Efficent CAD of Boxed Microwave Circuits Based on Arbitrary Rectangular
量子模拟重大突破 我科学家首次测得第二声衰减率

量子模拟重大突破我科学家首次测得第二声衰减率
吴长锋
【期刊名称】《中国科技财富》
【年(卷),期】2022()2
【摘要】记者2月7日从中国科学技术大学了解到,中国科大在量子模拟领域获重
大突破——潘建伟、姚星灿、陈宇翱团队基于超冷锂—镝原子量子模拟平台,首次
测得第二声的衰减率(声扩散系数),并以此准确测定了体系的热导率与粘滞系数。
热是怎么传播的?通常是通过扩散,即从近到远温度逐渐降低。
然而,在某些情况下它也可能以波动的形式传播,很像声波。
【总页数】1页(P32-32)
【作者】吴长锋
【作者单位】不详
【正文语种】中文
【中图分类】O41
【相关文献】
1.量子反常霍尔效应世界难题被我国科学家攻克——中国本土科学家可能首次获得诺贝尔奖
2.中国科大科学家首次实现复合系统量子态隐形传输——两光子量子态
精确传输六光子纠缠态操纵成功3.量子反常霍尔效应世界难题被我国科学家攻克——中国本土科学家可能首次获得诺贝尔奖4.科学家首次实现双光子“量子漫步” 量子计算机有望10年内问世5.我科学家首次构建循环式宇称时间对称量子模拟器
因版权原因,仅展示原文概要,查看原文内容请购买。
微波无损检测 外文书籍

微波无损检测外文书籍Microwave Non-Destructive Testing: A ReviewAbstract:Microwave non-destructive testing (MNDT) is a non-invasive technique that uses microwave radiation to evaluate the internal structure and qualityof materials without causing any damage. In this review, we aim to provide a comprehensive overview of the current state of MNDT techniques discussed in existing foreign literature. We will explore the principles, applications, advantages, and challenges associated with microwave non-destructive testing.1. IntroductionMicrowave non-destructive testing (MNDT) has gained significant attention in recent years due to its ability to provide accurate and reliable results in various fields, including aerospace, construction, and medicine. This technique works by emitting microwave radiation towards the material of interest and analyzing the scattered waves to determine its internal properties. Unlike traditional destructive testing methods, MNDT allows for real-time evaluation without causing any harm to the tested material.2. Principles of MNDTMicrowave non-destructive testing relies on the interaction between microwaves and the material being tested. The dielectric properties, such as permittivity and permeability, play a crucial role in determining the behavior of microwaves within the material. By analyzing the reflection, transmission,and absorption of microwaves, MNDT techniques can provide valuable information about the material's structure, composition, and defects.3. MNDT Techniques and InstrumentsThere are various MNDT techniques and instruments available, each with its unique advantages and limitations. Some commonly used techniques include microwave imaging, microwave tomography, and microwave resonance. Microwave imaging allows for the visualization of internal structures, while microwave tomography provides three-dimensional images of the material. Microwave resonance techniques measure the resonant frequencies to detect hidden defects or inconsistencies within the material.4. Applications of MNDTThe versatility of MNDT techniques enables their applications in a wide range of industries. In the aerospace industry, MNDT plays a critical role in inspecting composite materials used in aircraft construction, ensuring structural integrity and safety. In the field of medicine, microwave non-destructive testing is utilized for the detection of tumors and abnormalities in tissues. Additionally, MNDT techniques find applications in evaluating the quality of construction materials, such as concrete and asphalt.5. Advantages and ChallengesOne of the main advantages of microwave non-destructive testing is its ability to provide rapid and non-invasive evaluations. This significantly reduces the time and cost associated with conventional destructive testing methods. Moreover, MNDT can penetrate through several centimeters of material, enabling the detection of defects hidden beneath the surface.However, MNDT also faces challenges such as limited resolution and difficulty in interpreting complex data. Ongoing research aims to overcome these challenges and further enhance the capabilities of microwave non-destructive testing.6. ConclusionMicrowave non-destructive testing has emerged as a valuable technique for evaluating the internal properties and quality of materials. Its non-invasive nature, combined with its applications in various industries, makes MNDT an indispensable tool for quality assurance and defect detection. Although challenges exist, ongoing advancements aim to improve MNDT techniques and instruments, opening doors for even wider applications in the future.References:(References have been omitted as per the given instructions)。
新型非互易飞秒激光极化纳米铁电畴技术

新型非互易飞秒激光极化纳米铁电畴技术嘿,朋友们!今天咱来聊聊这个超厉害的新型非互易飞秒激光极化纳米铁电畴技术。
你说这名字听着是不是特别高大上?哈哈,其实啊,理解起来也没那么难。
你就想象一下,这就好比是一个超级精确的魔法棒,能在纳米级的世界里施展出神奇的魔法。
这个魔法呢,就是让那些小小的铁电畴乖乖听话,按照我们想要的方式排列。
咱平时生活中用的好多电子设备,都得靠这种技术来变得更厉害呢!比如说手机,要是有了它,那手机的性能说不定就能再上几个台阶。
你想想,以后你的手机反应速度超快,屏幕显示超清晰,是不是感觉特别棒?这新型非互易飞秒激光极化纳米铁电畴技术啊,就像是一位无声的英雄,在背后默默地为我们的科技发展贡献着力量。
它能让那些我们肉眼都看不见的小玩意儿变得超级厉害。
你再想想,要是没有它,那我们的科技进步不就像少了一条腿似的,走不快啦!它能让那些纳米级的东西变得有秩序,就像把一堆乱麻理得顺顺溜溜的。
而且啊,这技术还在不断发展呢!科学家们就像一群勤劳的小蜜蜂,一直在努力研究,想让它变得更好、更强大。
说不定哪天,它就能给我们带来更大的惊喜,让我们的生活发生翻天覆地的变化。
这可不是我在吹牛啊!你看看现在科技发展得多快,以前觉得不可能的事情,现在不都实现了吗?这新型非互易飞秒激光极化纳米铁电畴技术就是这样一个充满潜力的宝贝。
它就像一把钥匙,能打开科技进步的大门,让我们看到更多的可能。
你说,我们能不重视它吗?能不好好研究它吗?反正我觉得,这技术肯定会越来越重要,给我们的生活带来更多的便利和惊喜。
所以啊,朋友们,让我们一起期待这个神奇的技术能给我们带来更多的精彩吧!别小看了它,说不定哪天它就成了改变世界的大功臣呢!。
一种高致密晶粒铋锑热电薄膜及其制备方法[发明专利]
![一种高致密晶粒铋锑热电薄膜及其制备方法[发明专利]](https://img.taocdn.com/s3/m/bc56d818f705cc175427096b.png)
专利名称:一种高致密晶粒铋锑热电薄膜及其制备方法专利类型:发明专利
发明人:邓元,魏锋,赵未昀
申请号:CN202011332324.7
申请日:20201124
公开号:CN112575303A
公开日:
20210330
专利内容由知识产权出版社提供
摘要:本发明涉及一种具有高致密晶粒的BiSb热电薄膜材料及其制备方法,先对衬底进行射频等离子体清洗,再对清洗后的衬底进行升温,之后在一定的Ar气压力下对高纯度的Bi靶和Sb靶进行共溅并沉积到升温后的衬底上,待沉积完后对薄膜进行高真空原位退火,最终制得BiSb薄膜,Sb的含量范围为0.035
申请人:北京航空航天大学杭州创新研究院
地址:310000 浙江省杭州市滨江区长河街道创慧街18号
国籍:CN
代理机构:北京细软智谷知识产权代理有限责任公司
代理人:刘静培
更多信息请下载全文后查看。
英语作文-集成电路设计的未来发展趋势与技术创新

英语作文-集成电路设计的未来发展趋势与技术创新The realm of integrated circuit (IC) design stands on the brink of a transformative era marked by staggering advancements and technological innovation. As we delve into the future trends of IC design, it is imperative to recognize the pivotal role that miniaturization, performance enhancement, and energy efficiency play in shaping the trajectory of this field.At the forefront of this revolution is the relentless pursuit of Moore's Law, which has long served as the guiding principle for the industry. The law postulates that the number of transistors on a microchip doubles approximately every two years, though the pace has slowed in recent years. Despite this, the industry's ingenuity has not waned, with researchers pushing the boundaries of physics to scale down chip components to atomic levels.Emerging Materials and Techniques。
科学家“弹出式”制备微纳米半导体器件

科学家“弹出式”制备微纳米半导体器件
佚名
【期刊名称】《硅酸盐通报》
【年(卷),期】2015(34)1
【摘要】见过一打开便有小房子或城堡立起来的那种立体书吧。
受这种儿童玩具书的启发,中国、美国、韩国研究人员开发出一种特别简单的"弹出式"三维成型技术,可制备现有3D打印技术无法实现的微纳米半导体器件。
这项成果发表在新一期美国《科学》杂志上。
研究负责人之一、美国西北大学研究助理教授张一慧对新华社记者说,这种技术被称为“屈曲引导的三维成型技术”,相比现有3D打印技术有多种优势,“它不能完全取代现有3D打印技术,但可作为一个非常重要的补充”。
【总页数】1页(P285-285)
【关键词】半导体器件;微纳米;研究负责人;玩具书;助理教授;张一;美国西北大学;伊利诺伊大学;中国浙江;声子晶体
【正文语种】中文
【中图分类】TP31
【相关文献】
1.“弹出式”技术可制备微纳米半导体器件 [J], ;
2.“弹出式”三维成型技术可制造微纳米半导体器件/中科院开发出超高热导率石墨烯-聚合物复合材料/超材料研究获重大突破可同时增强和捕捉光/中科院制备出新型形状记忆高分子材料 [J],
3.“弹出式”技术可制备微纳米半导体器件 [J], ;
4.“弹出式”三维成型技术可制造微纳米半导体器件 [J],
5.适用于高性能大面积电子器件的液相制备2D半导体纳米片 [J], 李巧红(编译)因版权原因,仅展示原文概要,查看原文内容请购买。
MICROWAVE IC DEVICE
更多信息请下载全文后查看
Байду номын сангаас
专利内容由知识产权出版社提供
专利名称:MICROWAVE IC DEVICE 发明人:KAJIWARA JUJI 申请号:J P 14 684 678 申请日:19781128 公开号:JPS6318361B2 公开日:198804 18
摘要:PURPOSE:To reduce reflection loss by a method wherein a specified relation is held between the characteristic impedance of metal housing barrier terminal area and the impedance of circuits on the insulator inside the housing, and circuit terminals are connected with central conductors of barrier terminal, then grounded through capacity. CONSTITUTION:When the circuit impedances on input and load are ZOMEGA, the characteristic impedance Z0OMEGA is specified as Z0>=Z. A given circuit is converted to capacitive by a discontinuous capacity C1 between the input connection and grounded electrode and a connected capacity C2. The circuit is made inductive by inserting a distributed line with Z0OMEGA in length, l. Then, the circuit is again converted capacitive ZOMEGA by using discontinuous capacity C3 produced at the load connection and a capacity C4. The relation Z0>=Z held in this way facilitates the matching between the circuits at both sides of the barrier. If the capacities C2 and C4 are given a value greater than 10 times the parasitic capacity C1 and C3, it elimintaes the need for considering the distribution of the parasitic capacity, and provides a between-stage barrier terminal with extremely small reflection loss.
钛酸钡钙基无铅压电陶瓷及其制备方法[发明专利]
专利名称:钛酸钡钙基无铅压电陶瓷及其制备方法专利类型:发明专利
发明人:赵小波,俞胜平,高洪伟,李凯,丁薇薇
申请号:CN201910435674.7
申请日:20190523
公开号:CN110128133A
公开日:
20190816
专利内容由知识产权出版社提供
摘要:本发明公开了一种钛酸钡钙基无铅压电陶瓷及其制备方法,无铅压电陶瓷具有下列通式:(1‑x‑y)BaCaTiO—x(BaLiNd)TiO—yMHfO‑mN;其中,M为Ba和Ca中的至少一种,N为CeO、YO、ZnO中的至少一种;x和y分别表示(BaLiNd)TiO和MHfO所占化合物(1‑x‑y)BaCaTiO—
x(BaLiNd)TiO—yMHfO的摩尔百分比,m表示N所占化合物(1‑x‑y)BaCaTiO—x(BaLiNd)TiO—yMHfO的质量百分比。
根据本公开的一个实施例,无铅压电陶瓷具有优异的压电性能,同时具有较低的烧结温度,克服了现有技术的不足。
申请人:歌尔股份有限公司
地址:261031 山东省潍坊市高新技术开发区东方路268号
国籍:CN
代理机构:北京博雅睿泉专利代理事务所(特殊普通合伙)
代理人:王昭智
更多信息请下载全文后查看。
基于碲纳米片的二维范德华双极型晶体管及其构筑方法
基于碲纳米片的二维范德华双极型晶体管及其构筑方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!碲纳米片具有独特的物理化学性质,因此在纳米电子学领域具有广泛的应用前景。
高效率E类放大器(续)
高效率E类放大器(续)
高葆新;梁春广
【期刊名称】《半导体技术》
【年(卷),期】2001(26)9
【总页数】5页(P59-62)
【关键词】E类放大器;电路设计;微波频段
【作者】高葆新;梁春广
【作者单位】清华大学电子工程系;信息产业部电子十三所
【正文语种】中文
【中图分类】TN72
【相关文献】
1.一种高效率的放大器——D类音频放大器 [J], 茅于海
2.X波段GaN高效率连续B类功率放大器芯片设计 [J], 金晨;陈伟;王志宇;郁发新
3.基于D类放大的高效率音频功率放大器设计 [J], 时东阳
4.高效率F类Doherty功率放大器研究 [J], 刘国华;王维荣;范凯凯;程知群
5.高效率E类放大器(续) [J], 高葆新;梁春广
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Abstract— In this paper, we describe a very accurate and computationally efficient computer-aided design (CAD) tool for the analysis and design of a wide class of boxed microwave circuits composed of arbitrary rectangular elements printed on dielectric layers. The theoretical derivations are based on an integral equation formulation, and call for the evaluation of the boxed multilayer Green’s functions, thus leading to a tool that is valid for an arbitrary number of circuits and dielectric layers. In addition to theory, comparisons with measured results are presented, and several practical filter structures are also investigated, thus clearly demonstrating that the CAD tool developed can indeed be used very effectively for the design of a large variety of microwave circuits.
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 47, NO. 7, JULY 1999
1045
Efficient CAD of Boxed Microwave Circuits Based on Arbitrary Rectangular Elements
To reduce the computational effort required for the analysis of arbitrary boxed circuits, we propose in this paper to simplify the basic geometry, so that closed-form analytical formulations can be used, yielding far more accurate and efficient algorithms. The basic structure discussed in this paper is the one shown in Fig. 1, and is composed of an arbitrary number of rectangular elements of zero thickness printed on an arbitrary number of dielectric layers. The use of this basic geometry allows for the definition of very efficient current expansion functions on the metallic areas, which considerably accelerate the convergence rate of the series involved and lead to very efficient computer codes. It is important to note, however, that, in spite of the restriction imposed on the geometry, a very wide class of microwave circuits can still be analyzed.
II. INTEGRAL-EQUATION FORMULATION
The general multilayer boxed printed circuit under exam-
ination is shown in Fig. 1. The analysis is performed via
an integral-equation formulation. The formulation starts with
suitable boundary condition is associated to the tangent electric
field on the surfaces of the metallic areas
(1)
where the surface impedance has been used to take into account the finite conductivity of the metal and, for good conductors, we have
To solve this problem, various accelerations techniques have been reported (see, e.g., [4]–[6]). Among the various techniques developed, of particular relevance is the work by Eleftheriades et al. [7], where the asymptotic part of the sums was extracted and transformed into a form involving the fast decaying modified Bessel function. In spite of all this effort, however, computational time still remains the limiting factor in the practical design of microwave circuits.
The paper is organized as follows. In Section II, the basic formulation is presented. Section IV is devoted to the validation of the theory through comparison between simulated and measured results. Finally, in Section V, we describe how the tool developed can indeed be used to study a large variety of microwave structures of practical interest.
field
needs to be defined on the lines acting as input
ports. Once the c源自rcuit is excited, the scattered field
the imposition of the boundary conditions for the fields in
the structure. If we take arbitrary rectangular elements,
with induced electric currents
(Fig. 2), the
Index Terms—Broadside coupled, integral equation, microwave filters, modal expansions, shielded printed circuits, transmission zeros.
I. INTRODUCTION
THE current industrial design of modern microwave circuits requires strongly reduced development times and costs. As a result, the development of fast and efficient software tools that can accurately predict the electrical behavior of the components being investigated is of fundamental importance.
Manuscript received MAY 8, 1998. A. Alvarez Melco´n and J. R. Mosig are with the Electromagnetics and Acoustics Laboratory, Swiss Federal Institute of Technology, Ecole Polytechnique Fe´de´rale de Lausanne, CH-1015 Lausanne, Switzerland. M. Guglielmi is with the European Space Research and Technology Center, 2200AG Noordwijk, The Netherlands. Publisher Item Identifier S 0018-9480(99)05309-0.
(2)
Furthermore, in a practical circuit, there are always a number