2020大数据分析的六大工具介绍
熟悉常见的数据分析工具与平台

熟悉常见的数据分析工具与平台随着“大数据”时代的到来,数据分析工具和平台变得越来越重要。
它们可以帮助我们快速处理和分析大量的数据,从而得出有意义和有效的结论。
本文将介绍一些常见的数据分析工具和平台,以帮助更多人了解并利用这些工具来更好地分析数据。
一、ExcelExcel是最基础和常见的数据分析工具之一。
它可以用于数据管理、预测、数学计算和可视化等方面。
Excel可以将数据直接导入图表,方便快捷地对数据进行分析和可视化。
此外,Excel也可以通过自定义宏功能和插件来扩展其能力,例如,使用Excel VBA编程可创建复杂的定制化功能。
二、R语言R语言是一种广泛应用于统计学和数据分析的开源编程语言。
它具有丰富的数据处理和统计计算功能,如线性回归、聚类分析、决策树等。
R语言可用于数据可视化和报告生成,提供了大量的R包,几乎可以完成任何数据分析任务。
与其他主要编程语言相比,R语言更易学,具有快速、高效和灵活的分析能力。
三、PythonPython是另一种广泛应用于数据科学的编程语言,它可以很好地完成数据管理、分析、可视化和模型构建等任务。
Python有许多有用的库和框架,如NumPy、SciPy、Pandas、Matplotlib等,可以大大简化数据处理和模型构建的任务。
例如,Pandas库是一个常用的数据分析库,为数据处理和分析提供了大量的功能,可用于数据操作、可视化、建模等多个方面。
四、TableauTableau是一个常用的商业化的数据分析和可视化平台。
它提供了易于使用和直观的数据可视化工具,可帮助用户发现数据中的有用结论。
Tableau支持多种类型的数据连接,可从不同来源(例如SQL Server、Excel、CSV等)导入数据,更可通过链接在线数据源来获得实时数据。
Tableau还提供了多种分析和可视化方法,如交互式可视化、地图视图和大屏幕监控等。
五、Power BIPower BI是微软推出的一款商业智能平台。
常用的数据分析工具有哪些

常用的数据分析工具有哪些数据分析是现代社会十分重要的一项技能,随着数据量的不断增加和各种数据源的出现,数据分析工具也呈现了多样化的发展趋势。
本文将介绍一些常用的数据分析工具,帮助读者选择适合自己的工具进行数据分析。
1. ExcelExcel是一个广泛应用的电子表格软件,凭借其强大的功能和易用性,成为了数据分析的首选工具之一。
它提供了各种功能,如数据排序、筛选、透视表、图表等,可以方便地对数据进行整理、分析和可视化。
2. PythonPython是一种脚本语言,通过其丰富的数据分析库和工具,如NumPy、Pandas、Matplotlib等,可以进行高效的数据处理和分析工作。
Python具有简洁的语法,易于学习和使用,同时拥有庞大的社区支持和丰富的资源库,成为了众多数据分析从业者的首选工具。
3. RR是一种专门用于统计分析和数据可视化的编程语言。
它拥有丰富的统计分析方法和包,如ggplot2、dplyr、tidyr等,可以进行复杂的数据分析和建模工作。
R 具有良好的可扩展性和交互性,可以进行交互式数据分析,并通过可视化呈现分析结果。
4. SQLSQL(Structured Query Language)是一种用于管理和操作关系型数据库的语言。
通过SQL语句,可以对数据库中的数据进行增删改查操作,并进行复杂的数据分析。
SQL灵活易用,并且被广泛应用于各种业务场景中。
5. TableauTableau是一种流行的可视化工具,可以将数据转化为可视化图表和仪表盘,帮助分析人员更直观地理解数据。
Tableau支持多种数据源和数据格式,并提供了丰富的图表和交互功能,可以创建出高度自定义的数据可视化。
6. Power BIPower BI是微软推出的一套商业智能工具,可以对数据进行整理、建模和可视化。
它具有强大的数据处理能力和丰富的数据可视化选项,支持与其他微软产品的无缝连接,并提供了云端分享和协作的功能。
Power BI适用于各种规模的数据分析项目。
大数据分析的10种常见工具

大数据分析的10种常见工具近年来,大数据已成为全球互联网和信息技术的一个热门话题。
作为一种宝贵的资源,数据可以帮助企业做出更明智的决策和市场分析。
在大数据时代,分析大量的数据是至关重要的,但是这种工作不可能手工完成。
因此,人们需要运用一些专业的工具来进行大数据分析的工作。
本篇文章将介绍10种常见的大数据分析工具。
一、HadoopHadoop是目前最流行的大数据框架之一。
它可以快速处理大量的数据,而且具有良好的可扩展性和容错性。
Hadoop分为两部分:Hadoop分布式文件系统(HDFS)和MapReduce框架。
HDFS用于存储大量的数据,而MapReduce框架则用于处理这些数据。
同时,Hadoop也可以集成不同的工具和应用程序,为数据科学家提供更多的选择。
二、SparkSpark是一种快速的分布式计算框架,可以处理大规模的数据,而且在数据处理速度上比Hadoop更加快速。
Spark还支持不同类型的数据,包括图形、机器学习和流式数据。
同时,Spark还具有丰富的API和工具,适合不同级别的用户。
三、TableauTableau是一种可视化工具,可以快速创建交互式的数据可视化图表和仪表盘。
该工具不需要编程知识,只需要简单的拖放功能即可创建漂亮的报表。
它还支持对数据的联合查询和分析,帮助用户更好地理解大量的数据。
四、SplunkSplunk是一种可扩展的大数据分析平台,可以帮助企业监视、分析和可视化不同来源的数据。
它通过收集日志文件和可视化数据等方式,帮助企业实时监控其业务运营状况和用户行为。
Splunk还支持触发警报和报告等功能,为用户提供更好的数据驱动决策方案。
五、RapidMinerRapidMiner是一种数据分析工具,可以支持数据挖掘、文本挖掘、机器学习等多种数据处理方式。
快速而且易于使用,RapidMiner可以快速分析和处理不同种类的数据。
该工具还提供了大量的模块和工具,为数据科学家提供更多的选择。
大数据分析的十个工具

大数据分析的十个工具在如今数字化的时代,数据变得越来越重要了。
数据不仅仅是一组数字,它代表了事实和现实生活中的情况。
但是,处理数据变得越来越困难。
若要快速高效地处理数据,需要工具的帮助。
本文将介绍大数据分析的十个工具。
1. HadoopHadoop是Apache Hadoop生态系统的核心项目,基于Java编写,主要用于存储和处理大数据集。
Hadoop可以处理来自无数来源的大数据集,包括文本、图形数据和孪生数据等。
2. Apache SparkApache Spark是一个高速的大规模数据处理引擎,它使用内存计算而不是磁盘计算,以显著提高处理速度和效率。
Spark支持多种语言,如Java,Scala和Python等。
3. Apache StormApache Storm是一个分布式流处理引擎,可用于处理数据流以及将数据流分析成有价值的信息。
它主要用于实时数据流处理,并且可扩展性非常好。
4. ElasticsearchElasticsearch是一个分布式搜索和分析引擎,可用于处理大量的非结构化和结构化数据。
Elasticsearch还提供了一些丰富的API,使开发人员能够更轻松地使用和管理数据。
5. TableauTableau是一个可视化工具,可用于创建数据可视化和分析。
该工具提供了丰富的功能和工具,可用于从各种数据源中获取数据,并将其视觉化展示给用户。
6. IBM Watson AnalyticsIBM Watson Analytics是一个智能分析工具,可用于透彻了解数据并提供见解。
该工具使用自然语言处理技术,使分析过程更加人性化和智能。
7. PigApache Pig是一种用于分析大型数据集的脚本语言。
它可以与Hadoop一起使用,支持广泛使用的语言和库。
8. Apache CassandraApache Cassandra是一个主要用于处理分布式的非结构化数据的开源NoSQL数据库。
Cassandra具有高可用性和可扩展性,可以为大型分布式数据存储提供高效的解决方案。
30款常用的大数据分析工具推荐(最新)

30款常⽤的⼤数据分析⼯具推荐(最新)⽬录Part 1:数据采集⼯具Part 2:开源数据⼯具Part 3:数据可视化Part 4:情感分析Part 5:开源数据库Part 1:数据采集⼯具1 .⼋⽖鱼⼋⽖鱼是⼀款免费的、简单直观的⽹页爬⾍⼯具,⽆需编码即可从许多⽹站抓取数据。
⽆论你是初学者还是经验丰富的技术⼈员或企业⾼管,它都可以满⾜你的需求。
为了减少使⽤上的难度,⼋⽖鱼为初学者准备了“⽹站简易模板”,涵盖市⾯上多数主流⽹站。
使⽤简易模板,⽤户⽆需进⾏任务配置即可采集数据。
简易模板为采集⼩⽩建⽴了⾃信,接下来还可以开始⽤“⾼级模式”,它可以帮助你在⼏分钟内抓取到海量数据。
此外,你还可以设置定时云采集,实时获取动态数据并定时导出数据到数据库或任意第三⽅平台。
2. Content GrabberContent Grabber是⼀个⽀持智能抓取的⽹页爬⾍软件。
它的程序运⾏环境可⽤在开发、测试和产品服务器上。
你可以使⽤c#或来调试或编写脚本来控制爬⾍程序。
它还⽀持在爬⾍⼯具上添加第三⽅扩展插件。
凭借其全⾯综合的功能,Content Grabber对于具有技术基础的⽤户⽽⾔功能极其强⼤。
3.Import.ioImport.io是⼀款基于⽹页的数据抓取⼯具。
它于2012年⾸次在伦敦上线。
现在,Import.io将其商业模式从B2C转向了B2B。
2019年,Import.io收购了Connotate并成为⽹页数据集成平台。
凭借⼴泛的⽹页数据服务,Import.io成为了业务分析的绝佳选择。
4. ParsehubParsehub是⼀款基于⽹页的爬⾍程序。
它⽀持采集使⽤了AJax, JavaScripts技术的⽹页数据,也⽀持采集需要登录的⽹页数据。
它有⼀个为期⼀周的免费试⽤窗⼝,供⽤户体验其功能5. MozendaMozenda是⼀款⽹页抓取软件,它还为商业级数据抓取提供定制服务。
它可以从云上和本地软件中抓取数据并进⾏数据托管。
数据分析必备|你不得不知道的11款数据分析工具

详细介绍
数说立方
数说立方是数说故事新推出的一款面向数据分析师的在线商业智能产品。
最重要的特点是配备百亿级社交数据库,同时支持全网公开数据实时抓取,从数据源端解决分析师难点;另外数说立方搭载了分布式搜索、语义分析、数据可视化三大引擎系统的海量计算平台,实现数据处理“探索式
分析”和“秒级响应”的两个核心功能。
同时数说立方是数说故事三大主打产品之一,并与其他两大产品数说聚合和数说雷达实现从数据源、数据分析、到数据展示完整的数据解决方案。
优点:
即便是个人免费版,体验和功能仍然非常好;
与自家产品“数说聚合”的无缝接入,支持定向抓取微信、微博等数据;
功能完善,集数据处理、特征工程、建模、文本挖掘为一体的机器学习平台;
可视化视图展现、友好的客户感知页面;
支持SAAS,私有化部署,有权限管理;
缺点:
产品新上市,操作指导页不太完善;
体验过程中有一些小bug;
神策分析的产品有完整的使用文档,每个模块都有详细的使用说明以及示例,降低了用户的学习成本。
而且支持私有部署、任意维度的交叉分析,并帮助客户搭建专属的数据仓库。
目前提供事件分析、漏斗分析、留存分析、数据管理等功能,未来预计会增加用户分群、用户人群分析、推送和异常维度组合挖掘等
数据观的功能设计理念是极简、无门槛,所以它最大的特点就是简单。
数据观数据来自云端,如:网盘、微盘、salesforce等。
数据上传后,马上有推荐图表,引导明确。
另外产品的使用没有
个工具各有优点,工具地址都给大家了,接下来就是轮到你动手的时候了,找一个自己喜欢的工具,开始吧!
人人都是产品经理()中国最大最活跃的产品经理学习、交流、分享平台。
8种绝对精准的数据分析技巧和工具
8种绝对精准的数据分析技巧和工具数据分析在现代商业领域中扮演着至关重要的角色。
它可以帮助企业从大量的数据中提取有用的信息,并作出明智的决策。
以下是8种绝对精准的数据分析技巧和工具,帮助您在数据分析任务中取得成功。
1. 数据清洗数据清洗是数据分析的第一步,用于去除数据集中的噪声、错误和冗余数据。
它可以提高数据质量,确保分析结果可靠和准确。
常用的数据清洗工具包括Python中的Pandas库和R语言中的dplyr 包。
2. 数据可视化数据可视化通过图表、图形和仪表板展示数据,使数据分析结果更加易于理解和解释。
常用的数据可视化工具包括Tableau、Power BI和Python中的Matplotlib库和Seaborn库。
3. 描述性统计描述性统计用于对数据集的基本特征和趋势进行描述。
它可以帮助我们理解数据的分布、中心位置和变异程度。
常用的描述性统计工具包括Python中的NumPy库和R语言中的summary函数。
4. 预测建模预测建模通过构建数学模型,预测未来事件或结果。
它可以帮助企业做出准确的预测,并制定相应的策略。
常用的预测建模工具包括Python中的Scikit-learn库和R语言中的caret包。
5. 时间序列分析时间序列分析用于分析随时间变化的数据。
它可以帮助我们发现数据的趋势、季节性和周期性。
常用的时间序列分析工具包括Python中的StatsModels库和R语言中的forecast包。
6. 聚类分析聚类分析将相似的数据点聚集到一起,以发现数据的隐藏结构和模式。
它可以帮助我们进行市场细分、客户群体分析和产品分类等。
常用的聚类分析工具包括Python中的Scikit-learn库和R语言中的cluster包。
7. 关联规则挖掘关联规则挖掘用于发现数据中的频繁项集和关联规则。
它可以帮助我们理解数据中的相关性和潜在关系。
常用的关联规则挖掘工具包括Python中的Apriori算法和R语言中的arules包。
大数据分析中的数据采集与清洗自动化工具介绍(十)
在当今数字化时代,大数据分析已成为社会各个领域的重要工具。
无论是企业、政府还是科研机构,都需要利用大数据分析来获取关键信息,以做出更明智的决策。
然而,大数据分析的第一步却是数据的采集与清洗,这一过程往往是十分繁琐和耗时的。
为了解决这一问题,许多自动化工具应运而生。
一、数据采集自动化工具数据采集是大数据分析的第一步,其目的是从多个不同来源收集数据。
在过去,数据采集需要人工操作,费时费力。
现在,有许多自动化工具可以帮助用户轻松地完成这一过程。
1. WebScraperWebScraper是一款基于浏览器的数据采集工具,用户可以通过简单的点击和拖拽操作,即可收集网页上的数据。
它可以自动识别网页的结构,将所需数据提取出来,并保存为Excel、CSV等格式。
不需要编写代码,非常适合初学者使用。
2. OctoparseOctoparse是一款功能强大的网页数据采集工具,支持从各种网站上采集结构化数据。
用户可以通过图形化界面配置采集规则,无需编写复杂的代码。
同时,Octoparse还提供了云端服务,用户可以在云端进行数据自动采集,非常适合需要大规模数据采集的用户。
二、数据清洗自动化工具数据采集完成后,接下来就是数据清洗,即将采集的原始数据进行处理和整理,以便进行后续分析。
数据清洗的过程通常也是十分耗时的,但是有许多自动化工具可以帮助用户简化这一流程。
1. TrifactaTrifacta是一款专业的数据清洗工具,拥有强大的自动化功能。
它能够自动识别数据中的异常值和重复值,并进行智能清洗。
同时,Trifacta还提供了丰富的数据转换和整合功能,用户可以通过简单的拖拽操作完成数据的清洗和整理。
2. OpenRefineOpenRefine是一款开源的数据清洗工具,用户可以通过图形化界面进行数据清洗和整理。
它支持各种数据格式的导入和导出,并且拥有丰富的数据转换和清洗功能。
用户可以通过编写简单的脚本,实现数据的自动化清洗。
15个国外顶级的大数据分析工具
15个国外顶级的大数据分析工具数据分析可以为用户提供对其客户,业务和行业的更深入了解。
有三大类数据分析可提供不同级别的洞察力传统商业智能(BI)可提供传统的周期性数据报告。
自助分析使最终用户能够在IT提供的数据和工具的上下文中构建自己的分析。
嵌入式分析在传统业务应用程序(如HR系统,CRM或ERP)的范围内提供商业智能。
这些分析在用户的正常工作流程中提供上下文敏感的决策支持。
四个方面为自助分析和BI构建坚实的基础•使自助分析计划与组织目标保持一致,并捕捉有关可衡量且成功的用例•让业务用户参与设计,开发和支持自助分析•采用灵活轻松的数据治理方法,数据和分析治理模型要足够灵活并具有可扩展性•通过制定入职计划保障企业自动化和标准化自助分析的业务实施无论你需要什么样的洞察,这里都有15个最好的大数据分析工具,可以帮助你。
15个国外顶级的大数据分析工具1.TableauTableau具有强大的功能和快速的洞察力。
通过连接到许多不同的本地和基于云的数据源,Tableau的直观界面将数据源,准备,探索,分析和演示结合在一个简化的工作流程中。
Tableau的灵活性使其非常适合上面讨论的三种类型的分析。
Tableau Server可以轻松存储周期性报告。
高级用户还可以使用高级自助服务的集成统计和地理空间功能。
最后,Tableau使用JavaScript API和单点登录功能等应用程序集成技术将Tableau分析无缝嵌入到常见的业务应用程序中。
名词解释单点登录(Single Sign On),简称为SSO,是目前比较流行的企业业务整合的解决方案之一。
SSO的定义是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统。
(来自百度百科)2.LookerLooker致力于提供统一的数据环境和集中的数据治理,致力于成为数据分析者的可重用组件。
使用提取/加载/转换(ELT)方法,Looker使用户能够根据需要对数据进行建模和转换。
常用的数据分析工具和软件介绍
常用的数据分析工具和软件介绍数据分析作为一项重要的技术和工具在现代社会中扮演着重要的角色。
它帮助企业和个人深入了解数据、发现趋势、预测未来,从而做出更明智的决策。
在这篇文章中,我们将介绍一些常用的数据分析工具和软件,帮助读者更好地了解和选择适合自己的工具。
1. Microsoft Excel:Microsoft Excel是最为人熟知且广泛使用的数据分析工具之一。
它提供了强大的数据处理和分析功能,包括数据排序、筛选、透视表、图表制作等等。
Excel易于学习和使用,适用于快速的数据分析和基本的统计处理。
2. Python:Python是一种开源的编程语言,拥有丰富的数据分析库和工具,如NumPy、Pandas、Matplotlib等。
Python的可扩展性和灵活性使其成为数据科学家和分析师的首选。
通过编写Python脚本,用户能够进行数据清洗、处理、建模和可视化。
3. R:R是一种专门用于统计分析和数据可视化的编程语言。
它拥有庞大的开源社区和丰富的数据分析包,如ggplot2、dplyr等。
R具备强大的统计模型建立和分析能力,适用于复杂数据分析和统计方法的实施。
4. Tableau:Tableau是一种流行的商业智能和数据可视化工具。
它提供了直观的可视化界面,使用户能够通过简单的拖拽和选择创建交互式的图表和仪表板。
Tableau支持多种数据源,并可以与其他工具集成,是数据分析师、决策者和管理者常用的工具之一。
5. SPSS:SPSS(Statistical Package for the Social Sciences)是一种专业的统计分析软件。
它具备完整的数据处理、建模和报告功能,适用于各种统计方法和数据分析需求。
SPSS界面友好,易于学习和使用,广泛应用于社会科学、市场研究等领域。
6. SAS:SAS(Statistical Analysis System)是一种完整的统计分析软件套件,包括数据处理、统计建模、数据挖掘等多个模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云计算大数据处理分析六大最好工具一、概述来自传感器、购买交易记录、网络日志等的大量数据,通常是万亿或EB的大小,如此庞大的数据,寻找一个合适处理工具非常必要,今天我们为大家分享在大数据处理分析过程中六大最好用的工具。
我们的数据来自各个方面,在面对庞大而复杂的大数据,选择一个合适的处理工具显得很有必要,工欲善其事,必须利其器,一个好的工具不仅可以使我们的工作事半功倍,也可以让我们在竞争日益激烈的云计算时代,挖掘大数据价值,及时调整战略方向。
大数据是一个含义广泛的术语,是指数据集,如此庞大而复杂的,他们需要专门设计的硬件和软件工具进行处理。
该数据集通常是万亿或EB的大小。
这些数据集收集自各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章。
大数据产生的其他例子包括购买交易记录、网络日志、病历、事监控、视频和图像档案、及大型电子商务。
大数据分析是在研究大量的数据的过程中寻找模式,相关性和其他有用的信息,可以帮助企业更好地适应变化,并做出更明智的决策。
二、第一种工具:HadoopHadoop 是一个能够对大量数据进行分布式处理的软件框架。
但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。
Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。
Hadoop 还是可伸缩的,能够处理 PB 级数据。
此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。
用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。
它主要有以下几个优点:●高可靠性。
Hadoop按位存储和处理数据的能力值得人们信赖。
●高扩展性。
Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
●高效性。
Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
●高容错性。
Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
●Hadoop带有用 Java 语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。
Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
三、第二种工具:HPCCHPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。
1993年,由美国科学、工程、技术联邦协调理事会向国会提交了“重大挑战项目:高性能计算与通信”的报告,也就是被称为HPCC计划的报告,即美国总统科学战略项目,其目的是通过加强研究与开发解决一批重要的科学与技术挑战问题。
HPCC是美国实施信息高速公路而上实施的计划,该计划的实施将耗资百亿美元,其主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。
该项目主要由五部分组成:●高性能计算机系统(HPCS),内容包括今后几代计算机系统的研究、系统设计工具、先进的典型系统及原有系统的评价等;●先进软件技术与算法(ASTA),内容有巨大挑战问题的软件支撑、新算法设计、软件分支与工具、计算计算及高性能计算研究中心等;●国家科研与教育网格(NREN),内容有中接站及10亿位级传输的研究与开发;●基本研究与人类资源(BRHR),内容有基础研究、培训、教育及课程教材,被设计通过奖励调查者-开始的,长期的调查在可升级的高性能计算中来增加创新意识流,通过提高教育和高性能的计算训练和通信来加大熟练的和训练有素的人员的联营,和来提供必需的基础架构来支持这些调查和研究活动;●信息基础结构技术和应用(IITA ),目的在于保证美国在先进信息技术开发方面的领先地位。
四、第三种工具:StormStorm是自由的开源软件,一个分布式的、容错的实时计算系统。
Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。
Storm很简单,支持许多种编程语言,使用起来非常有趣。
Storm 由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、乐元素、 Admaster 等等。
Storm有许多应用领域:实时分析、在线机器学习、不停顿的计算、分布式RPC(远过程调用协议,一种通过网络从远程计算机程序上请求服务)、 ETL(Extraction-Transformation-Loading的缩写,即数据抽取、转换和加载)等等。
Storm的处理速度惊人:经测试,每个节点每秒钟可以处理100万个数据元组。
Storm是可扩展、容错,很容易设置和操作。
五、第四种工具:Apache Drill为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。
Apache Drill 实现了 Google's Dremel.据Hadoop厂商MapR Technologies公司产品经理Tomer Shiran介绍,“Drill”已经作为Apache 孵化器项目来运作,将面向全球软件工程师持续推广。
该项目将会创建出开源版本的谷歌Dremel Hadoop工具(谷歌使用该工具来为Hadoop数据分析工具的互联网应用提速)。
而“Drill”将有助于Hadoop用户实现更快查询海量数据集的目的。
“Drill”项目其实也是从谷歌的Dremel项目中获得灵感:该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
通过开发“Drill”Apache开源项目,组织机构将有望建立Drill所属的API接口和灵活强大的体系架构,从而帮助支持广泛的数据源、数据格式和查询语言。
六、第五种工具:RapidMinerRapidMiner是世界领先的数据挖掘解决方案,在一个非常大的程度上有着先进技术。
它数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
功能和特点:●免费提供数据挖掘技术和库●100%用Java代码(可运行在操作系统)●数据挖掘过程简单,强大和直观●内部XML保证了标准化的格式来表示交换数据挖掘过程●可以用简单脚本语言自动进行大规模进程●多层次的数据视图,确保有效和透明的数据●图形用户界面的互动原型●命令行(批处理模式)自动大规模应用●Java API(应用编程接口)●简单的插件和推广机制●强大的可视化引擎,许多尖端的高维数据的可视化建模●400多个数据挖掘运营商支持耶鲁大学已成功地应用在许多不同的应用领域,包括文本挖掘,多媒体挖掘,功能设计,数据流挖掘,集成开发的方法和分布式数据挖掘。
七、第六种工具:Pentaho BIPentaho BI 平台不同于传统的BI 产品,它是一个以流程为中心的,面向解决方案(Solution)的框架。
其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,方便商务智能应用的开发。
它的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项项复杂的、完整的商务智能解决方案。
Pentaho BI 平台,Pentaho Open BI 套件的核心架构和基础,是以流程为中心的,因为其中枢控制器是一个工作流引擎。
工作流引擎使用流程定义来定义在BI 平台上执行的商业智能流程。
流程可以很容易的被定制,也可以添加新的流程。
BI 平台包含组件和报表,用以分析这些流程的性能。
目前,Pentaho的主要组成元素包括报表生成、分析、数据挖掘和工作流管理等等。
这些组件通过 J2EE、WebService、SOAP、HTTP、Java、JavaScript、Portals等技术集成到Pentaho平台中来。
Pentaho的发行,主要以Pentaho SDK的形式进行。
Pentaho SDK共包含五个部分:Pentaho平台、Pentaho示例数据库、可独立运行的Pentaho平台、Pentaho解决方案示例和一个预先配制好的 Pentaho网络服务器。
其中Pentaho平台是Pentaho平台最主要的部分,囊括了Pentaho平台源代码的主体;Pentaho数据库为 Pentaho平台的正常运行提供的数据服务,包括配置信息、Solution相关的信息等等,对于Pentaho平台来说它不是必须的,通过配置是可以用其它数据库服务取代的;可独立运行的Pentaho平台是Pentaho平台的独立运行模式的示例,它演示了如何使Pentaho平台在没有应用服务器支持的情况下独立运行;Pentaho解决方案示例是一个Eclipse工程,用来演示如何为Pentaho平台开发相关的商业智能解决方案。
Pentaho BI 平台构建于服务器,引擎和组件的基础之上。
这些提供了系统的J2EE 服务器,安全,portal,工作流,规则引擎,图表,协作,内容管理,数据集成,分析和建模功能。
这些组件的大部分是基于标准的,可使用其他产品替换之。