知时,用上述公式 即可求出该轴外力矩的大小。由上式可以看出: 如轴的功率P一定,转数n越大,则外力矩越小, 反之,转数越低则外力矩越大。 例如:化工设备厂卷制钢板圆筒用的卷板机,工作时滚轴 所需力矩很大,因为功率受到一定的限制,所以只能减 低滚轴的转数n来增大力矩M。由电动机经过一个三级四 轴减速机带动滚轴,此减速机各轴传递的功率可看成是 一样的。因此,转数n高的轴,力矩M就小,轴径就细一 些;转数低的轴,力矩M就大,轴径就粗.
A
解:1)用截面法把所求
各轴截开:
2)分别求各段轴的扭矩: M M 1+ M B = 0
1 2
= -M =-M
B
B
=-350N.m
C
M M
B D
+ M -M
3
C
+ M = 0
2
=0
M
-M
=-700N.m
M
3
= M
D
= 446N.m
二、扭转内力:(扭矩和扭矩图)(续3)

机械基础-圆轴扭转

机械基础-圆轴扭转
圆轴扭转使圆轴发生旋转运动, 转动角度和扭矩大小相互关联。
应力分析
圆轴扭转中承受的应力分析是确 保圆轴在运动过程中不会发生破 坏。
圆轴扭转的应用领域
机械传动
圆轴扭转被广泛应用于机械传动系统中,实现能量的传输和转换。
汽车工程
在汽车发动机和变速器中,圆轴扭转起到承载和传输动力的关键作用。
航空航天
航空航天工程中的涡轮机械系统和航空发动机都离不开圆轴扭转。
与圆轴扭转相关的力学概念
弹性模量 剪切应力 扭转角度 Nhomakorabea圆轴材料的弹性变形能力 圆轴扭转引起的应力分布 圆轴扭转的角度变化
圆轴扭转的挑战与解决办法
1
疲劳寿命
圆轴扭转时容易引起疲劳破坏,需采取优化设计和材料选择来提高寿命。
2
动力平衡
圆轴扭转会引起不平衡力,需要进行动平衡设计和校正,减少振动。
3
扭转刚度
圆轴的刚度决定了扭转角度和应力的关系,设计时需考虑刚度的优化。
圆轴扭转的实例和案例分析
风力发电机
风力发电机的转子轴承受着强大 的风力扭转力,充分利用风能。
变速器
汽车变速器中的轴承承载着引擎 输出的扭转力,实现档位切换。
工业机械
各种工业机械设备中都存在圆轴 扭转的应用,如泵、缝纫机等。
结论和启示
结论
圆轴扭转是机械工程中一项重要的运动形式,应用 广泛且具有挑战性。
启示
通过深入了解圆轴扭转的原理和应用,可以优化设 计和解决实际问题。
机械基础-圆轴扭转
圆轴扭转的定义和背景
1 定义
圆轴扭转是指在机械系统中,圆轴受到一对 作用力使得其进行扭转运动。
2 背景
圆轴扭转是机械工程中一项重要的运动形式, 广泛应用于各种机械设备和结构中。

圆轴扭转的计算(工程力学课件)

圆轴扭转的计算(工程力学课件)

9 549 20 637 300
Nm
318 N.m 1 477 N.m 2 1432 N.m 3 637 N.m
B
1C
A 2
D 3
扭矩图(T图)
318 N.m
477 N.m
1432 N.m
637 N.m
B
C
A
D
练习1
画扭矩图!
5
3

A
B
C
练习2
3000N.m
3000

1200
T图(N.m)
G E
材料的三个弹性常数
2(1 ) 由三个中的任意两个,求出其第三个
扭转的概念 扭矩和扭矩图
扭转变形
角应变
扭转角
受力特点
大小相等、方向相反, 作用面垂直于杆件轴线的外力偶矩
变形特点 任意横截面绕杆轴线产生转动
典型构件
以扭转变形为主的杆件通常称为轴 最常用的是圆截面轴
扭转的工程实例
螺丝刀杆工作时受扭
输出功率: PB 10 kW PC 15 kW PD 20 kW
M eA
9
549
PA n
9 549 45 1 432 300
Nm
M eB
9
549 PB n
9
549 10 318 300
Nm
M eC
9 549 PC n
9 549 15 477 300
Nm
M eD
9 549 PD n
(1)条件 (2)求约束力
扭矩 T图
T
Ip
Tl l FN l
GI P
EA
扭转
拉压
max
Tmax Wp

圆轴扭转的受力特点和变形特点

圆轴扭转的受力特点和变形特点

圆轴扭转的受力特点和变形特点
圆轴在受到扭矩作用时,其受力特点和变形特点与直轴不同。

下面我们来详细探讨一下圆轴扭转的受力特点和变形特点。

一、受力特点
在圆轴扭转过程中,受到的力主要是扭矩。

扭矩是使物体产生转动的力,其大小可以用公式T=FT*d来计算,其中T是扭矩,F是力,T是距离,d是轴的直径。

在圆轴扭转时,扭矩会使圆轴上的横截面产生剪切应力,剪切应力的大小与扭矩成正比。

二、变形特点
圆轴在受到扭矩作用时,会产生扭转变形。

这种变形主要表现为圆轴的各个横截面发生相对转动。

在圆轴扭转时,横截面之间的距离保持不变,因此不会出现拉伸或压缩变形。

同时,由于圆轴的刚度较大,所以扭转变形量相对较小。

三、影响圆轴扭转的因素
圆轴的扭转性能受到多种因素的影响,包括材料性质、截面形状、尺寸和边界条件等。

例如,圆轴的材料强度越高,其抵抗扭矩的能力就越强;截面形状和尺寸也会影响圆轴的扭转性能;边界条件如支撑条件和固定方式也会对圆轴的扭转性能产生影响。

四、圆轴扭转的应用
圆轴的扭转性能在机械工程中有着广泛的应用。

例如,在汽车和自行车中,车轴就是一种圆轴,它们需要承受来自轮子和车轮的扭矩。

在设计这些车轴时,需要考虑其受力特点和变形特点,以确保其具有足够的强度和刚度。

此外,在建筑工程和桥梁工程中,钢结构和钢筋混凝土结构的连接节点也需要利用圆轴的扭转性能来传递力和转矩。

工程力学--第八章_圆轴的扭转

工程力学--第八章_圆轴的扭转
rdf / dx
df /dx ,称为单位扭转角。
对半径为r的其它各处,可作类 似的分析。
1. 变形几何条件
MT
A
r
B r
rr
C
df
C O D
D
dx
对半径为r的其它各处,作类 似的分析。 同样有:
CC= dx=rdf
即得变形几何条件为:
rdf / dx --(1)
剪应变的大小与半径r成
2
TBC 2
B mx C
2 TBC
2
T
A
用假想截面2将圆轴切开 ,取左段或右段为隔离 体,根据平衡条件求得 :
TBC=-mx
(3)作扭矩图
2mx +
B

Cx mx
[例8-2]图示为一装岩机的后车轴,已知其行走的功率 PK=10.5kW,额定转速n=680r/min,机体上的荷载通过轴承 传到车轴上,不计摩擦,画出车轴的扭矩图
4.78
6.37
15.9
4.78
简捷画法:
MT图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
向 按右手法确定

MT / kN m
20
5kN
3kN
10
N图
5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增减;至右端回到零。
G
df
dx
A
r 2dA

MT
3. 力的平衡关系
令:

04.圆轴的扭转

04.圆轴的扭转
当在轴的右端作用一力偶 矩m时,圆轴各相邻截面之 间也都发生了绕各自截面轴 心的相对转(错)动。假设 圆轴不长,扭转变形又不是 很大,则纵向线在变形后仍 可近似地看成是一条直线, 只是倾斜了一个角度γ。
一、圆周扭转时的变形分析(续1)
2. 变形分析: 假想沿n-n和m-m两个相距dx的横截面将轴切取一薄
四指沿扭矩的方向屈起, 拇指的方向离开截面,扭 矩为正,反之为负。
三、横截面的内力矩——扭矩(续2)
3.扭矩正负号的规定:
(1)右手螺旋法则:
四个手指沿扭矩转动的方向,大拇指即为扭矩的方向。
(2)扭矩正负号:
离开截面为正,指向截面为负。 (3)外力偶矩正负号的规定:
指向截面
与坐标轴同向为正,反向为负
' 量显然可以用弧线 :c c 表示,其值为:
(书P54)
cc' Rd
n-n截面在b点处的 角应变:
g=cc' R d (5-5)
dx dx
一、圆周扭转时的变形分析(续3)
观察截面n-n上距圆心为ρ处的bρ 点, 如左图,bρ点处的角应变:
g

c c' dx
d
dx
(5-6)
d 表示扭转角沿轴线x的变化率,为两个截面相隔单
g
Mn
B
x
j
B'
1.受力特点:构件两端受到两个在垂直于轴线平面内的 力偶作用,两力偶大小等,转向相反。
2.变形特点:各横截面绕轴线发生相对转动。 3.扭转角:任意两截面间有相对的角位移,这种角位移
称为扭转角。
轴的概念
工程上,将以扭转变形为主要变形的构件通 称为轴。(对比:以弯曲为主要变形的构件在工 程上通称为梁)同时,多数轴是等截面直轴。

工程力学——圆轴的扭转

工程力学——圆轴的扭转

Wn=
Ip d
d 3 0.2d 3 16
(9-5)
2
图9.9(a)
第9章 圆轴的扭转
(2) 空心圆截面(见图 9.9(b))
Ip = D4 d 4 D4 1 4 0.1D4 1 4 (9-6)
32
32
Wn
=
Ip D
D3
16
14
0.2D3
1 4
2
(9-7)
式中,α = d ,为空心圆轴 D
图9.11
第9章 圆轴的扭转
解:由图 9.11 可知,各段扭矩大小相等,各段的极惯性
矩为 AC 段:Ip= D4 = 3.14 304 =7.952×104mm4
32
32
CB 段:Ip= D4 32
14
3.14 304 32
1
20 30
4
6.381104
mm4
所以根据式(9-12)得
(1) 先确定扭转 Mn 向。 (2) τ 矢量线与半径垂直。
(3) τ 指向与扭矩转向相同。
由 应 力 分布 图可 看 出, 在 圆截 面 的边 缘 上, 即 当
ρ=ρmax=R 时 , τ=τmax , 由 此 可 得 最大 切 应力 公 式 为
τma x=
Mn • Ip
R
式中,R

I
都是与截面尺寸有关的几何量,
(2) 按强度条件设计轴的直径 d1。由式(9-8)得
τmax=
Mn Wn
Mn 0.2d13
≤[τ]

d1≥
3
Mn
0.2
3
1080 103 0.2 40
=51.3mm
第9章 圆轴的扭转
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dx A
tmax
A
最后得到:
tr r
tr
Gr
d
dx

Tr
Ir
--(4)
tor T
I只r 称与为截截面面几对何圆相心关的。极惯性矩,tmtaxm在ax 圆 T轴r /表I r面 处T /,WT且
求Ir,WT ?
WT =Ir /r,称为 抗扭截面模量。
19
8.3.2 圆截面的极惯性矩和抗扭截面模量
dx
对半径为r 的其它
各处,作类似的分析。 同样有:
CC= g dx = r df
即得变形几何条件为:
g rd / dx --(1)
剪应变 g 的大小与
半径r 成正比。与单位 扭转角df /dx成正比。
15
2. 物理关系— 材料的应力-应变关系
材料的剪应力t与剪应变g之间有与拉压类似的关系。
T/GIr=const , 故有: AB T L / GIr
GI r 称为抗扭刚度,反映轴抵抗变形的能力。
若扭矩、材料,截面尺寸改变,则需分段求解。 27
例2. 空心圆轴如图,已知MA=150N·m,MB=50N·m MC=100N·m,材料G=80Gpa, 试求(1)轴内的最大剪应力; (2)C截面相对A截面的扭转角。
解: 1) 画扭矩图。
MA f18 MB
MC
f2 4 f2 2
2) 计算各段应力:
AB段: N-mm-Mpa单位制
A 1000 B
t max 1
T1 WT 1

T1
pD13 [1 - (
d
)4 ]
16
D1

150103 16
243p
[1
-
(18
/
24)4

]
80.8MPa
T /N.m
150 A
在线性弹性范围内,剪切虎克定律为:
t Gg --(2)
t
t ys
G是t-g曲线的斜率,如图,
称为剪切弹性模量。
半径为r处的剪应力则为:
tr
Gg r
Gr
d
dx
GG
11
O
g
圆轴扭转时 无正应力
16
讨论:圆轴扭转时横截面上的剪应力分布
t max
tr
T
r
rr
A
gr
o
tr
C
df
C
O
B gr
DT
平衡
4
返回主目录
M0
M0
T
取左边部分
M0 假想切面
外力偶
扭矩
由平衡方程:
平衡
M0
T M0 T
取右边部分 T
T 和T 是同一截面上的内力, 应当有相同的大小和正负。
扭矩
外力偶
平衡
5
扭矩的符号规定:
按右手螺旋
M0
T
法则确定扭矩的

矢量方向,扭矩 矢量的指向与截
面的外法线方向
M0
T
一致者为正,反 之为负。
M A 5.46kN m M B M C 1.64kN m M D 2.18kN m
求各截面内力:
BC段 T1 -1.64kN m
CA段 T2 -3.28kN m
AD段 T3 2.18kN m
最大扭矩在AB段,且
T 3.28kN m
10
MB MC
B
CD
o
x
A BC D
+ 向 按右手法确定
求反力偶: M A 20kN m + 向 按右手法确定
T / kNm
20 10
T图
T / kNm
20
T图
A
B
C
D
20
A
B
C
D
10
20
12
返回主目录
8.3 圆轴扭转时的应力与变形
变形体静力学的基本研究思路:
静力平衡条件 + 变形几何条件 + 材料物理关系
极惯性矩: Ir r 2dA
dA
dr
A
抗扭截面模量 WT =Ir /r
r
o
讨论内径d,外径D的空心圆
截面,取微面积
d
dA=2prdr, 则有:
D
极惯 性矩
a=d/D
I r

2p
D/2
r 3dr
d/2

p
(D4 32
d
4)

pD 4
32
(1 - a
4)
抗扭截面模量: WT Ir /( D / 2) pD 3(1-a 4 ) / 16
c
t′
dx
A的平衡?
SMC(F)=tdxdy-tdydx=0 t =t
25
8.3.3 扭转圆轴任一点的应力状态
纯剪应力状态: 微元各面只有剪应力作用。
s
A
s
t′
t A t dy
c dx t′
45斜截面上的应力:
s45
纯剪应力
t
c
45 t45
t
dx
状态等价于转 过45后微元的 二向等值拉压
26
8.3.4 圆轴的扭转变形 单位扭转角为:
d / dx T / GI r
相对扭转角 :B截面相对于 AB
A截面的扭转角。若AB=L,则
T
A Ag Bg
g
C
ABr
B
d
DLCd
O
T
AB
d DL T dx
dx 0 GIr
若AB间扭矩不变,材料不变,截面尺寸不变,则
tr=Tr/Ir
截面外圆周处(表面)
tmax=T/WT
实 心
tmax tr

oT

D
tmax

T
tr


o

d
D
23
讨论:
1)已知二轴长度及所受外力矩完全相同。若二轴截 面尺寸不同,其扭矩图相同否? 相同 若二轴材料不同、截面尺寸相同,各段应力是否
相同?相同 变形是否相同? 不同
2)下列圆轴扭转的剪应力分布图是否正确?
7
简捷画法:
T 图 10kN m 10kN m
FN图(轴力)
2kN 8kN
5kN
o
x
A
C B 20kN m
5kN 2kN 8kN
5kN
+ 向 按右手法确定
+向
T / kNm
20
5kN
3kN
10
+
FN 图
- 5kN
A
B
C
在左端取参考正向,按载荷大小画水平线;遇集 中载荷作用则内力相应增或减;至右端回到零。
4
]

86.7MPa
A
B
C
故 tmax=86.7Mpa
3) 计算扭转角AC
AC
TAB l AB + T BC lBC
GIr AB
GIr BC
0 .183 rad
29
8.4 圆轴扭转的强度条件和刚度条件
1.强度条件 拉压 扭转强度条件
sys/n (延)
tys/n (延)
smax=[s]=
T
o
o
o
o
T
T
T
24
8.3.3 扭转圆轴任一点的应力状态
研究两横截面相距dx的任一A处单位厚度微元,左 右二边为横截面,上下二边为过轴线的径向面。
剪应力互等定理:
物体内任一点处 二相互垂直的截面上 ,剪应力总是同时存 在的,它们大小相等 ,方向是共同指向或 背离二截面的交线。
T
T
At
t dx
t′
t A t dy
的不同平面内的外力偶 ,且满足平衡方程:
SMx=0
y
M0
z
变形前
传f动A轴B x
M0 汽车转变形向后轴
变形特征:相对扭转角 fAB
圆轴各横截面将绕其轴线发生相对转动。
3
返回主目录
8.2 扭矩与扭矩图
扭矩:T是横截面上的内力偶矩。 内力—由截面法求得。
M0
M0
假想切面
取左边部分
M0
外力偶
T 内力偶
由平衡方程: T M 0
T
r
A
C
g
df
C O
Bg
D df r
D
dx
g 是微元的直角改变量,
即半径r各处的剪应变。因
为CC= gdx=rdf , 故有:
g rd / dx
df /dx ,称为单位扭转角。
对半径为 r 的其. 变形几何条件
T
A gr B gr
rr
C
df
C O D
D
3322
(1(1--aa4
)4
)
a=d/D=0
Ir
p D4
32
WT
p D3 ( 1- a 4)
16
WT
pD3
16
t max Tr / I r T /WT
21
结论:
1)圆轴扭转时,横截面上只有剪应力,剪应力在横 截面上线性分布,垂直与半径,指向由扭矩的转 向确定。
2) 截面任一处
第八章 圆轴的扭转
8.1 扭转的概念与实例 8.2 扭矩、扭矩图 8.3 圆轴扭转时的应力与变形 8.4 圆轴扭转的强度条件和刚度条件 8.5 静不定问题和弹塑性问题
相关文档
最新文档