课件三角形的角平分线和中线
合集下载
高考数学二轮复习三角形中的中线、高线、角平分线问题ppt课件

培优提能5
三角形中的中线、高线、
角平分线问题
一、中线
2
2
2
2
1.中线长定理:在△ABC 中,AD 是边 BC 上的中线,则 AB +AC =2(BD +AD )
推导过程:在△ABD 中,cos B=
在△ABC 中,cos B=
+ -
+ -
·
·
,求 c.
解:(2)设 BC 边上的高为 h,由三角形的面积公式得 S△ABC= ah= ×
bcsin A=×5c×sin=
c,所以
a=
c,即 a=
a=
c,
由余弦定理得 a2=25+c2-5c,
将 a=
c 代入上式得 c2+16c-80=0,解得 c=4 或-20(舍去),所以 c=4.
→
→ → →
+ +||·||·cos∠ADB,解得
cos∠ADB=.
三角形的角平分线性质定理将分对边所成的线段比转化为对应的两边之比,
再结合共线定理的推论,就可以转化为向量.一般地,涉及三角形中“定比”
类问题,运用向量知识解决起来都较为简捷.
触类旁通2 如图,在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=3,c=6,
→
→
→
→
→
两边平方得 4 = + +2·,
2
2
2
三角形中的中线、高线、
角平分线问题
一、中线
2
2
2
2
1.中线长定理:在△ABC 中,AD 是边 BC 上的中线,则 AB +AC =2(BD +AD )
推导过程:在△ABD 中,cos B=
在△ABC 中,cos B=
+ -
+ -
·
·
,求 c.
解:(2)设 BC 边上的高为 h,由三角形的面积公式得 S△ABC= ah= ×
bcsin A=×5c×sin=
c,所以
a=
c,即 a=
a=
c,
由余弦定理得 a2=25+c2-5c,
将 a=
c 代入上式得 c2+16c-80=0,解得 c=4 或-20(舍去),所以 c=4.
→
→ → →
+ +||·||·cos∠ADB,解得
cos∠ADB=.
三角形的角平分线性质定理将分对边所成的线段比转化为对应的两边之比,
再结合共线定理的推论,就可以转化为向量.一般地,涉及三角形中“定比”
类问题,运用向量知识解决起来都较为简捷.
触类旁通2 如图,在△ABC中,内角A,B,C的对边分别为a,b,c.已知b=3,c=6,
→
→
→
→
→
两边平方得 4 = + +2·,
2
2
2
第十一章课件第二课时三角形的高、中线与角平分线

A F
D
B
E
C
O
高 条数
锐角三角形
3
直角三角形 3
钝角三角形 3
夹钝角两边上的高在 三角形外部,另一条 高在内部 ①在相应顶点的对边 的延长线上 ②在钝角的对边上 在三角形外部
P
直角边上的高分别与 另一条直角边重合, 位置 都在三角形内部 还有一条高在三角形 内部
垂足 交点
在相应顶点的 对边上 在三角形内部 A
解: ∵ AE是BC边上的角平分线,
且∠BAC=82°
∴ ∠EAC=
∵ AD是△ABC的高, ∴ ∠ADC=90°
1 ∠BAC=41° 2
∵ ∠DAC+ ∠ADC+ ∠C =180°
∴ ∠DAC=180°-∠ADC-∠C =180°-90°-40° =50° ∴ ∠DAE=∠DAC-∠C=50°-41°=9°
A
D B
●
BD 斜边AC边上的高是_________.
(2)它们有怎样的位置关系?
C
直角三角形的三条高交于直角顶点.
3、钝角三角形三条高的画法
钝角三角形的三条高 (1) 钝角三角形的三条高交于一点吗?
(2) 它们所在的直线交于一点吗?
钝角三角形的三条高不 相交于一点. 钝角三角形的三条高 所在的直线交于一点.
●
A
∵AD是 △ ABC的角平分线 ︶ ● ∴∠BAD = ∠CAD = 1∠BAC 2 B D
1 2
C
三角形的角平分线与角的平分线有 什么区别?
三角形的角平分线是一条线段, 角的平分线是一条射线.
如图,在△ABC,∠A=75° ∠B=45°,则∠ACD=_______
在Δ ABC中,AE是中线,AD是角平分线,AF是高.
D
B
E
C
O
高 条数
锐角三角形
3
直角三角形 3
钝角三角形 3
夹钝角两边上的高在 三角形外部,另一条 高在内部 ①在相应顶点的对边 的延长线上 ②在钝角的对边上 在三角形外部
P
直角边上的高分别与 另一条直角边重合, 位置 都在三角形内部 还有一条高在三角形 内部
垂足 交点
在相应顶点的 对边上 在三角形内部 A
解: ∵ AE是BC边上的角平分线,
且∠BAC=82°
∴ ∠EAC=
∵ AD是△ABC的高, ∴ ∠ADC=90°
1 ∠BAC=41° 2
∵ ∠DAC+ ∠ADC+ ∠C =180°
∴ ∠DAC=180°-∠ADC-∠C =180°-90°-40° =50° ∴ ∠DAE=∠DAC-∠C=50°-41°=9°
A
D B
●
BD 斜边AC边上的高是_________.
(2)它们有怎样的位置关系?
C
直角三角形的三条高交于直角顶点.
3、钝角三角形三条高的画法
钝角三角形的三条高 (1) 钝角三角形的三条高交于一点吗?
(2) 它们所在的直线交于一点吗?
钝角三角形的三条高不 相交于一点. 钝角三角形的三条高 所在的直线交于一点.
●
A
∵AD是 △ ABC的角平分线 ︶ ● ∴∠BAD = ∠CAD = 1∠BAC 2 B D
1 2
C
三角形的角平分线与角的平分线有 什么区别?
三角形的角平分线是一条线段, 角的平分线是一条射线.
如图,在△ABC,∠A=75° ∠B=45°,则∠ACD=_______
在Δ ABC中,AE是中线,AD是角平分线,AF是高.
三角形的角平分线和中线-PPT课件

OBC OCB 1 (1800 800 ) 500 ,BOC 1300
2
3
任意画一个三角形,用刻度尺画BC的中 A 点D,连接AD。
在三角形中,连结一个顶 点与它对边中点的线段, 叫做三角形的中线。
B
D
C
书写形式:∵AD是△ABC中的BC边上的中线。 ∴BD=CD
特别提醒:(1)三角形的中线是一条线段;(2)三角
形的中线的一端平分这条边。
4
Байду номын сангаас
操作归纳:
任意画一个三角形, 然后利用刻度尺画 出这个三角形的三 条中线,你有什么 发现?
三角形的三条中线相交于一点,交点在三角形内部。
5
巩固提升:
A
1.如图,AF是ΔABC的角平分线,AE是BC边
上的中线,选择“>”“<”或“=”号填空:
(1)BE_=__EC
(2)∠CAF_=__
点, CF C,D如果 ACB 7,0那么下列说法中错误的
是( B) A.CF 平分 ACE B.B、 55 C.1 4 90
D.3 4 55
5.如图,E、 F、G 分别是 AB 、BC AC 边上的中点,则
S SABC __4___ SBEF ___4_____ FGC
9
大家有疑问的,可以询问和交流
形,这两个小三角形的周长的差是2cm。你能求出AB的长吗?
解 ABD的周长 AB AD BD
A
ACD的周长 AC AD DC
AD是中线 BD DC,两三角形
的周长差为: AB AC 2, AB 7
B
C D
7
课堂巩固:
1. 如图,在 ABC 中,若 BD平分 ABC
则下列说法中不正确的是( D )
三角形的高、中线与角平分线(ppt课件)

复习提问
1.什么叫线段的中点?
把一条线段分成两条相等的线段的点叫线段的中点
A
B
2.什么叫角平分线?
一条射线把一个角分成两个相等的角,这条射线叫做
这个角的平分线
B
O
A
复习提问 3.你还记得“过一点画已知直线的垂线”吗?
放、靠、过、画.
01
01
01
23
23
23
0
1 0 2 1 03 21 3 2
3
探究新知
B
C
探究新知
3.钝角三角形的三条高
(1)你能画出钝角三角形的三条高吗?
AF
(2)AC边上的高是__B_F__; BC边上的高是__A__D_;
DB
C
AB边上的高是__C_E__;
E
(3)钝角三角形的三条高交于一点吗?
钝角三角形的三条高不相交于一点.
O
(4)它们所在的直线交于一点吗?
钝角三角形的三条高所在直线交于一点.
三角形的中线
B
D
C
定义:连接三角形的一个顶点和它所对的边的中 点,所得线段叫做三角形的这条边上的中线.
三角形中线的符号语言:
∵AD是△ABC的中线
∴BD=CD =12 BC
探究新知
思考2.如图,在△ABC中,还能画出几条中 线呢?你发现了什么特征?
还能画出2条,3条中线交于一点.
B
重心:三角形的三条中线相交于一点,三 角形三条中线的交点叫做三角形的重心.
重心
A
O C
D
探究新知
1.如图,有一块三角形的菜地,现要求分成面积比为1:1:2
三块,且图中A处是三块菜地的共同水源处,应该怎么分?
三角形的中线、角平分线(课件)

4.1.3 三角形的中线、角平分线
北师大版 七年级下
新知导入
1.有 两边 相等的三角形叫等腰三角形。 有三边都相等的三角形是 等边 三角形,也叫正三角形。 2. 三角形 两边之和大于第三边。
三角形两边之差小于第三边。 第三边大于两边之 差 ,小于两边之 和 。
新知导入
如图,用铅笔可以支起一张均匀的三角形卡片.你知道怎样确定 这个点的位置吗?
课堂练习
4.下列说法中正确的是( A ) A.三角形的角平分线和中线都是线段 B.三角形的角平分线和中线都是射线 C.三角形的角平分线是射线,而中线是线段 D.三角形的角平分线是线段,而中线是射线
课堂练习
5.如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A= 52°,则∠1+∠2的度数为__6__4_°___.
2
反之:
∵BE=CE (BE= 1 BC)
2
∴AE 是△ABC的中线
思考:已知E 是BC 的中点, △ABD与 △ACD的面积相等吗?
SABE SACE
新知讲解
【议一议】 (1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎 样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
新知讲解
新知讲解
【画一画】 在纸上画出一个锐角三角形 连接一个顶点与它对边的中点
这条线段叫什么?
新知讲解
在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形
三的角中形线的。中线还 如有图什,么A特E 点是呢△A?BC 的 BC 边上的中线.
A
B
E
C
BE=EC
符号语言:
∵AE 是△ABC的中线 ∴BE =CE = 1 BC
北师大版 七年级下
新知导入
1.有 两边 相等的三角形叫等腰三角形。 有三边都相等的三角形是 等边 三角形,也叫正三角形。 2. 三角形 两边之和大于第三边。
三角形两边之差小于第三边。 第三边大于两边之 差 ,小于两边之 和 。
新知导入
如图,用铅笔可以支起一张均匀的三角形卡片.你知道怎样确定 这个点的位置吗?
课堂练习
4.下列说法中正确的是( A ) A.三角形的角平分线和中线都是线段 B.三角形的角平分线和中线都是射线 C.三角形的角平分线是射线,而中线是线段 D.三角形的角平分线是线段,而中线是射线
课堂练习
5.如图,在△ABC中,BD和CE是△ABC的两条角平分线,若∠A= 52°,则∠1+∠2的度数为__6__4_°___.
2
反之:
∵BE=CE (BE= 1 BC)
2
∴AE 是△ABC的中线
思考:已知E 是BC 的中点, △ABD与 △ACD的面积相等吗?
SABE SACE
新知讲解
【议一议】 (1)在纸上画出一个锐角三角形,并画出它的三条中线,它们有怎 样的位置关系?与同伴进行交流.
锐角三角形的三条中线交于一点.
新知讲解
新知讲解
【画一画】 在纸上画出一个锐角三角形 连接一个顶点与它对边的中点
这条线段叫什么?
新知讲解
在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形
三的角中形线的。中线还 如有图什,么A特E 点是呢△A?BC 的 BC 边上的中线.
A
B
E
C
BE=EC
符号语言:
∵AE 是△ABC的中线 ∴BE =CE = 1 BC
《三角形的角平分线中线和高》课件

《三角形的角平分线中线和高》课 件
汇报人: 日期:
目录
• 三角形基础知识回顾 • 三角形的角平分线 • 三角形的中线 • 三角形的高 • 角平分线、中线、高的综合应用 • 总结与练习
01 三角形基础知识回顾
三角形的定义和分类
定义
三角形是由三条不在同一直线上的线段首尾顺次连接组成的图形。
分类
根据边的长度关系,三角形可分为等边三角形、等腰三角形和普通三角形;根 据角的大小关系,三角形可分为锐角三角形、直角三角形和钝角三角形。
03 三角形的中线
中线的定义
要点一
定义
三角形中,连接一个顶点和它所对边的中点的线段叫 做三角形的中线。
要点二
说明
中线是三角形内的一条重要线段,它将三角形划分为 两个等面积的部分。
中线的性质
性质1
三角形的三条中线交于一点,该 点称为三角形的重心。
性质2
重心将每条中线分为1:2两段, 即重心到顶点的距离是重心到对
02 三角形的角平分线
角平分线的定义
定义
三角形的角平分线是指从三角形的一个顶点出发,将该角平 分为两个相等的小角的射线。
性质
三角形的三条角平分线交于一点,该点称为三角形的内心。
角平分线的性质
性质1
角平分线将三角形分为两个面 积相等的部分。
性质2
三角形三个内角的角平分线交于一 点,这一点到三角形三边的距离相 等。
三角形的性质和特点。
与三角形其他元素的关系
角平分线与中线的关系
角平分线和中线在三角形内部交于一点,称为三角形的内 心。内心到三角形三边的距离相等,这个性质在解决一些 几何问题时很有用。
角平分线与高的关系
角平分线与对应边上的高线在三角形内部相交,交点与对 应顶点连线将三角形划分为两个等面积、等周长的部分。
汇报人: 日期:
目录
• 三角形基础知识回顾 • 三角形的角平分线 • 三角形的中线 • 三角形的高 • 角平分线、中线、高的综合应用 • 总结与练习
01 三角形基础知识回顾
三角形的定义和分类
定义
三角形是由三条不在同一直线上的线段首尾顺次连接组成的图形。
分类
根据边的长度关系,三角形可分为等边三角形、等腰三角形和普通三角形;根 据角的大小关系,三角形可分为锐角三角形、直角三角形和钝角三角形。
03 三角形的中线
中线的定义
要点一
定义
三角形中,连接一个顶点和它所对边的中点的线段叫 做三角形的中线。
要点二
说明
中线是三角形内的一条重要线段,它将三角形划分为 两个等面积的部分。
中线的性质
性质1
三角形的三条中线交于一点,该 点称为三角形的重心。
性质2
重心将每条中线分为1:2两段, 即重心到顶点的距离是重心到对
02 三角形的角平分线
角平分线的定义
定义
三角形的角平分线是指从三角形的一个顶点出发,将该角平 分为两个相等的小角的射线。
性质
三角形的三条角平分线交于一点,该点称为三角形的内心。
角平分线的性质
性质1
角平分线将三角形分为两个面 积相等的部分。
性质2
三角形三个内角的角平分线交于一 点,这一点到三角形三边的距离相 等。
三角形的性质和特点。
与三角形其他元素的关系
角平分线与中线的关系
角平分线和中线在三角形内部交于一点,称为三角形的内 心。内心到三角形三边的距离相等,这个性质在解决一些 几何问题时很有用。
角平分线与高的关系
角平分线与对应边上的高线在三角形内部相交,交点与对 应顶点连线将三角形划分为两个等面积、等周长的部分。
解三角形之中线、角平分线、高线问题+课件-高2025届高三数学一轮复习

【例 2】已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,且△ABC 的面积为
( +
- )
.
(1)求∠ACB;
(2)若∠A= ,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求 cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3
1
1
1
:
:
sin A sin B sin C
2、求高一般采用等面积法,即求某边上的高,需要求出面积和底边长度
高线两个作用:(1)产生直角三角形;(2)与三角形的面积相关。
例题讲解
三角形的中线问题
【例 1】在 ABC 中, AD 是 BC 边的中线,
, BAC 120 且 AB AC
知识梳理
知识梳理
3、等面积法:
因为
所以
+
∆
+
=
∆
=2
1
1
,所以2 ∙
∆
2
整理的:
2
=
+2 ∙
2
2
+
2
(角平分线长公式)
【作用】
: ①利用角度关系建立各三角形之间的面积关系
②通过面积关系式求解角分线长度
1
=2
,
知识梳理
三、垂线
1 1 1
a b c
1、 h1,h2,h3 分别为 ABC 边 a,b,c 上的高,则 h1 : h2 : h3 : :
+ -
=
= ,
C,
例题讲解
三角形的高线问题
【例3】在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin B-sin C)2=sin2A-sin Bsin C.
( +
- )
.
(1)求∠ACB;
(2)若∠A= ,∠ACB 的平分线 CE 与边 AB 相交于点 E,延长 CE 至点 D,使得 CE=DE,求 cos∠ADB.
解:(2)不妨令 AC=3,因为∠ACB= ,可得 AB=3
1
1
1
:
:
sin A sin B sin C
2、求高一般采用等面积法,即求某边上的高,需要求出面积和底边长度
高线两个作用:(1)产生直角三角形;(2)与三角形的面积相关。
例题讲解
三角形的中线问题
【例 1】在 ABC 中, AD 是 BC 边的中线,
, BAC 120 且 AB AC
知识梳理
知识梳理
3、等面积法:
因为
所以
+
∆
+
=
∆
=2
1
1
,所以2 ∙
∆
2
整理的:
2
=
+2 ∙
2
2
+
2
(角平分线长公式)
【作用】
: ①利用角度关系建立各三角形之间的面积关系
②通过面积关系式求解角分线长度
1
=2
,
知识梳理
三、垂线
1 1 1
a b c
1、 h1,h2,h3 分别为 ABC 边 a,b,c 上的高,则 h1 : h2 : h3 : :
+ -
=
= ,
C,
例题讲解
三角形的高线问题
【例3】在△ABC中,内角A,B,C的对边分别为a,b,c,且(sin B-sin C)2=sin2A-sin Bsin C.
北师大版数学七年级下册第3课时三角形的中线、角平分线课件(17张P)

位置关系?
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
A 用量角器画最简便,用圆规也能.
在一张纸上画出一个 一个三角形并剪下,将它 的一个角对折,使其两边 B 重合.
折痕 AD 即为∠BAC 的 平分线.
A
D
C
C
D
B
归纳总结 三角形角平分线的特征
三角形的三条角平分线交于同一点.
典例精析
例3 如图,在△ABC 中,∠BAC = 68°,∠B = 36°, AD 是△ABC 的一条角平分线,求∠ADB 的度数.
七年级下册数学(北师版)
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
情景导入
如图,用铅笔可以支起一张均匀的三角形卡片. 你知道怎样确定这个点的位置吗?
探究新知
1 三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线.
如图,AE 是 △ABC 的 BC B
∠C = 60°,求∠BAE 和∠AEB 的度数. C
解:因为 AE 是△ABC 的角平分线,
所以∠CAE
=∠BAE
=
1 2
∠BAC.
E
因为∠BAC +∠B +∠C = 180°,
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.
解析:因为 CE 是△ACD 的中线, 所以 S△AEC = S△EDC = 12S△ADC, 即 S△ADC = 6 cm2. 又因为 AD 是△ABC 的中线,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)任意画一个三角形,然后利用刻度尺画出 这个三角形的三条中线,你会发现什么?
整理ppt
3
例1:
如图,AE是在△ABC的角平分线。已知∠B=45°, ∠C=60°,求下列角的大小: (1)∠BAE (2)∠AEB
C E
A
B
整理ppt
4
例2:如图,已知:△ABC中,BD、CE分别是 △ABC的两条角平分线,相交于点O。
A
A
B
C D
AB > AC
B
D
C
AB < AC
整理ppt
6
说一说
与你同桌交流一下,然后请说一说,你本节课 学习了些什么?
整理ppt
7
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
1.2 三角形的角平分线和中线
整理ppt
1
读一读
在三角形中,一个内角的角平分
A
线与它的对边相交,这个角的顶
点与交点之间的线段叫做三角形 B
D
C
的角平分线。
在三角形中,连结一个顶点
A
与它对边中点的线段叫做这
个三角形的中线。
整理ppt
B
D
C
2
做一做:
(1)任意画一个三角形,然后利用量角器画出 这个三角形的三条角平分线,你会发现什么?
(1)当∠ABC=60O,∠ACB=80O时,求∠BOC的度数
A
(2)当∠A=40O时,求∠BOC的度数
EOD
(3)当∠A数式表示)
整理ppt
5
例3:已知△ABC中,AC=5cm。中线AD把△ABC分 成两个小三角形,这两个小三角形的周长的差是 2cm。你能求出AB的长吗?
整理ppt
3
例1:
如图,AE是在△ABC的角平分线。已知∠B=45°, ∠C=60°,求下列角的大小: (1)∠BAE (2)∠AEB
C E
A
B
整理ppt
4
例2:如图,已知:△ABC中,BD、CE分别是 △ABC的两条角平分线,相交于点O。
A
A
B
C D
AB > AC
B
D
C
AB < AC
整理ppt
6
说一说
与你同桌交流一下,然后请说一说,你本节课 学习了些什么?
整理ppt
7
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
1.2 三角形的角平分线和中线
整理ppt
1
读一读
在三角形中,一个内角的角平分
A
线与它的对边相交,这个角的顶
点与交点之间的线段叫做三角形 B
D
C
的角平分线。
在三角形中,连结一个顶点
A
与它对边中点的线段叫做这
个三角形的中线。
整理ppt
B
D
C
2
做一做:
(1)任意画一个三角形,然后利用量角器画出 这个三角形的三条角平分线,你会发现什么?
(1)当∠ABC=60O,∠ACB=80O时,求∠BOC的度数
A
(2)当∠A=40O时,求∠BOC的度数
EOD
(3)当∠A数式表示)
整理ppt
5
例3:已知△ABC中,AC=5cm。中线AD把△ABC分 成两个小三角形,这两个小三角形的周长的差是 2cm。你能求出AB的长吗?