板式精馏塔设计方案
板式精馏塔的设计

密封件的设计需要考虑到密封性能、耐高温和耐腐蚀性等因素。在实际设计 中,一般选用机械密封或填料密封等形式,并需要对密封件的材料和制造工艺进 行严格筛选和考核。 4.3支架设计支架是板式精馏塔的支撑部件,主要作用是固 定板片和密封件等元件。支架的设计需要考虑到设备的强度、稳定性和操作方便 性等因素。
2.3数据采集为了进பைடு நூலகம்板式精馏塔的设计,需要采集物料的物性参数、操作 条件以及类似设备的运行数据等。
2.4设计参数计算根据采集的数据和流程规划,计算板式精馏塔的主要参数, 包括塔高、塔径、板数、间距、流体力学等。
2.5辅助设计进行辅助设计,包括塔内件的材料选择、制造工艺、结构设计 等,确保塔体和内部构件的稳定性和耐用性。
传感器设计需要考虑到测量的准确性、稳定性和可靠性等因素。在实际设计 中,一般选用电感式、电容式、光电式等传感器形式,并需要对传感器的位置和 数量进行合理布置和选择。 5.
感谢观看
2、基本设计流程板式精馏塔的设计流程包括以下几个方面:
2.1设计目标确定首先需要明确板式精馏塔的设计目标,包括分离的物料种 类、分离的纯度、处理能力、操作压力和温度等。
2.2流程规划根据设计目标,确定板式精馏塔的流程。流程规划包括物料的 预处理、进料方式、操作模式、加热和冷却方式以及塔内件的结构设计等。
板式精馏塔的设计
基本内容
板式精馏塔是一种广泛应用于化工、石油、食品和医药等行业的蒸馏设备。 它通过将液体混合物进行多次汽化和冷凝,从而将不同沸点的组分分离出来。本 次演示将详细介绍板式精馏塔的设计流程、塔体设计、传质元件设计、控制系统 设计以及数据分析与结果呈现。
1、引言板式精馏塔是一种高效的分离设备,通过多次汽化和冷凝将液体混 合物分离成不同沸点的组分。在化工、石油、食品和医药等行业,板式精馏塔被 广泛应用于原料的预处理、产品的提纯和分离以及废液的处理等。因此,板式精 馏塔的设计对于工业生产过程的经济性和效率具有重要意义。
塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。
设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。
酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。
物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。
本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。
此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。
塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。
筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。
塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
该物系属不易分离物系,最小回流比较小,采用其1.5倍。
设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。
塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。
(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。
精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。
它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。
按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。
1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。
(2)适用范围广,可分离液态、气态或固态混合物。
(3)蒸馏过程适用于各种浓度混合物的分离。
(4)蒸馏操作耗能较大,节能是个值得重视的问题。
1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。
过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。
1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。
在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。
1.1.4连续精馏操作流程化工生产以连续精馏为主。
操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。
塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。
1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。
泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。
泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。
泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。
泡罩在塔板上为正三角形排列。
它的优点是操作弹性适中塔板不易堵塞。
缺点是生产能力与板效率较低结构复杂、造价高。
图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。
精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径
精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、
∗
R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W
海川化工论坛板式精馏塔的设计

第一章 板式精馏塔的设计1.1概述1.2板式精馏塔的设计原则与步骤1.3理论塔板数的确定1.4 塔板效率和实际塔板数1.5 板式精馏塔的结构设计1.6 板式精馏塔高度及其辅助设备1.7 板式精馏塔的计算机设计第二章 塔设备的机械计算2.1塔体及裙座的强度计算2.2塔盘板及其支撑梁的强度、挠度计算2.3塔盘技术条件2.4塔盘支撑件的尺寸公差附录第一章:板式精馏塔的设计1.1概述蒸馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
蒸馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。
为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。
蒸馏过程按操作方式可分为间歇蒸馏和连续蒸馏。
间歇蒸馏是一种不稳态操作,主要应用于批量生产或某些有特殊要求的场合;连续蒸馏为稳态的连续过程,是化工生产常用的方法。
蒸馏过程按蒸馏方式可分为简单蒸馏、平衡蒸馏、精馏和特殊精馏等。
简单蒸馏是一种单级蒸馏操作,常以间歇方式进行。
平衡蒸馏又称闪蒸,也是一种单级蒸馏操作,常以连续方式进行。
简单蒸馏和平衡蒸馏一般用于较易分离的体系或分离要求不高的体系。
对于较难分离的体系可采用精馏,用普通精馏不能分离体系则可采用特殊精馏。
特殊精馏是在物系中加入第三组分,改变被分离组分的活度系数,增大组分间的相对挥发度,达到有效分离的目的。
特殊精馏有萃取精馏、恒沸精馏和盐溶精馏等。
精馏过程按操作压强可分为常压精馏、加压精馏和减压精馏。
一般说来,当总压强增大时,平衡时气相浓度与液相浓度接近,对分离不利,但对在常压下为气态的混合物,可采用加压精馏;沸点高又是热敏性的混合液,可采用减压精馏。
虽然工业生产中以多组分精馏为常见,但为简化起见,本章主要介绍两组分连续精馏过程的设计计算。
1.2板式精馏塔的设计原则与步骤1.2.1设计原则总的原则是尽可能多地采用先进的技术,使生产达到技术先进、经济合理的要求,符合优质、高产、安全、低能耗的原则,具体考虑以下几点。
精馏塔(板式)设计

化工原理课程设计
三. 设计任务 (一)精馏塔工艺设计 1.物料衡算 2.精馏塔的工艺尺寸的确定 3.塔板结构设计 4.热量衡算 (二)附属设备选型计算
化工原理课程设计
第三部分:板式精馏塔的设计方法
一. 流程和方案的确定
二. 工艺计算
三. 设备计算
四. 辅助设备计算
化工原理课程设计
一.
流程和方案的选择
3~5 秒
u ( )3.2 HT h f
校核三: ev
校核四: K
5.7 10 3
K 1.5 ~ 2
化工原理课程设计
三.设备计算
(一)塔径的初步计算
(二)溢流装置的设计 P139 2.水力学性能计算 (三)塔板布置 (略) (四)筛板塔操作失常条件的校核
参见课本138-141例题 阅读例题,找出例题中“筛板塔操作失常条 件的校核” 所在的位置。
D2
u (0.6 0.85)uF
化工原理课程设计
(二)溢流装置的设计 1.液流程数
当塔径大于2~2.4米或 液流量大于110米3/小时 时,可考虑采用双流型。
化工原理课程设计
hl
2.降液管尺寸 ①堰长lW 单溢流: 双溢流: ②溢流堰高hW
Δ how hw
具体大小根据Ad/A在图5 (课本139图11-16)中确定, 顺便可以确定wd的大小
蒸馏装置包括:精馏塔、原料预热器、再沸器、冷凝 器、泵等设备,要安排好流程结构。
操作条件的确定
(1)操作压力的选择 (2)进料状态的选择 (3)回流温度 (塔顶、塔顶温度、进料板温度) (4)塔釜的加热方式及加热介质的选择 (5)塔顶冷凝器的冷凝方式和冷凝介质的选择
在论文中,选择过程和依据可以不写,但必须 把结果表述出来,并画好流程示意图。
苯-甲苯板式精馏塔的课程设计

目录板式精馏塔设计任务书 (3)设计题目: (3)二、设计任务及操作条件 (3)三、设计内容: (3)一.概述 (5)1.1 精馏塔简介 (5)1.2 苯-甲苯混合物简介 (5)1.3 设计依据 (5)1.4 技术来源 (6)1.5 设计任务和要求 (6)二.设计方案选择 (6)2.1 塔形的选择 (6)2.2 操作条件的选择 (6)2.2.1 操作压力 (6)2.2.2 进料状态 (6)2.2.3 加热方式的选择 (7)三.计算过程 (7)3.1 相关工艺的计算 (7)3.1.1 原料液及塔顶、塔底产品的摩尔分率 (7)3.1.2 物料衡算 (8)3.1.3 最小回流比及操作回流比的确定 (8)3.1.4精馏塔的气、液相负荷和操作线方程 (9)3.1.5逐板法求理论塔板数 (10)3.1.6 全塔效率的估算 (11)3.1.7 实际板数的求取 (13)3.2 精馏塔的主题尺寸的计算 (13)3.2.1 精馏塔的物性计算 (13)3.2.2 塔径的计算 (15)3.2.3 精馏塔高度的计算 (17)3.3 塔板结构尺寸的计算 (18)3.3.1 溢流装置计算 (18)3.3.2塔板布置 (19)3.4 筛板的流体力学验算 (21)3.4.1 塔板压降 (21)3.4.2液面落差 (22)3.4.3液沫夹带 (22)3.4.4漏液 (22)3.4.5 液泛 (23)3.5 塔板负荷性能图 (23)3.5.1漏夜线 (23)3.5.2 液泛夹带线 (24)3.5.3 液相负荷下限线 (25)3.5.4 液相负荷上限线 (25)3.5.5 液泛线 (26)3.6 各接管尺寸的确定 (29)3.6.1 进料管 (29)3.6.2 釜残液出料管 (29)3.6.3 回流液管 (30)3.6.4塔顶上升蒸汽管 (30)四.符号说明 (30)五.总结和设计评述 (31)板式精馏塔设计任务书设计题目:苯―甲苯精馏分离板式塔设计二、设计任务及操作条件1、设计任务:生产能力(进料量) 5万吨/年操作周期 7200 小时/年进料组成 50%(质量分率,下同)塔顶产品组成 99%塔底产品组成 2%2、操作条件操作压力常压进料热状态泡点进料冷却水 20℃加热蒸汽 0.2MPa3、设备型式筛板塔4、厂址安徽省合肥市三、设计内容:1、概述2、设计方案的选择及流程说明3、塔板数的计算(板式塔)( 1 ) 物料衡算;( 2 ) 平衡数据和物料数据的计算或查阅;( 3 ) 回流比的选择;( 4 ) 理论板数和实际板数的计算;4、主要设备工艺尺寸设计( 1 ) 塔内气液负荷的计算;( 2 ) 塔径的计算;( 3 ) 塔板结构图设计和计算;( 4 )流体力学校核;( 5 )塔板负荷性能计算;( 6 )塔接管尺寸计算;( 7 )总塔高、总压降及接管尺寸的确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
板式精馏塔设计方案目录1.设计任务 (6)2.工艺流程图 (8)3.设计方案 (8)3.2实验方案的说明 (11)4、板式塔的工艺计算 (12)5、塔体和塔板的工艺尺寸计算 (25)6、辅助设备的计算与选型 (53)7、经济横算 (69)8心得体会 (71)符号说明:英文字母Aa---- 塔板的开孔区面积,m2Af---- 降液管的截面积, m2Ao---- 筛孔区面积, m2A T----塔的截面积m2△P P----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----表面张力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径m Wc----边缘无效区宽度e v----液沫夹带量kg液/kg气Wd----弓形降液管的宽度E T----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量kg/kmolt m----平均温度℃g----重力加速度9.81m/s2Z----板式塔的有效高度Fo----筛孔气相动能因子kg1/2/(s.m1/2)hl----进口堰与降液管间的水平距离m θ----液体在降液管内停留时间h c----与干板压降相当的液柱高度mυ----粘度hd----与液体流过降液管的压降相当的液注高度m ρ----密度hf----塔板上鼓层高度m σ----表面张力h L----板上清液层高度mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度m 下标ho----降液管的义底隙高度m max----最大的h ow----堰上液层高度m min----最小的h W----出口堰高度m L----液相的h’W----进口堰高度m V----气相的hσ----与克服表面张力的压降相当的液注高度mH----板式塔高度mH B----塔底空间高度mHd----降液管内清液层高度mH D----塔顶空间高度mH F----进料板处塔板间距mH P----人孔处塔板间距mH T----塔板间距mH1----封头高度mH2----裙座高度mK----稳定系数l W----堰长mLh----液体体积流量m3/hLs----液体体积流量m3/sn----筛孔数目P----操作压力KPa△P---压力降KPa△Pp---气体通过每层筛的压降KPaT----理论板层数u----空塔气速m/su0,min----漏夜点气速m/su o’ ----液体通过降液管底隙的速度m/sV h----气体体积流量m3/hV s----气体体积流量m3/sW c----边缘无效区宽度mW d----弓形降液管宽度mW s ----破沫区宽度mZ ---- 板式塔的有效高度m希腊字母δ----筛板的厚度mθ----液体在降液管内停留的时间s υ----粘度mPa.sρ----密度kg/m3σ----表面张力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的1.设计任务1.1题目:分离乙醇—水板式塔精馏塔设计1.2生产原始数据:1)原料:乙醇—水混合物,含乙醇35%(质量分数),温度35℃;2)产品:馏出液含乙醇93%(质量分数),温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;6)操作压力:常压101.325kp a;1.3设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量及其组成;最小回流比及操作回流比的确定;计算所需理论塔板层数及实际板层数;确定进料板位置。
1.4塔主体尺寸的计算(塔径)1.5塔板结构尺寸的设计1.6流体力学验算1.7画出负荷性能图1.8辅助设备的选型1)确定各接管尺寸的大小;2)计算储罐容积,确定储罐规格;3)热量衡算,计算全塔装置所用蒸汽量和冷却水用量,确定每个换热器的传热面积并进行选型;4)根据伯努利方程,计算扬程,确定泵的规格类型;5)壁厚,法兰,封头,吊柱等的选定。
1.9设计结果汇总2.工艺流程图附图1为带控制点的工艺流程图。
流程概要;乙醇-水混合原料经预热器加热到泡点后,送进精馏塔,塔顶上升的蒸汽采用全凝器冷凝后,一部分采用回流,其余为塔顶产物,塔釜采用间接蒸汽加热供热,塔底产物冷却后送人贮槽。
3.设计方案3.1设计方案的确定3.1.1塔型的选择筛板塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排布。
筛板塔的优点是:结构简单,造价低廉,气压降小,板上液面落差也较小,生产能力及板效率较高,气流分布均匀,传质系数高;缺点:操作弹性小,筛孔小易发生堵塞,不利于黏度较大的体系分离。
本设计中,根据生产任务,若按年工作日330天,每天开动设备24小时计算,原料液流量为55000t/年,由于产品粘度较小,流量较大,因此即使筛孔小也不易堵塞,为减少造价,降低生产过程中压降和塔板液面落差的影响,提高生产效率。
因此,本设计最终选用筛板塔。
3.1.2操作压力精馏可在常压、加压和减压下进行,确定操作压力主要是根据处理物料的性质、技术上的可行性和经济上的合理性考虑的。
《化工原理》修订版下册,夏清编一般来说,常压蒸馏最为简单经济,若物料无特殊要求,应尽量在常压下操作。
对于乙醇-水体系,在常压下已经是液态,且乙醇-水不是热敏性材料,在常压下也可成功分离,所以选用常压精馏。
因为高压或者真空操作会引起操作上的其他问题以及设备费用的增加,尤其是真空操作不仅需要增加真空设备的投资和操作费用,而且由于真空下气体体积增大,需要的塔径增加,因此塔设备费用增加。
因此,本设计选择常压操作条件。
3.1.3进料方式进料状态有多种,但一般都将料液预热到泡点或接近泡点才送入塔中。
这样一来,进料温度就不受季节、气温变化和前道工序波动的影响,塔的操作就比较容易控制。
此外,泡点进料时,精馏段与提馏段的塔径相同,设计制造均比较方便。
因此,本设计选择泡点进料。
3.1.4加热方式精馏段通常设置再沸器,采用间接蒸汽加热,以提供足够的热量。
若待分离的物系为某种组分和水的混合物,往往可以采用直接蒸汽加热的方式。
但当在塔顶轻组分回收率一定时,由于蒸汽冷凝水的稀释作用,可使得釜残液中的轻组分浓度降低,所需的理论塔板数略有增加,且物系在操作温度下黏度不大有利于间接蒸汽加热。
因此,本设计选用间接蒸汽加热的方式提供热量。
3.1 .5热能的利用精馏的原理是多次进行部分汽化和冷凝,因此,热效率很低,通常进入再沸器的能量仅有5%被有效的利用。
塔顶蒸气冷凝放出《常用化工单元设备设计》第二版,李功样编大量的热量,但其位能低,不可能直接用来作塔釜的热源。
但可作低温热源,或通入废热锅炉产生低压蒸气,供别处使用。
或可采用热泵技术,提高温度再用于加热釜液。
采用釜液产品去预热原料,可以充分利用釜液产品的余热,节约能源。
因此本设计利用釜残液的余热预热原料液至泡点。
3.1 .6回流方式泡点回流易于控制,设计和控制时比较方便,而且可以节约能源。
但由于实验中的设计需要,所需的全凝器容积较大须安装在地面,因此回流至塔顶的回流液温度稍有降低,在本设计中为设计和计算方便,暂时忽略其温度的波动。
因此,本设计选用泡点回流。
3.2实验方案的说明1)本精馏装置利用高温的釜液与进料液作热交换,同时完成进料液的预热和釜液的冷却,经过热量与物料衡算,设想合理。
釜液完全可以把进料液加热到泡点,且低温的釜液直接排放也不会造成热污染。
2)原料液经预热器加热后先通过离心泵送往高位槽,再通过阀门和转子流量计控制流量使其满足工艺要求。
3)本流程采用间接蒸汽加热,使用25℃水作为冷却剂,通入全凝器和冷却器对塔顶蒸汽进行冷凝和冷却。
从预热器、全凝器、冷却器出来的液体温度分别在50-60℃、40℃和35℃左右,可以用于民用热澡水系统或输往锅炉制备热蒸汽的重复利用。
4)本设计的多数接管管径取大,为了能使塔有一定操作弹性,允许气体液体流量增大,所以采取大于工艺尺寸所需的管径。
《常用化工单元设备设计》第二版,李功样编,P854、板式塔的工艺计算4.1物料衡算通过全塔物料横算,可以求出精馏产品的流量、组成和进料流量、组成之间的关系。
1、将各个质量分数转化为摩尔分数2、各个相对摩尔质量Kmol Kg M F /84.27%6518%3546=⨯+⨯=Kmol Kg M D /534.41%718%9346=⨯+⨯=Kmol Kg M W /08.18%5.9918%5.046=⨯+⨯=3、各个摩尔流量由年处理量55000t ,330天有效工作日,可得进料液流量F 为h Kmol F /44.24984.272433010550003=⨯⨯⨯=由物料衡算式可算出产品流量D 和釜残液流量W⎩⎨⎧=+=+FW D Fx Wx Dx F W D代入得8386.0174.044.24944.249DDW =⨯-= 解得:h Kmol W h Kmol D /15.198/29.51==8386.018746934693=+=D x 001962.0185.99465.0465.0=+=W x 1740.0186546354635=+=F x由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表表1 原料液、馏出液与釜残液的流量与温度4.2最小回流比Rmin和操作回流比R的确定回流是保证精馏塔连续稳定操作的必要条件之一,且回流比是影响精馏操作费用和投资费用的重要因素。
对于一定的分离任务而言,应选择适宜的回流比。
适宜的回流比应该通过经济核算来确定,即操作费用和设备折旧费用之和为最低时的回流比为最适宜的回流比。
mR适宜RR图2理论板和回流比关系图确定回流比的方法为:先求出最小回流比R min,根据经验取操作回流比为最小回流比的 1.1-2.0倍,为了节能,回流比倾向于取较小的值,有人建议取R min的1.1~1.5倍。
考虑到原始数据和设计任《化工原理》修订版下册,夏清编务,本方案取 1.4,即:R=1.4R min;求最小回流比的方法有作图法和解析法,本设计使用作图法。
根据附录表2乙醇~水溶液体系的平衡数据在坐标纸上绘出平衡曲线,并画出对角线。
表2 乙醇~水溶液体系的平衡数据某些不正常曲线,具有下凹的部分。
当操作线与q线的交点尚未落到平衡线上之前,操作线已与平衡线相切。