K1-L1-9测验卷(1)
高二上学期数学北师大版(2019)期末模拟测试卷B卷(含解析)

高二上学期数学北师大版(2019)期末模拟测试卷B 卷【满分:150分】一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,,,则M 到直线的距离为( )2.已知A ,B 两点的坐标分别为,,两条直线和3.已知圆C :,P 为直线上一点,过点P 作圆C 的两条切线,切点分别为A 和B ,当四边形PACB 的面积最小时,直线AB 的方程为( )A. B. C. D.4.某高中运动会设有8个项目,甲、乙两名学生每人随机选取3个项目,则至少选中2个相同项目的报名情况有()A.420种B.840种C.476种D.896种5.二项式展开式中的系数为( )A.120B.135C.D.6.过抛物线的焦点作直线,与抛物线C 分别交于点A ,B 和点M ,N ,若直线与A.8B.16C.24D.327.克拉丽丝有一枚不对称的硬币.每次掷出后正面向上的概率为,她掷了k 次硬币,最终有10次正面向上.但她没有留意自己一共掷了多少次硬币.设随机变量X 表示每掷N 次硬币中正面向上的次数,现以使最大的N 值估计N 的取值并计算.(若有多个N 使最大,则取其中的最小N 值).下列说法正确的是( )()0,0,0A ()1,1,1B ()1,2,2M -AB ()0,1A ()1,0B 1:10l mx y -+=2:10l x my +-=(m ∈R 222440x y x y +---=:20l x y ++=5530x y ++=5530x y -+=5530x y +-=5530x y --=()()10211x x x ++-5x 140-162-2:8C y x =1l 2l 1l l (01)p p <<(10)P X =()E X (10)P X =A. B.C. D.与10的大小无法确定8.已知椭圆的焦距为2,A 为椭圆的右焦点,过点A 在x 轴上方作两条( )二、选择题:本题共3小题.每小题6分.共18分.在每小题给出的选项中,有多项符合题目要求全部选对的得6分.部分选对的得部分分,有选错的得0分.9.若三条不同的直线,,,能围成一个三角形,则m 的取值不可能为( )A. B. C. D.110.小张等四人去甲、乙、丙三个景点旅游,每人只去一个景点,记事件A 为“恰有两人所去景点相同”,事件B 为“只有小张去甲景点”,则( )A.这四人不同的旅游方案共有64种B.“每个景点都有人去”的方案共有72种11.英国数学家贝叶斯在概率论研究方面成就显著,根据贝叶斯的统计理论,随机事件A ,B 存在如下关系:餐厅就餐的概率分别为0.4,0.6.如果他第一天去甲餐厅,那么第二天去甲餐厅的概率为0.6;如果他第一天去乙餐厅,那么第二天去甲餐厅的概率为0.5.则王同学( )A.第二天去甲餐厅的概率为0.54B.第二天去乙餐厅的概率为0.44()10E X >()10E X <()10E X =()E X 2222:1(0)x y E a b a b +=>>2=1:240l mx y m +++=2:10l x y -+=3:350l x y --=2-6-3-()P AB =∣三、填空题:本题共3小题,每小题5分,共15分.12.已知实数,在的二项展开式中,项的系数是135,则m 的值为___________.13.若直线与曲线只有一个公共点,则实数m 的取值范围是______________.14.已知,,是球M 上三点,球心M 的坐标为,P 是球M 上一动点,则三棱锥的体积的最大值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或者演算步骤.15.(13分)如图,在直三棱柱中,,.(1)求异面直线与所成角的大小;(2)求点B 到平面的距离.16.(15分)已知圆C 经过点、,并且直线平分圆C .(1)求圆C 的方程;(2)过点,且斜率为k 的直线l 与圆C 有两个不同的交点M 、N ,且,求k 的值.17.(15分)从5名男生和3名女生中选出3人,分别求符合下列条件的选法数.(1)男同学甲、女同学乙必须被选出;(2)至少有2名女生被选出;(3)让选出的3人分别担任体育委员、文娱委员等3种不同职务,但体育委员由男生担任,文娱委员由女生担任.18.(17分)已知m ,n 是正整数,的展开式中x 的系数为15.0m >6m x x ⎛⎫+ ⎪⎝⎭2x 0:x y l m ++=:C y =(1,1,1)A (2,0,1)B (1,0,2)C (1,0,1)P ABC -111ABC A B C -BA BC ⊥12BA BC BB ===1AB 11A C 11A B C (1,3)A (2,2)B :320m x y -=(0,1)D 12OM ON ⋅=(1)(1)m n x x +++(1)求展开式中的系数的最小值;(2)已知.19.(17分)已知直线,直线,过动点M 作,,垂足分别为A ,B ,点A 在第一象限,点B 在第四象限,且四边形(O 为原点)的面积为2.(1)求动点M 的轨迹方程;(2)若,过点F 且斜率为k 的直线l 交M 的轨迹于C ,D 两点,线段CD 的垂直平分线分别交x 轴、y 轴于,两点,求的取值范围.2x (23x +b +1:l y x =2:l y x =-1MA l ⊥2MB l ⊥OAMB ()3,0F ()0,0P x ()00,Q y 00x y +答案以及解析1.答案:D解析:由,,,可知,则与同方向的单位向量为,又,,故点M 到直线的距离为.故选:D.2.答案:D 解析:由题意可得直线恒过定点,恒过定点,且两直线的斜率之积为,所以两直线相互垂直,所以点P 在以线段为直径的圆上运动,,设,所以,所以当大值2,此时点P 的坐标为.故选:D.3.答案:A解析:由,得圆C 的圆心,半径.因.故PC 的方程为,即.联立,,解得.所以直线AB 的方程为()0,0,0A ()1,1,1B ()1,2,2M -(1,1,1)AB = AB0AB = ||3AM = 0AM AB ⋅== AB d ===1:10l mx y -+=()0,1A 2:10l x my +-=()1,0B 1-AB AB =ABP θ∠=θθπ2sin 4AP BP θθθ⎛⎫+==+ ⎪⎝⎭θ==()1,1()()22222440129x y x y x y +---=⇒-+-=()1,2C 3r =122AP AC =⨯⋅=PC l ⊥21y x -=-10x y -+=1020x y x y -+=⎧⎨++=⎩x =y =31,22⎛⎫-- ⎪⎝⎭,化简,得.4.答案:D解析:由题意可知,可以分两种情况,第一种情况所选取3个项目恰有2个相同项目,第一步,在8个项目中选取2项,共有种,第二步,甲在剩下的6个项目中选取1项,共有种,第三步,乙在剩下5个项目中选取1项,共有种,由分步乘法计算原理可知,共有种;第二种情况所选取的3个项目有3个相同项目,则有种;由分类加法计数原理可知,总情况一共有种.故选:D 5.答案:D解析:展开式通项为:,令,则展开式中的系数为;令,则展开式中的系数为;令,则展开式中的系数为;展开式中的系数为.故选:D.6.答案:D解析:设直线与的斜率分别为,,则,联立方程组消去y 并整理得,设,,则,当且仅当时,等号成立,所以7.答案:B解析:由题,X 服从二项分布,则,最大即为满足的最小N ,即为28C 28=()()311122922x y ⎛⎫⎛⎫---+---= ⎪ ⎪⎝⎭⎝⎭5530x y ++=16C 6=15C 5=2865840⨯⨯=38C 56=84056896+=()101x -()()11010C 1C rrr rr r T x x +=-=-⋅=5r ()1011x ⨯-5x ()55101C 252-=-4r =()101x x -5x ()44101C 210-=3r =()1021x x -5x ()33101C 120-=-()()10211x x x ∴++-5x 252210120162-+-=-1l 2l 1k 2k 121k k =-()122,8,y k x y x ⎧=-⎨=⎩()22221114240k x k x k -++=()11,A x y ()22,B x y ()211221424k x x k ++==()()12228AB AF BF x x =+=+++=8MN =+212221218811616832AB MN k k k k ⎛⎫+=++=++≥ ⎪⎝⎭22121k k ==AB MN +(,)B N p 101010(10)C (1)N N P X p p -==-(10)P X =101010101091C (1)C (1)N N N N p p p p --+-≥-,又为整数时,的最小整数,而,,答选:B.8.答案:C解析:由焦距为2知,,设直线与E的另外一个交点为D,,显然判别式大于0,或.故选:C.9.答案:ABC解析:由直线,,,若;若;101010101091C(1)1910111C(1)11NNNNp p NNp p p N p--+--≥⇔⋅≥⇔≥---+N+∈N1-10Np=--1-()E X Np=()10E X<⇔N<()10X<(1,0)A221a b-=AB()11,B x y)()222242122a x a x a a--+-=12x x+=12x=))1211x x--=12x x+()121x x+-=242222212121a a aa a-+-=--22= 2a=22=1:240l mx y m+++=2:10l x y-+=3:350l x y--=1l//2=-1//l l6=-若经过直线与的交点时,此时三条直线不能围成一个三角形,联立方程组,解得,,即交点,将点代入直线,可得,解得,故选:ABC.10.答案:CD解析:A 选项,每个人都有3种选择,故共有种旅游方案,A 错误;B 选项,每个景点都有人去,则必有1个景点去了2个人,另外两个景点各去1人,种方案,B 错误;C 选项,恰有两人所去景点相同,即有1个景点去了2个人,另外两个景点各去1人,由B 选项可知,,事件AB ,即小张去甲景点,另外3人有两人去了同一个景点,其余1人去另一个景点,故,所以D 选项,“四个人只去了两个景点”,分为2种情况,第一,有3人去了同一个景点,另外一个去另外一个景点,则有种方案,第二,2人去了同一个景点,另外2人去了另种方案,由A 选项可知,这四人不同的旅游方案共有81种,故11.答案:AC解析:设事件表示“第一天去甲餐厅”,表示“第二天去甲餐厅”,表示“第一天去乙餐厅”,表示“第二天去乙餐厅”,则,,,,所以,所以A 正确.,所以B 不正确.因为,所以,所以1l 2l 3l 10350x y x y -+=⎧⎨--=⎩3x =4y =(3,4)P P 1l 32440m m +⨯++=3m =-4381=33A 36=()36n A =()212312C C A 6n AB ==()()()n AB P B A n A ==312413C C A 24=23A 18==1A 2A 1B 2B ()10.4P A =()10.6P B =()210.6P A A =∣()210.5P A B =∣()()()()()21211210.40.60.60.50.54P A P A P A A P B P A B =+=⨯+⨯=∣∣()()2210.46P B P A =-=()()()()2122110.5P A P B A P A B P B ==∣∣()()2120.50.60.3P A P B A =⨯=∣()()1220.30.30.54P B A P A ===∣故选AC.12.答案:3解析:展开式的通项为(),令,解得,所以项的系数为,又,解得.13.答案:解析:因为曲线,所以曲线C 是以为圆心,3为半径的圆的上半部分,直线的斜率为-1,在y 轴上的截距为,画图如下:由于直线与曲线只有一个公共点,由图得:,当直线l 与圆相切时,则或故答案为:.解析:依题意,,,则则,则球M 的半径,设平面的法向量为,则,令,得,()()()()121122P A P B A P A B P B =∣∣()()()121210.4(10.6)0.46P A P A A P B ⎡⎤-⨯-⎣⎦===∣6m x x ⎛⎫+ ⎪⎝⎭662166C C kk k k k kk m T x m x x --+⎛⎫=⋅= ⎪⎝⎭0,1,2,,6k = 622k -=2k =2x 2226C 15135m m ==0m >3m =(]{3,3-- :C y =()2290x y y +=≥(0,0):l y x m =--m -[)(]3,33,3m m -∈-⇒∈-3d m ⇒=±=-(]3,3∈-m =-(]{3,3-- (1,1,0)AB =- (0,1,1)AC =- ||||AB AC == ||||AB AC A AB AC ⋅==A =ABC =(0),1,0=||1R MA == ABC (,,)n x y z = 0n AB x y n AC y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 1y =(1,1,1)n =则点M 到平面的距离距离最大值为,所以三棱锥解析:(1)依题意可知,,两两相互垂直,以B 为空间坐标原点,建立如图所示空间直角坐标系,,,,,,,设异面直线与所成角为,则由于(2),,,,设平面的法向量为,则,故可取,所以点B 到平面16.答案:(1)(2)1ABC ||||n MA d n ⋅===ABC 1d R +=P ABC -1)+=BA 1BB BC ()2,0,0A ()10,2,0B ()12,2,0A ()10,2,2C ()12,2,0AB =- ()112,0,2A C =-1AB 11A C θ111111cos AB A C AB A C θ⋅===⋅0θ<≤=()112,0,0A B =- ()0,0,2C ()12,2,2A C =-- ()10,2,0BB =11A B C (),,n x y z = 111202220n A B x n A C x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ()0,1,1n = 11A B C = 22(2)(3)1x y -+-=解析:(1)线段AB的中点,,故线段AB的中垂线方程为即,因为圆C经过A、B两点,故圆心在线段AB的中垂线上.又因为直线平分圆C,所以直线m经过圆心.即与的交点为圆心,所以圆心的坐标为,而圆的半径,.(2)直线l的方程为.圆心C到直线l的距离,两边平方整理得:将直线l的方程与圆C的方程组成方程组得,将①代入②得:,设、,则由根与系数的关系可得:而,所以,,整理,解得.此时有,所以k值为1.17.答案:(1)6(2)16(3)90解析:(1)根据题意,先选出男同学甲,女同学乙,再从其它6个人中再选1人即可,共有种选法;(2)从8人中任选3人,有种选法,没有女学生入选,即全选男生的情况有种情况,只有1名女生入选,即选取1女4男,有种选法,故所有符合条件选法数为:35,22E⎛⎫⎪⎝⎭32112ABk-==--52y x-=-10x y-+=:320m x y-=10x y-+=320x y-=(2,3)C1r=22(2)(3)1x y-+-=1y kx=+d=1d=<23830k k-+<k<<1(2)2(3)21y kxx y=+⎧⎨-+-=⎩①②()2214(1)70k x k x+-++=()11,M x y()22N x y12x x+=12x=()()()212121212111y y kx kx k x x k x x=+⋅+=+++()()()222121121274(1k)4k(1k)OM ON111181k21k21k2yx x y k x x k x x k k++⋅=+=++++=+⋅+⋅+=++++812=2(1)1k k k+=+1k=>△16C6=38C35C2153C C⨯种;(3)选出一个男生担任体育班委,有种情况,再选出1名女生担任文娱班委,有种情况,剩下的6人中任取1人担任其它班委,有种情况,用分步计数原理可得到所有方法总数为:种.18.答案:(1)49;(2)解析:(1)根据题意得,即,所以,所以展开式中的的系数为故当或时,的系数的最小值为49.,则,,因为的展开式的通项为,令(*)即,所以.因为成立,所以,所以.19.答案:(1)(2)解析:(1)设,由直线,直线,可知,故四边形为矩形,四边形(O 为原点)的面积为2,即得,33218553C C C C 16--⨯=15C 13C 16C 111536C C C 90⨯⨯=2271511C C 15m n +=15m n +=15n m =-2x 2222(1)(1)C C 222m nm m n n m n m n --+--+=+=222211515(15)15105222m m m m m ⎛⎫⎡⎤=+--=-+=-+ ⎪⎣⎦⎝⎭7m =8m =2x 7=172(23)(23)m n x x +-+=+3477C C 35a ===7(23)x +77177C 2(3)C 23r r r r r r r r T x x --+=⋅⋅=⋅716177718177C 23C 23C 23C 23r r r r r r r r r r r r -+-+----⎧⋅⋅≥⋅⋅⎨⋅⋅≥⋅⋅⎩r r ⎧≥⎪⎪⎨⎪≤⎪⎩*∈N 4r =434777C 232268032⋅⋅=>>22680b =352268022715a b +=+=()2242x y x -=≥(3,6)(6,)+∞ (,)M x y 1:l y x =2:l y x =-12l l ⊥OAMB OAMB ||||2MA MB ⋅=因为,,故,得,由于点A 在第一象限,点B 在第四象限,故动点M 的轨迹方程为;(2)由题意知,过点F 且斜率为k 的直线l 交M 的轨迹于C ,D 两点,即l 与双曲线的的右支交于两点,双曲线的渐近线为,故或;设直线l 的方程为,联立,整理得,,设,则故CD 中点的坐标为,则CD 的垂直平分线的方程为,令,得,得,故因为或,故,所以的取值范围为.||MA =||MB =2=22||4x y -=()2242x y x -=≥()3,0F 224x y -=y x =±1k >1k <-(3)y k x =-22(3)4y k x x y =-⎧⎨-=⎩()222216940k x k x k -+--=()()4222Δ36419420160k k k k =----=+>()()()()1122,3,,3C x k x D x k x --212261k x x k +=-=-22233,11k k k k ⎛⎫ ⎪--⎝⎭22231311k k y x k k k ⎛⎫-=-- ⎪--⎝⎭0y =0x =0x =0261k y k =-()()()2002261666611111k k k k k x y k k k k k ++=+===+--+--1k >k <61k <-0>6361k <+<-6>00x y +(3,6)(6,)+∞。
第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。
2.请将答案正确填写在答题卡上。
第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。
A。
$-2$B。
$-1$C。
$1$D。
$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。
A。
$-0.25$B。
$1$C。
$-1$D。
$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。
A。
$(-3,1)$B。
$(3,1)$C。
$(3,-1)$D。
$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。
A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。
A。
$\left[\frac{3}{4},1\right]$B。
$\left[\frac{3}{4},+\infty\right)$C。
$(1,+\infty)$D。
$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。
2024年鲁人新版九年级数学下册阶段测试试卷969

2024年鲁人新版九年级数学下册阶段测试试卷969考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、在一条笔直的公路旁依次有A、B、C三个村庄,甲、乙两人同时分别从A、B两村出发,甲骑摩托车,乙骑电动车沿公路匀速驶向C村,最终到达C村.甲、乙两人到C村的距离y1,y2(km)与行驶时间x(h)之间的函数关系如图所示,以下分析错误的是()A. C两村间的距离为120kmB. 点P的坐标为(1,60)C. 点P的意义表示经过1小时甲与乙相遇且距C村60kmD. 乙在行驶过程中,仅有一次机会距甲10km2、如图;AB是⊙O的直径,点C在⊙O上,连接AC,BC,点D是BA延长线上一点,且AC=AD,若∠B=30°,AB=2,则CD的长是()A.B. 2C. 1D.3、在下列方程中;一元二次方程的个数是()垄脵3x2+7=0垄脷ax2+bx+c=0垄脹(x鈭�2)(x+5)=x2鈭�1垄脺3x2鈭�5x=0.A. 1个B. 2个C. 3个D. 4个4、如图,△ABC中,∠ABC=90°,AB=8,BC=6,点F,D是直线AC上的两个动点,且FD=AC.点B和点E分别在直线AD的两侧,AB=DE,AB∥DE,当四边形BCEF是菱形时AF等于()A.B.C. 5D. 45、如图,将矩形纸片ABCD沿AE折叠,使点B落在直角梯形AECD的中位线FG上,若,则AE的长为()A.B. 6C. 3D. 46、下列计算正确的是()A. (2a+1)2=4a2+1B. (-2x2y4)4=-8x8y16C. (a+4)(a-4)=a2-4D. 4x3y÷(-2x2y)=-2x评卷人得分二、填空题(共6题,共12分)7、(2008秋•晋江市期末)如图,△ABC∽△A1B1C1,那么它们的相似比是____.8、如图,数轴上半径为1的⊙O从原点O开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P以每秒2个单位的速度向左运动,经过____秒后,点P在⊙O上.9、(2009•漳州)如图,直线l1∥l2,∠1=120°,则∠2=____度.10、直线y=kx鈭�3与y轴相交所成的锐角的正切值为13则k的值为 ______ .11、如图是小李发明的填图游戏,游戏规则是:把5,6,7,8四个数分别填入图中的空格内,使得网格中每行、每列的数字从左至右和从上到下都按从小到大的顺序排列.那么一共有____种不同的填法.12、如图,梯形ABCD中,AD∥BC,AB=CD=AD=2cm,∠B=60°,则梯形ABCD的周长为____cm.评卷人得分三、判断题(共7题,共14分)13、两个等腰三角形一定是全等的三角形.____.(判断对错)14、两条对角线相等的四边形是矩形.____.(判断对错)15、n边形的内角和为n•180°-360°.____(判断对错)16、在学习代数式的值时,介绍了计算框图:用“”表示数据输入、输出框;用“”表示数据处理和运算框;用“”表示数据判断框(根据条件决定执行两条路径中的某一条)(1)①如图1,当输入数x=-2时,输出数y=____;②如图2,第一个运算框“”内,应填____;第二个运算框“”内,应填____;(2)①如图3,当输入数x=-1时,输出数y=____;②如图4,当输出的值y=37,则输入的值x=____;(3)为鼓励节约用水;决定对用水实行“阶梯价”:当每月用水量不超过15吨时(含15吨),以2元/吨的价格收费;当每月用水量超过15吨时,超过部分以3元/吨的价格收费.请设计出一个“计算框图”,使得输入数为用水量x,输出数为水费y.17、斜边和1个锐角分别相等的2个直角三角形全等____(判断对错)18、n边形的内角和为n•180°-360°.____(判断对错)19、“三角形三条角平分线交点到三边距离相等”这个命题的逆命题是真命题.____.评卷人得分四、多选题(共1题,共3分)20、对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[-2.5]=-3,若[x-2]=-1,则x的取值范围为()A. 0<x≤1B. 0≤x<1C. 1<x≤2D. 1≤x<2评卷人得分五、证明题(共1题,共7分)21、如图;已知:在等腰梯形ABCD中,AB∥CD,AC⊥BC,DG⊥AC,过B作EB⊥AB,交AC的延长线于E.(1)求证:AD2=AC•CE;(2)当BE=CD时,求证:△DCG≌△EBC.评卷人得分六、作图题(共1题,共4分)22、作图题:已知线段a、b、c(a>b>c)画出满足下列条件的线段:(1)a-b+c;(2)2a-b-c;(3)2(a-b)+3(b-c).参考答案一、选择题(共6题,共12分)1、D【分析】【分析】A;由图可知与y轴交点的坐标表示A、C两村间的距离为120km;再由0.5小时距离C 村90km,行驶120-90=30km,速度为60km/h,求得a=2;B、求得y1,y2两个函数解析式;建立方程求得点P坐标;C;点P表示在什么时间相遇以及距离C村的距离;D、由B中的函数解析式根据距甲10km建立方程;探讨得出答案即可.【解析】【解答】解:A.C两村间的距离120km;a=120÷[(120-90)÷0.5]=2;故A不符合题意;B、设y1=k1x+120;代入(2,0)解得y1=-60x+120;y2=k2x+90;代入(3,0)解得y1=-30x+90;由-60x+120=-30x+90解得x=1,则y1=y2=60;所以P(1;60),故B不符合题意;C;点P表示经过1小时甲与乙相遇且距C村60km;故C不符合题意;D、当y1-y2=10;即-60x+120-(-30x+90)=10解得x= ;当y2-y1=10;即-30x+90-(-60x+120)=10解得x= ;当甲走到C地;而乙距离C地10km时;-30x+90=10解得x= ;综上所知当x= h,或x= h,或x= h乙距甲10km;故D符合题意.故选:D.2、D【分析】【解答】解:连接OC;∵AB是⊙O的直径;∴∠ACB=90°.∵∠B=30°;∴∠BAC=60°.∵AC=AD;∴∠D=∠ACD=30°.∵OC=OB;∠B=30°;∴∠DOC=60°;∴∠OCD=90°.∵AB=2;∴OC=1;∴CD= = = .故选D.【分析】连接OC,先根据AB是⊙O的直径得出∠ACB=90°,再由∠B=30°得出∠BAC=60°,根据AC=AD可知∠D=∠ACD,由三角形外角的性质得出∠D=∠ACD=30°,再由OC=OB,∠B=30°得出∠DOC=60°,故可得出∠OCD=90°,再由AB=2可知OC=1,根据锐角三角函数的定义即可得出结论.3、A【分析】解:垄脵3x2+7=0是一元二次方程,故本小题正确;垄脷ax2+bx+c=0a鈮�0时是一元二次方程,故本小题错误;垄脹(x鈭�2)(x+5)=x2鈭�1整理后不是一元二次方程,故本小题错误;垄脺3x2鈭�5x=0是分式方程,不是一元二次方程,故本小题错误.故选:A.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2(2)二次项系数不为0(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证;满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.【解析】A4、B【分析】【分析】连接BE交CF于O,根据菱形的对角线互相垂直平分可得BO⊥AC,利用勾股定理列式求出AC,再利用三角形的面积列式求出BO,然后利用勾股定理列式求出OC,再根据菱形的性质可得FO=CO,然后求出AF即可.【解析】【解答】解:如图;连接BE交CF于O;∵四边形BCEF是菱形;∴BO⊥AC;FO=CO;∵∠ABC=90°;AB=8,BC=6;∴AC= = =10;S△ABC= AC•BO= AB•BC;即×10•BO= ×8×6;解得BO= ;在Rt△BOC中,OC= = = ;∴AF=AC-FO-OC=10-2×= .故选B.5、D【分析】【分析】由题意可知∠BEF=∠FEB′=∠EFB′,推出EB′=EF=AF=FB′,即∠AEB′=60°,通过解直角三角形,即可推出AE的长度.【解析】【解答】解:∵FG是直角梯形AECD的中位线;∠B=∠B′=90°;∴FG∥BC∥AD;∴∠BEF=∠FEB′=∠EFB′;∴EB′=EF=AF=FB′;∴∠AEB′=60°;∵AB=AB′=2 ;∴AE=4.故选择D.6、D【分析】【分析】计算出各个选项中的正确结果,然后即可得到哪个选项是正确的.【解析】【解答】解:∵(2a+1)2=4a2+4a+1;故选项A错误;∵(-2x2y4)4=16x8y16;故选项B错误;∵(a+4)(a-4)=a2-16;故选项C错误;∵4x3y÷(-2x2y)=-2x;故选项D正确;故选D.二、填空题(共6题,共12分)7、略【分析】【分析】设每个小正方形的边长为1,则可得到对应边AB,A1B1的长,从而可求得对应边的比,再根据对应边的比等于相似比即可求解.【解析】【解答】解:设每一个小正方形的边长为1,则AB=2,A1B1=∴AB:A1B1=2:∴相似比为:2:.8、略【分析】试题分析:设t秒后,点P在⊙O上,当点P在⊙O右侧上时,有当点P在⊙O左侧上时,有∴经过2或秒后,点P在⊙O上.考点:1.动点和动圆问题;2.数轴;3.分类思想的应用.【解析】【答案】2或9、略【分析】∵l1∥l2;∴∠1=∠3=120°;∵∠3=∠2;∴∠2=120°.故填空答案:120.【解析】【答案】由l1∥l2可以得到∠1=∠3=120°;又由∠3=∠2可以得到∠2的度数.10、略【分析】解:隆脽直线y=kx鈭�3与y轴相交所成的锐角隆脧OAB的正切值为13即tan隆脧OAB=13隆脿tan隆脧OBA=3即直线y=kx鈭�3与x轴相交所成角的正切值是3即|k|=3.隆脿k=隆脌3.故答案为:隆脌3直线y=kx鈭�3与y轴相交所成的锐角的正切值为13即与x轴相交所成的正切值是3根据一次函数解析式中一次项系数的几何意义即可求解.此题考查一次函数的问题,解决本题的关键理解一次函数一般形式中,一次项系数的几何意义.【解析】隆脌311、略【分析】【分析】根据题意,从左下角空格开始,分别填入5、6、7,然后把其他3个空格填入数据即可.【解析】【解答】解:如图所示;共有6种填入方法.故答案为:6.12、略【分析】过点D作DE∥AB;交BC于点E.由已知得出△DEC是等边三角形;∴CE=CD=2;BE=AD=2;∴BC=4;则梯形ABCD的周长为2+2+2+4=10cm.【解析】【答案】过点D作DE∥AB;交BC于点E,则可得到△DEC为等边三角形,从而可求得BC的长,这样就可求出等腰梯形的周长.三、判断题(共7题,共14分)13、×【分析】【分析】两个腰相等,顶角相等的等腰三角形全等.【解析】【解答】解:如图所示:△ABC和△DEF不全等;故答案为:×.14、×【分析】【分析】举出反例即可得到该命题是错误的.【解析】【解答】解:∵等腰梯形的对角线也相等;∴“对角线相等的四边形是矩形”错误.故答案为:×.15、√【分析】【分析】根据多边形的内角和公式180°(n-2),进行变形即可.【解析】【解答】解:n边形的内角和为:180°(n-2)=180°n-360°;故答案为:√.16、×【分析】【分析】(1)①根据图形列出算式;即可求出答案;②根据图形列出算式;即可求出答案;(2)①根据图形列出算式;即可求出答案;②根据图形列出算式;即可求出答案;(3)根据图4画出即可.【解析】【解答】解:(1)①当x=-2时;y=-2×2-5=-9;故答案为:-9;②第一个运算框“×5”内;第二个运算框“-3”内;故答案为:×5;-3;(2)①当x=-1时;y=-1×2-5=-7>-20,-7×2-5=-19>-20,-19×2-5=-43<-20;故答案为:y=-43;②分为两种情况:当x>0时;x-5=37;解得:x=42;当x<0时,x2+1=37;解得:x=±6;x=6舍去;故答案为:42或-6;(3)因为当每月用水量不超过15吨时(含15吨);以2元/吨的价格收费;当每月用水量超过15吨时;超过部分以3元/吨的价格收费;所以水费收缴分两种情况;x≤15和x>15;分别计算;所以可以设计如框图如图..17、√【分析】【分析】根据“AAS”可判断命题的真假.【解析】【解答】解:命题“斜边和1个锐角分别相等的2个直角三角形全等”是真命题.故答案为√.18、√【分析】【分析】根据多边形的内角和公式180°(n-2),进行变形即可.【解析】【解答】解:n边形的内角和为:180°(n-2)=180°n-360°;故答案为:√.19、×【分析】【分析】“三角形三条角平分线交点到三边距离相等”的逆命题是“到三角形三边距离相等的点是三角形三条角平分线的交点”而到三边距离相等的点不是只有内角的平分线的交点还有外角平分线的交点.【解析】【解答】解:“三角形三条角平分线交点到三边距离相等”的逆命题是“到三角形三边距离相等的点是三角形三条角平分线的交点”;到三角形三边距离相等的点是三角形三条内角平分线的交点其实还有外角平分线的交点,所以原命题的逆命题应该是假命题.故答案为:×.四、多选题(共1题,共3分)20、A|D【分析】【分析】根据[x]的定义可知,-2<x-2≤-1,然后解出该不等式即可求出x的范围;【解析】【解答】解:根据定义可知:-2<x-2≤-1;解得:0<x≤1;故选(A)五、证明题(共1题,共7分)21、略【分析】(1)因为等腰梯形ABCD,AB∥CD,所以∠DCA=∠CAB,又因为AC⊥BC,EB⊥AB,【分析】所以∠EBC=∠CAB,所以△ACB∽△BCE,得,即BC2=AC•CE,又AD=BC,所以AD2=AC•CE(2)由(1)可知∠EBC=∠BCG=∠CAB,又BE=CD,∠BCE=∠CGD,所以△DCG≌△EBC 【解析】【解答】证明:(1)∵等腰梯形ABCD;AB∥CD;∴∠DCA=∠CAB.∵AC⊥BC;EB⊥AB;∴∠EBC=∠CAB;∠CEB=∠CBA.∴△ACB∽△BCE.∴.即BC2=AC•CE.∵等腰梯形ABCD;∴AD=BC.∴AD2=AC•CE;(2)∵由(1)知∠EBC=∠BCG=∠CAB;∵BE=CD;∠BCE=∠CGD;∴△DCG≌△EBC.六、作图题(共1题,共4分)22、略【分析】【分析】(1)作线段a,后在a上截去一线段使其等于b;后延长作一线段使其等于线段c;(2)先作线段a后延长再作一线段a,再在所得的线段上截去线段b和c.(3)原式=2a+b-3c,其作法和(1)和(2)同.【解析】【解答】解:所画图形如下所示:其中线段AB即为所求.(1)(2)(3)。
9岁智力发育测试题(3篇)

前言本测试旨在评估9岁儿童的智力发展水平,包括认知能力、语言理解、数学逻辑、空间感知、记忆力和问题解决能力等方面。
测试分为选择题和填空题两种形式,共计30题。
请认真阅读题目,根据您的理解选择最合适的答案。
请注意,本测试仅供参考,不代表儿童的智力水平。
第一部分:认知能力测试(10题)1. 请问以下哪个数字最大?A. 20B. 25C. 302. 小明有5个苹果,他给了小红3个,请问小明还剩几个苹果?A. 2B. 3C. 53. 请将以下数字按从小到大的顺序排列:8, 3, 5, 1, 74. 请问以下哪个图形是正方形?A. 图形①B. 图形②C. 图形③5. 小红有4个橘子,小蓝有6个橘子,请问他们一共有多少个橘子?A. 10B. 126. 请问以下哪个物品是交通工具?A. 钢笔B. 自行车C. 钢尺7. 请将以下字母按字母表的顺序排列:D, A, C, B, E8. 小明每天早上7点起床,他每天要睡多久才能保证有足够的精力?A. 6小时B. 7小时C. 8小时9. 请问以下哪个国家是亚洲国家?A. 美国B. 中国C. 澳大利亚10. 请将以下数字相加:23 + 45 + 12第二部分:语言理解测试(10题)11. 以下哪个句子是正确的?A. 我昨天去了学校。
B. 我昨天去上学。
C. 我昨天去上学校。
12. 请将以下句子改为疑问句:小红喜欢吃苹果。
13. 请将以下句子改为否定句:小明很聪明。
14. 请将以下句子改为感叹句:这本书很有趣。
15. 请将以下句子改为被动语态:我帮助妈妈做家务。
16. 请解释以下词语的意思:比喻17. 请用“因为……所以……”造句。
18. 请用“虽然……但是……”造句。
19. 请将以下句子改为复数形式:这个苹果很好吃。
20. 请将以下句子改为过去时态:我现在在做作业。
第三部分:数学逻辑测试(10题)21. 请问以下哪个数是偶数?A. 7B. 8C. 922. 小华有3个苹果,她给了小刚1个,小刚又给了小强1个,请问小强现在有几个苹果?A. 1B. 223. 请将以下数字相减:52 - 3724. 请将以下数字相乘:4 × 625. 请将以下数字相除:48 ÷ 626. 请问以下哪个图形是三角形?A. 图形①B. 图形②C. 图形③27. 请问以下哪个数是质数?A. 7B. 8C. 928. 请将以下数字按从小到大的顺序排列: 9, 5, 3, 7, 429. 请问以下哪个数是奇数?A. 6B. 7C. 830. 请将以下数字相加:25 + 38 + 15本测试仅供参考,不代表儿童的智力水平。
湖南省娄底市双峰县2024-2025学年九年级上学期11月期中数学试题(含答案)

双峰县2024年下学期九年级期中考试数学试卷时量:120分钟 满分:120分考生注意:1.本学科试卷分试题和答题卡两部分,满分120分。
2.请在答题卡上作答,答在试卷上无效。
一.选择题(本题共10小题,每小题3分,共30分)1.下列方程中是一元二次方程的是( )A .B .C .D .2.若反比例函数的图象上有两点,则与的大小关系( )A .B .C .D .无法确定3.如果(其中),那么下列式子中不正确的是( )A .B .C .D .4.方程的解是( )A .B .C .D .5.关于反比例函数,下列说法中错误的是( )A .时,y 随x 的增大而减少B .当时,C .它的图像位于二、四象限D .当时,有最小值6.如图,若直线,且,则( )20ax bx c ++=2211x x +=()()121x x -+=223250x xy y --=1y x =()1213,,,2A y B y ⎫⎛-- ⎪⎝⎭1y 2y 12y y >12y y <12y y =a c b d=0,0b d >>a b c d b d ++=a b c d b d --=a c c b d d +=+a d b c=()2x x x -=3x =0x =120,3x x ==121,3x x ==3y x=0x >13x <<13y <<1x ≤-y 3-123l l l ∥∥:2:3,15DE EF AC ==BC =A .5B .6C .9D .107.新能源汽车已逐渐成为人们喜爱的交通工具,据某品牌新能源汽车经销商7月份至9月份统计,该品牌新能源汽车7月份销售1000辆,9月份销售1690辆.设月平均增长率为,根据题意,下列方程正确的是( )A .B .C .D .8.若是关于的方程的一个根,则的值是( )A .2022B .2026C .2020D .20199.验光师检测发现近视眼镜的度数(度)与镜片焦距(米)成反比例,关于的函数图象如图所示.经过一段时间的娇正治疗后,小雪的镜片焦距由0.25米调整到0.5米,则近视眼镜的度数减少了( )度.A .150B .200C .250D .30010.在古希腊时期,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听,他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数学的方式表达出来,后来人们将这个数称为黄金分割数.设,记,,,,则的值为( )x 21690(1)1000x -=21000(1)1690x +=()1000121690x +=()1000121690x x ++=a x 2310x x --=2202462a a +-y x y x a b ==11111S a b =+++2221111S a b =+++3331111S a b =+++ 100100100111a 1b S =+++123100S S S S ++++A .B .C .100D .505二.填空题(本题共8小题,每小题3分,共24分)11.如果,则_________.12.若是一元二次方程的两个根,则_________.13.若关于的一元二次方程有两个实数根,则实数的取值范围是_________.14.已知函数是反比例函数,则的值为_________.15.一个长方体物体的一顶点所在三个面的面积比是,如果分别按、面朝上将此物体放在水平地面上,地面所受的压力产生的压强分别为、(压强的计算公式为),则_________.16.如图所示的两个四边形相似,则的度数是_________。
湖南省长沙市雅礼中学2024-2025学年高三上学期月考(三)数学试题(含解析)

雅礼中学2025届高三月考试卷(三)数学命题人:审题人:得分:________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“存在,”的否定是A.存在,B.不存在,C.任意,D.任意,2.若集合(i 是虚数单位),,则等于A. B. C. D.3.已知奇函数,则A.-1B.0C.1D.4.已知,是两条不同的直线,,是两个不同的平面,则下列可以推出的是A.,, B.,,C.,, D.,,5.已知函数图象的一个最高点与相邻的对称中心之间的距离为5,则A.0B. C.4D.x ∈Z 220x x m ++…x ∈Z 220x x m ++>x ∈Z 220x x m ++>x ∈Z 220x x m ++…x ∈Z 220x x m ++>{}2341,i ,i ,i A ={}1,1B =-A B ⋂{}1-{}1{}1,1-∅()()22cos x x f x m x -=+⋅m =12m l αβαβ⊥m l ⊥m β⊂l α⊥m l ⊥l αβ⋂=m α⊂m l m α⊥l β⊥l α⊥m l m β()()4cos (0)f x x ωϕω=+>6f ϕπ⎛⎫-=⎪⎝⎭2ϕ2ϕ6.已知是圆上一个动点,且直线与直线(,,)相交于点,则的取值范围为A. B.C. D.7.是椭圆上一点,,是的两个焦点,,点在的角平分线上,为原点,,且.则的离心率为A.8.设集合,那么集合中满足条件“”的元素个数为A.60B.90C.120D.130二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图为某地2014年至2023年的粮食年产量折线图,则下列说法正确的是A.这10年粮食年产量的极差为16B.这10年粮食年产量的第70百分位数为35C.这10年粮食年产量的平均数为33.7D.前5年的粮食年产量的方差小于后5年粮食年产量的方差10.已知函数满足,,并且当时,,则下列关于函数说法正确的是M 22:1C x y +=1:30l mx ny m n --+=2:30l nx my m n +--=m n ∈R 220m n +≠P PM 1,1⎤-+⎦1⎤-⎦1,1⎤-+⎦1⎤+⎦P 2222:1(0)x y C a b a b+=>>1F 2F C 120PF PF ⋅= Q 12F PF ∠O 1OQPF OQ b =C 12(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iAx x x x x x i ∈-=A 1234513x x x x x ++++……()f x ()()22f x f x ππ+=-()()0fx f x ππ++-=()0,x π∈()cos f x x =()f xA. B.最小正周期C.的图象关于直线对称D.的图象关于对称11.若双曲线,,分别为左、右焦点,设点是在双曲线上且在第一象限的动点,点为的内心,,则下列说法不正确的是A.双曲线的渐近线方程为B.点的运动轨迹为双曲线的一部分C.若,,则D.不存在点,使得取得最小值答题卡题号1234567891011得分答案第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.的展开式中的系数为________.13.各角的对应边分别为,,,满足,则角的取值范围为________.14.对任意的,不等式(其中e 是自然对数的底)恒成立,则的最大值为________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设为正项等比数列的前项和,,.(1)求数列的通项公式;(2)数列满足,,求数列的前项和.302f π⎛⎫=⎪⎝⎭2T π=()f x x π=()f x (),0π-22:145x y C -=1F 2F P I12PF F △()0,4A C 045x y±=I 122PF PF =12PI xPF yPF =+ 29y x -=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭4x ABC △a b c 1b ca c a b+++…A *n ∈N 11e 1nan n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…a n S {}n a n 21332S a a =+416a ={}n a {}n b 11b =1222log log n nn n b a b a ++={}n b n n T16.(本小题满分15分)如图,在四棱锥,,,,点在上,且,.(1)若为线段的中点,求证:平面;(2)若平面,求平面与平面所成夹角的余弦值.17.(本小题满分15分)已知函数有两个极值点为,,.(1)当时,求的值;(2)若(e 为自然对数的底数),求的最大值.18.(本小题满分17分)已知抛物线的焦点为,为上任意一点,且的最小值为1.(1)求抛物线的方程;(2)已知为平面上一动点,且过能向作两条切线,切点为,,记直线,,的斜率分别为,,,且满足.①求点的轨迹方程;②试探究:是否存在一个圆心为,半径为1的圆,使得过可以作圆的两条切线,,切线,分别交抛物线于不同的两点,和点,,且为定值?若存在,求圆的方程,不存在,说明理由.19.(本小题满分17分)对于一组向量,,,…,(且),令,如果存在,使得,那么称是该向量组的“长向量”.(1)设,且,若是向量组,,的“长向量”,求实数的取值范P ABCD -BCAD 1AB BC ==3AD =E AD PE AD ⊥2DE PE ==F PE BFPCD AB ⊥PAD PAB PCD ()21ln 2f x x x ax =+-1x ()212x x x <a ∈R 52a =()()21f x f x -21e x x …()()21f x f x -2:2(0)E x py p =>F H E HF E P P E M N PM PN PF 1k 2k 3k 123112k k k +=P ()0,(0)Q λλ>P Q 1l 2l 1l 2l E ()11,A s t ()22,B s t ()33,C s t ()44,D s t 1234s s s s Q 1a 2a 3a n a N n ∈3n …123n n S a a a a =++++{}()1,2,3,,p a p n ∈ p n p a S a - …p a(),2n a n x n =+n ∈N 0n >3a 1a 2a 3ax围;(2)若,且,向量组,,,…,是否存在“长向量”?给出你的结论并说明理由;(3)已知,,均是向量组,,的“长向量”,其中,.设在平面直角坐标系中有一点列,,,…,,满足为坐标原点,为的位置向量的终点,且与关于点对称,与(且)关于点对称,求的最小值.sin,cos 22n n n a ππ⎛⎫= ⎪⎝⎭n ∈N 0n >1a 2a 3a 7a 1a 2a 3a 1a2a3a()1sin ,cos a x x =()22cos ,2sin a x x = 1P 2P 3P n P 1P 2P 3a 21k P +2k P 1P 22k P +21k P +k ∈N 0k >2P10151016P P参考答案一、二、选择题题号1234567891011答案DCADCBCDACDADABD1.D2.C 【解析】集合,,.故选C.3.A【解析】是奇函数,,,,,.故选A.4.D 【解析】有可能出现,平行这种情况,故A 错误;会出现平面,相交但不垂直的情况,故B 错误;,,,故C 错误;,,又由,故D 正确.故选D.5.C 【解析】设的最小正周期为,函数图象的一个最高点与相邻的对称中心之间的距离为5,则有,得,则有,解得,所以,所以.故选C.6.B 【解析】依题意,直线恒过定点,直线恒过定点,显然直线,因此,直线与交点的轨迹是以线段为直径的圆,其方程为:,圆心,半径,而圆的圆心,半径,如图:,两圆外离,由圆的几何性质得:,{}i,1,1,i A =--{}1,1B =-{}1,1A B ⋂=-()f x ()()22cos x x f x m x -=+⋅()()()2222x x x xf x f x m --⎡⎤∴+-=+++⎣⎦cos 0x =()()122cos 0x x m x -∴++=10m ∴+=1m =-αβαβm l m α⊥l βαβ⊥⇒ l α⊥m l m α⇒⊥ m βαβ⇒⊥ ()f x T 224254T ⎛⎫+= ⎪⎝⎭12T =212πω=6πω=()4cos 6f x x πϕ⎛⎫=+ ⎪⎝⎭664cos 4cos046f ϕϕπϕππ⎛⎫⎛⎫-=-⨯+== ⎪ ⎪⎝⎭⎝⎭()()1:310l m x n y ---=()3,1A ()()2:130l n x m y -+-=()1,3B 12l l ⊥1l 2l P AB 22(2)(2)2x y -+-=()2,2N 2r =C ()0,0C 11r =12NC r r =>+12min1PMNC r r =--=-,所以的取值范围为.故选B.7.C 【解析】如图,设,,延长交于点,由题意知,为的中点,故为中点,又,即,则,又由点在的角平分线上得,则是等腰直角三角形,故有化简得即代入得,即,又,所以,所以,.故选C.8.D 【解析】因为或,所以若,则在中至少有一个,且不多于3个.所以可根据中含0的个数进行分类讨论.①五个数中有2个0,则另外3个从1,-1中取,共有方法数为,②五个数中有3个0,则另外2个从1,-1中取,共有方法数为,③五个数中有4个0,则另外1个从1,-1中取,共有方法数为,所以共有种.故选D.9.ACD 【解析】将样本数据从小到大排列为26,28,30,32,32,35,35,38,39,42,这10年的粮食年产量极差为,故A 正确;,结合A 选项可知第70百分位数为第7个数和第812max1PMNC r r =++=+PM 1⎤-+⎦1PF m =2PF n =OQ 2PF A 1OQ PF O 12F F A 2PF 120PF PF ⋅= 12PF PF ⊥2QAP π∠=Q 12F PF ∠4QPA π∠=AQP △2222,4,11,22m n a m n c b n m ⎧⎪+=⎪+=⎨⎪⎪+=⎩2,2,m n b m n a -=⎧⎨+=⎩,,m a b n a b =+⎧⎨=-⎩2224m n c +=222()()4a b a b c ++-=2222a b c +=222b a c =-2223a c =223e =e =0i x =1i x =1234513x x x x x ++++……()1,2,3,4,5i x i =1i x =i x 2315C 2N =⋅3225C 2N =⋅435C 2N =⋅23324555C 2C 2C 2130N =⋅+⋅+⋅=422616-=1070%7⨯=个数的平均数,即,故B 不正确;这10年粮食年产量的平均数为,故C 正确;结合图形可知,前5年的粮食年产量的波动小于后5年的粮食产量波动,所以前5年的粮食年产量的方差小于后5年的粮食年产量的方差,故D 正确.故选ACD.10.AD 【解析】由于时,,并且满足,则函数的图象关于直线对称.由于,所以,故,故,故函数的最小正周期为,根据,知函数的图象关于对称.由于时,,,故A 正确,由于函数的最小正周期为,故B 错误;由函数的图象关于对称,易知的图象不关于直线对称,故C 错误;根据函数图象关于点对称,且函数图象关于直线对称,知函数图象关于点对称,又函数的最小正周期为,则函数图象一定关于点对称,故D 正确.故选AD.11.ABD 【解析】双曲线,可知其渐近线方程为,A 错误;设,,的内切圆与,,分别切于点,,,可得,,,由双曲线的定义可得:,即,又,解得,则点的横坐标为,由点与点的横坐标相同,即点的横坐标为,故在定直线上运动,B 错误;由,且,解得,,,,则,同理可得:,设直线,直线,联立方程得,设的内切圆的半径为,则,解得,即,353836.52+=()13232302835384239263533.710⨯+++++++++=()0,x π∈()cos f x x =()()22f x f x ππ+=-()f x 2x π=()()0fx f x ππ++-=()()fx f x ππ+=--()()()()()22f xf x f x f x ππππ--+=+=--=-()()()24f x f x f x ππ=-+=+4π()()0fx f x ππ++-=()f x (),0π()0,x π∈()cos f x x =3cos 022222f f ff πππππππ⎛⎫⎛⎫⎛⎫⎛⎫=+=--=-=-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭4π()f x (),0π()f x x π=(),0π2x π=()3,0π4π(),0π-22:145x y C -=02x =1PF m =2PF n =12PF F △1PF 2PF 12F F S K T PS PK =11F S FT =22F T F K =2m n a -=12122F S F K FT F T a -=-=122FT F T c +=2F T c a =-T a I T I 2a =I 2x =122PF PF =1224PF PF a -==18PF =24PF =1226F F c ==126436167cos 2868PF F ∠+-∴==⨯⨯12sin PF F ∠==12tan PF F ∠∴=21tan PF F ∠=)1:3PF y x =+)2:3PF y x =-(P 12PF F △r ()12118684622PF F S r =⨯⨯=⨯++⋅△r =I ⎛ ⎝,,,由,可得解得,,故,C 正确;,,当且仅当,,三点共线取等号,易知,故存在使得取最小值,D 错误.故选ABD.三、填空题:本题共3小题,每小题5分,共15分.12.90 【解析】展开式的通项公式为,令,解得,所以展开式中的系数为.13. 【解析】从所给条件入手,进行不等式化简,观察到余弦定理公式特征,进而利用余弦定理表示,由可得,可得.14. 【解析】对任意的,不等式(其中e 是自然对数的底)恒成立,只需恒成立,只需恒成立,只需恒成立,2,PI ⎛∴=- ⎝ (17,PF =- (21,PF =- 12PI xPF yPF =+ 27,,x y -=--⎧⎪⎨=⎪⎩29x =49y =29y x -=1224PF PF a -== 12244PA PF PA PF AF ∴+=+++…A P 2F ()1min549PA PF +=+=P 1PA PF +523x x ⎛⎫+ ⎪⎝⎭()()521031553C C 3rr rrr r r T x x x --+⎛⎫=⋅⋅=⋅⋅ ⎪⎝⎭1034r -=2r =4x 225C 310990⋅=⨯=0,3π⎛⎤⎥⎝⎦()()1b c b a b c a c a c a b+⇒+++++……()()222a c a b b c a bc ++⇒++…cos A 222b c a ac +-…2221cos 22b c a A bc +-=…0,3A π⎛⎤∈ ⎥⎝⎦11ln2-*n ∈N 11e 1n an n n ⎛⎫⎛⎫+⋅ ⎪ ⎪+⎝⎭⎝⎭…11e n an +⎛⎫+ ⎪⎝⎭…()1ln 11n a n ⎛⎫++ ⎪⎝⎭…11ln 1a n n -⎛⎫+ ⎪⎝⎭…构造,,,.下证,再构造函数,,,,设,,,令,,,,在时,,单调递减,,即,所以递减,,即,所以递减,并且,所以有,,所以,所以在上递减,所以的最小值为.,即的最大值为.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)因为是正项等比数列,所以,公比,因为,所以,即,则,解得(舍去)或,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)又因为,所以,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)依题意得,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)当时,,所以,因为,所以,当时,符合上式,所以数列的通项公式为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)()()11ln 1m x x x =-+(]0,1x ∈()()()()()22221ln 11ln 1x x x m x x x x ++-=++'(]0,1x ∈()(]22ln 1,0,11x x x x+<∈+()()22ln 11x h x x x =+-+(]0,1x ∈()()()2221ln 12(1)x x x xh x x ++-'-=+(]0,1x ∈()()()221ln 12F x x x x x =++--()()2ln 12F x x x =+-'(]0,1x ∈()()2ln 12G x x x =+-(]0,1x ∈()21xG x x=-+'(]0,1x ∈(]0,1x ∈()0G x '<()G x ()()00G x G <=()0F x '<()F x ()()00F x F <=()0h x '<()h x ()00h =()22ln 11x x x+<+(]0,1x ∈()0m x '<()m x (]0,1x ∈()m x ()111ln2m =-11ln2a ∴-…a 11ln2-{}n a 10a >0q >21332S a a =+()121332a a a a +=+21112320a q a q a --=22320q q --=12q =-2q =3411816a a q a ===12a ={}n a 2n n a =1222222log log 2log log 22n n n n n n b a nb a n +++===+2n …()324123112311234511n n b b b b n b b b b n n n --⨯⋅⋅⋅=⨯⨯⨯⨯=++ ()121n b b n n =+11b =()21n b n n =+1n =1n b ={}n b ()21n b n n =+因为,所以.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)16.【解析】(1)设为的中点,连接,,因为是中点,所以,且,因为,,,,所以四边形为平行四边形,,且,所以,且,即四边形为平行四边形,所以,因为平面平面,所以平面.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)因为平面,所以平面,又,所以,,相互垂直,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(7分)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,所以,,,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)设平面的一个法向量为,则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设平面的一个法向量为,()211211n b n n n n ⎛⎫==- ⎪++⎝⎭1111112212221223111n n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭M PD FM CM F PE FMED 12FM ED =AD BC 1AB BC ==3AD =2DE PE ==ABCE BC ED 12BC ED =FM BC FM BC =BCMF BFCM BF ⊄,PCD CM ⊂PCD BF PCD AB ⊥PAD CE ⊥PAD PE AD ⊥EP ED EC E ()0,0,2P ()0,1,0A -()1,1,0B -()1,0,0C ()0,2,0D ()1,0,0AB = ()0,1,2AP = ()1,0,2PC =- ()1,2,0CD =-PAB ()111,,m x y z =1110,20,m AB x m AP y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-()0,2,1m =- PCD ()222,,n x y z =则取,则,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)设平面与平面所成夹角为,则∙∙∙∙∙∙∙∙∙∙∙(15分)17.【解析】(1)函数的定义域为,则,当时,可得,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(2分)当或时,;当时,;所以在区间,上单调递增,在区间上单调递减;∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)所以和是函数的两个极值点,又,所以,;所以,即当时,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)(2)易知,又,所以,是方程的两个实数根,则且,,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(9分)所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)设,由,可得,令,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)则,所以在区间上单调递减,222220,20,n PC x z n CD x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 21z =()2,1,1n = PAB PCD θcos θ=()21ln 2f x x x ax =+-()0,+∞()211x ax f x x a x x -+=+-='52a =()()2152122x x x x f x x x'⎛⎫---+ ⎪⎝⎭==10,2x ⎛⎫∈ ⎪⎝⎭()2,x ∈+∞()0f x '>1,22x ⎛⎫∈ ⎪⎝⎭()0f x '<()f x 10,2⎛⎫ ⎪⎝⎭()2,+∞1,22⎛⎫ ⎪⎝⎭12x =2x =()f x 12x x <112x =22x =()()()211115152ln225ln 2ln222848f x f x f f ⎛⎫⎛⎫-=-=+--+-=- ⎪ ⎪⎝⎭⎝⎭52a =()()21152ln28f x f x -=-()()()()22221212111ln2x f x f x x x a x x x -=+---()21x ax f x x-+='1x 2x 210x ax -+=2Δ40a =->120x x a +=>121x x =2a >()()()()()()()2222222121212112211111lnln 22x x f x f x x x a x x x x x x x x x x -=+---=+--+-()()222222221212111121121111lnln ln 222x x x x x x x x x x x x x x x x ⎛⎫=--=-⋅-=-- ⎪⎝⎭21x t x =21e x x (21)e x t x =…()11ln 2g t t t t ⎛⎫=-- ⎪⎝⎭e t …()222111(1)1022t g t t t t-⎛⎫=-+=-< ⎪⎝⎭'()g t [)e,+∞得,故的最大值为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙(15分)18.【解析】(1)设抛物线的准线为,过点作直线于点,由抛物线的定义得,所以当点与原点重合时,,所以,所以抛物线的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(4分)(2)①设,过点且斜率存在的直线,联立消去,整理得:,由题可知,即,所以,是该方程的两个不等实根,由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(6分)又因为,所以,,由,有,所以,因为,,,所以点的轨迹方程为.②由①知,设,,且,∙∙∙∙∙∙∙∙∙(9分)联立消去,整理得,又,,,,由韦达定理可得,同理可得,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(11分)又因为和以圆心为,半径为1的圆相切,,即.同理,所以,是方程的两个不等实根,()()11e 1e 1e 12e 22eg t g ⎛⎫=--=-+ ⎪⎝⎭…()()21f x f x -e 1122e -+E l 2py =-H 1HH ⊥l 1H 1HF HH =H O 1min 12pHH ==2p =E 24x y =(),P m n P ():l y k x m n =-+()24,,x y y k x m n ⎧=⎪⎨=-+⎪⎩y 24440x kx km n -+-=()2Δ164440k km n =--=20k mk n -+=1k 2k 1212,,k k m k k n +=⎧⎨=⎩()0,1F 31n k m -=0m ≠123112k k k +=121232k k k k k +=21m m n n =-0m ≠12n n -=1n ∴=-P ()10y x =-≠(),1P m -()14:1l y k x m =--()25:1l y k x m =--1m ≠±0m ≠()244,1,x y y k x m ⎧=⎪⎨=--⎪⎩y 2444440x k x k m -++=()11,A s t ()22,B s t ()33,C s t ()44,D s t 12444s s k m =+34544s s k m =+()()()212344515454444161616s s s s k m k m k k m m k k =++=+++1l ()0,(0)Q λλ>1()()2224412120m k m k λλλ-++++=()()2225512120m k m k λλλ-++++=4k 5k ()()22212120m k m k λλλ-++++=所以由韦达定理可得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(14分)所以,若为定值,则,又因为,所以,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)所以圆的方程为.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)19.【解析】(1)由题意可得:,解得.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(3分)(2)存在“长向量”,且“长向量”为,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(5分)理由如下:由题意可得,若存在“长向量”,只需使,又,故只需使,即,即,当或6时,符合要求,故存在“长向量”,且“长向量”为,.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(8分)(3)由题意,得,,即,即,同理,,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(10分)三式相加并化简,得,即,,所以,设,由得∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(12分)设,则依题意得:∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(13分)()452245221,12,1m k k m k k m λλλ⎧++=-⎪⎪-⎨+⎪=⎪-⎩()()()22222123445452216161616162221621611m m s s s s k k m m k k m m λλλλ=+++=+--+=-+--1234s s s s 220λ-=0λ>λ=Q 22(1x y +=312a a a +…40x -……2a 6a1n a ==p a1n p S a - …()()712371010101,01010100,1S a a a a =++++=+-+++--+++-+=-71p S a -=== 022cos12p π+ (1)1cos 22p π--……2p =2a 6a123a a a + (2)2123a a a + …()22123a a a +...222123232a a a a a ++⋅ (2)22213132a a a a a ++⋅ …222312122a a a a a ++⋅…2221231213230222a a a a a a a a a +++⋅+⋅+⋅…()21230a a a ++…1230a a a ++ …1230a a a ++=()3,a u v = 1220a a a ++= sin 2cos ,cos 2sin ,u x x v x x =--⎧⎨=--⎩(),n n n P x y ()()()()()()212111222222222121,2,,,,2,,,k k k k k k k k x y x y x y x y x y x y ++++++⎧=-⎪⎨=-⎪⎩得,故,,所以,,当且仅当时等号成立,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(16分)故.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙(17分)()()()()2222221122,2,,,k k k k x y x y x y x y ++⎡⎤=-+⎣⎦()()()()2222221122,2,,,k k x y k x y x y x y ++⎡⎤=-+⎣⎦()()()()2121221122,2,,,k k x y k x y x y x y ++⎡⎤=--+⎣⎦()()()212222212221221112,4,,4k k k k k k P P x x y y k x y x y k PP ++++++⎡⎤=--=-=⎣⎦22212(sin 2cos )(cos 2sin )58sin cos 54sin21PP x x x x x x x =--+--=+=+ …()4x t t ππ=-∈Z 10151016min1014420282P P =⨯=。
九道智力测试题及答案(3篇)
第1篇第一部分:九道智力测试题1. 逻辑推理题题目:在一个房间里有五个人,他们分别是A、B、C、D和E。
A比B高,C比D 矮,E比C高。
请问,以下哪个陈述是正确的?A. E比B高B. A比D高C. B比C矮D. D比E矮答案:B。
根据题目信息,我们可以得出A比B高,C比D矮,E比C高。
因此,A比D高。
2. 数学题题目:一个数字序列为2, 4, 8, 16, 32,下一个数字是多少?答案:64。
这个序列是2的幂次方序列,下一个数字是2的6次方,即64。
3. 空间感知题题目:以下哪个图形可以通过旋转和翻转,与另一个图形完全重合?A. 图形1B. 图形2C. 图形3D. 图形4答案:C。
图形3可以通过旋转和翻转与另一个图形完全重合。
4. 词汇题题目:以下哪个词与其他词不同?A. 眼睛C. 手指D. 脚趾答案:D。
眼睛、耳朵和手指都是身体的一部分,而脚趾是脚的一部分,因此与其他词不同。
5. 记忆题题目:请记住以下数字序列:3, 1, 4, 1, 5, 9, 2, 6。
然后,我将随机提问,请尽量记住并回答。
提问:第4个数字是什么?答案:1。
6. 语言理解题题目:以下哪个句子是正确的?A. 我昨天看到了一只蓝色的鸟。
B. 我昨天看到了一只红色的鸟。
C. 我昨天看到了一只绿色的鸟。
D. 我昨天看到了一只黑色的鸟。
答案:A。
根据题目信息,我们知道昨天看到的鸟是蓝色的。
7. 观察题题目:观察以下图片,找出不同之处。
图片描述:一张有多个不同形状和颜色的几何图形的图片。
答案:根据图片描述,我们需要观察并找出不同的图形。
例如,如果其中一个图形是红色的圆形,而其他都是蓝色的正方形,那么红色圆形就是不同之处。
8. 常识题题目:以下哪个国家的首都是华盛顿?B. 美国C. 加拿大D. 澳大利亚答案:B。
美国的首都是华盛顿。
9. 抽象思维题题目:以下哪个图案与其他图案不同?A. 图案1B. 图案2C. 图案3D. 图案4答案:根据图案的形状、颜色或设计,我们需要找出与其他不同的图案。
韦氏儿童智力测试试题
韦氏智力测试量表(儿童)
指导语:
1.在开始回答前,请先在上表填写好被试的昵称(淘宝昵称或匿名都可);性别;出生
年月日,教育程度;答题的年月日。
2.为保持儿童对测验的兴趣,避免疲劳和厌倦,测验题目可以交替进行。
3.在儿童准备回答前不要催促他回答。
4.在测查前,儿童的身体必须是舒适的。
5.施测速度必须适合被测儿童的个性。
6.检查的语言语调必须是轻柔的温和的。
7.必须为儿童测试每一种类的测试,但不必测试完所有题目。
8.为儿童在答案上做记录尽量不让他知道,或者采用实时录音或录像,测试结束之后再
整理记录。
9.给以适当的奖励。
10.测试过程中要观察儿童的厌烦、疲劳、身体不适、或情绪上的不开心,可以调整儿童
的心情,若调整失败则停止测试。
11.施测者必须是幽默的和友好的,但又经常要控制其情境。
时限75秒时限75秒时限75秒时限75秒
请写出你需要补充说明的部分:(可选答,非必答)。
湖北省楚天教科研协作体2024-2025学年高二上学期11月期中考试数学试题(含答案)
湖北省楚天教科研协作体2024-2025学年高二上学期11月期中考试数学试题考试时间:2024年11月13日下午14:30-16:30试卷满分:150分注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.复数( )A. B. C. D.2.在空间直角坐标系中,为坐标原点,若是空间不共面的三个向量,则可以与向量和向量构成空间一个基底的向量是( )A. B. C. D.3.从长度为4,6,8,10的4条线段中任取3条,这三条线段能构成一个三角形的概率是( )A.B.C.D.4.19世纪法国著名数学家加斯帕尔蒙日,创立了画法几何学,推动了空间几何学的独立发展,提出了著名的蒙日圆定理:椭圆的两条切线互相垂直,则切线的交点位于一个与椭圆同心的圆上,称为蒙日圆,椭圆的蒙日圆方程为.若圆与椭圆的蒙日圆有且仅有一个公共点,则的值为( )A. B. C. D.52i =-2i-2i-+2i --2i+O ,,OA OB OCOA OB + OA OB -OA OB OC BA34251214⋅22221(0)x y a b a b +=>>2222x y a b +=+22(4)()16x y n -+-=22163x y +=n 3±6±5.若空间向量,则向量在向量上的投影向量的坐标是( )A. B. C. D.6.已知半径为3的圆经过点,则其圆心到原点的距离的最小值为( )A.1B.2C.3D.47.已知正三棱台的高为1,上、下底面边长分别为,其顶点都在同一球面上,则该球的表面积为( )A.B. C. D.8.已知椭圆为椭圆的左右焦点,为椭圆上一点,连接并延长交椭圆于另一点,若,则椭圆的离心率为( )二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.甲、乙两人各投掷一枚骰子一次,下列说法正确的是( )A.事件“甲投得1点”与事件“甲投得5点”是互斥事件B.事件“甲投得1点”与事件“乙投得5点”是相互独立事件C.事件“甲投得奇数点”与事件“乙投得偶数点”是对立事件D.事件“甲投得1点”与事件“甲、乙点数之和为7”是相互独立事件10.已知点在圆上,点,则( )A.点到直线AB 的距离最小值为B.在点处作圆的切线(为切点)与直线AB 相交于点,则|PT |C.当最小时,D.当最大时,11.在棱长为2的正方体中,为侧面正方形的中心,点为平面ABCD 上的一点,则下列说法正确的有( )(2,1,1),(1,0,1)a b =-= ab ⎛ ⎝11,0,22⎛⎫-- ⎪⎝⎭11,0,22⎛⎫⎪⎝⎭(3,4)52π64π80π100π221222:1(0),,x y C a b F F a b+=>>A 1AF B 2121,3AF AF BF BF ==C P 22:(4)(4)9C x y -+-=(4,0),(0,2)A B P 12P C P T PBA ∠||PB =PBA ∠||PB =1111ABCD A B C D -E 11BCC B PA.若点P 在棱BC 上运动,则三棱锥的体积为定值B.若点在棱BC 上运动,则最小值为C.若点满足,则动点的轨迹是一条直线D.若点满足,则三、填空题:本题共3小题,每小题5分,共15分.12.某篮球运动队有8名运动员,身高(单位:cm )如下:186,194,216,198,192,201,211,208,则身高从低到高的第30百分位数是_______________cm.13.已知圆为圆上任意一点,线段BP 的垂直平分线和半径AP 相交于,当点在圆上运动时,点的轨迹方程为_______________.14.三棱锥中,,直线BD 与AC 所成的角为,则该三棱锥的体积为_______________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知圆经过三点.(1)求圆的标准方程;(2)求过点且被圆截得的弦长为2的直线的方程.16.(本小题满分15分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为,乙每轮猜对的概率为.在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响.且“星队”在两轮活动中猜对了所有成语的概率为.(1)求的值;(2)求“星队”在两轮活动中,猜对3个成语的概率;(3)若某人在两轮活动中至少猜对1个成语,则该人可获得“优秀队员”称号,求“星队”的甲、乙两人中恰有一人获得此称号的概率.17.(本小题满分15分)如图,三棱锥中,,为BC 的中点.11P A D E -P 1AP PC +2+P 11PC B C ⊥P P 1D E PE ⊥1DD P 22:(1)36,(1,0),A x y B P ++=A l Q P A Q A BCD -1,2AB CD AD BC AC =====45︒A BCD -C (0,0),(1,0),(1,2)O AB -C (0,1)C l 34p 925p P ABC -2,AP AB AC AB AC ===⊥60,PAB PAC M ︒∠=∠=(1)证明:;(2)点N 满足,求平面APB 与平面PBN 夹角的余弦值。
2023-2024学年北京市海淀区高三(上)期末数学试卷【答案版】
2023-2024学年北京市海淀区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合U={1,2,3,4,5,6},A={1,3,5},B={1,2,3},则∁U(A∩B)=()A.{2,4,5,6}B.{4,6}C.{2,4,6}D.{2,5,6}2.如图,在复平面内,复数z1,z2对应的点分别为Z1,Z2,则复数z1•z2的虚部为()A.﹣i B.﹣1C.﹣3i D.﹣33.已知直线l1:x+y2=1,直线l2:2x﹣ay+2=0,且l1∥l2,则a=()A.1B.﹣1C.4D.﹣44.已知抛物线C:y2=8x的焦点为F,点M在抛物线C上,且|MF|=4,O为坐标原点,则|OM|=()A.4√2B.4C.5D.2√55.在正四棱锥P﹣ABCD中,AB=2,二面角P﹣CD﹣A的大小为π4,则该四棱锥的体积为()A.4B.2C.43D.236.已知⊙C:x2+2x+y2﹣1=0,直线mx+n(y﹣1)=0与⊙C交于A,B两点.若△ABC为直角三角形,则()A.mn=0B.m﹣n=0C.m+n=0D.m2﹣3n2=07.若关于x的方程log a x−a x=0(a>0且a≠1)有实数解,则a的值可以为()A.10B.e C.2D.5 48.已知直线l1,l2的斜率分别为k1,k2,倾斜角分别为α1,α2,则“cos(α1﹣α2)>0”是“k1k2>0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.已知{a n}是公比为q(q≠1)的等比数列,S n为其前n项和.若对任意的n∈N*,S n<a11−q恒成立,则()A .{a n }是递增数列B .{a n }是递减数列C .{S n }是递增数列D .{S n }是递减数列10.蜜蜂被誉为“天才的建筑师”.蜂巢结构是一种在一定条件下建筑用材面积最小的结构.右图是一个蜂房的立体模型,底面ABCDEF 是正六边形,棱AG ,BH ,CI ,DJ ,EK ,FL 均垂直于底面ABCDEF ,上顶由三个全等的菱形PGHI ,PIJK ,PKLG 构成.设BC =1,∠GPI =∠IPK =∠KPG =θ≈109°28',则上顶的面积为( )(参考数据:cosθ=−13,tan θ2=√2)A .2√2B .3√32C .9√22D .9√24二、填空题共5小题,每小题5分,共25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Unit 1 Back to School一、Word Test:20%1.书: oo2.笔记本: o e oo3.钢笔: e4.铅笔: e ci5.蜡笔: ayo6.铅笔盒: e ci a e7.书包: oo a8.擦子:e a e9.你的: o10.什么: ha二、Grammar Test:30%1.( )A: How are you? B: _____.(A) You are fine. (B) I am fine. (C) Your name is Beth2.( ) A: What is your name? B:_______.(A)Your name is Donny (B)You are Donny (C) My name is Peter3.( ) I ____ Donny. (A) am (B)is (C) are4.( ) __ it a book? (A) Is (B)Are (C) Am5.( ) This ___ my pen. (A)is (B)are (C) am6.( ) ___ you Beth? (A)Are (B)Is (C)Am7.( ) A: ___ is this? B: It is a pencil. (A)What (B)Who (C)How8.( ) This pen is white. Not ___. (A)fine (B)black (C) Donny9.( ) Your pen is in ___. (A)a pencil case (B)a book (C) a notebook.10.( ) A: How is this book? B: It is ___. (A) red (B) good (C) my book.三、Sentence Translation 50%1.这是一支铅笔,不是一支蜡笔。
Thi e , o ayo .2.你的名字是Beth吗?o a e Beth?3.它是一本书,不是一本笔记本oo , o o e oo .4.这是你的铅笔盒吗?thi o e_ci a_e?5.这是什么书?ha oo thi ?Unit 2 My Family一、Word Test:20%1.妈妈: othe2.爸爸: athe3.姐姐: i i e4.哥哥: i rothe_5.妹妹: i tle i e6.弟弟: i tle rothe7.奶奶: ra othe8.爷爷: ra athe 9.书oo 10.笔: e二、Grammar Test:30%1.( ) A:Are you ready? B:_____(A) Good. (B) Fine. (C) Yes.2.( ) A:Thank you! B:_____.(A) I am Peter. (B) You’re welcome.(C) He is my mother.3.( ) A:Who is he? B:_____(A) He is tall (B) He is a teacher (C) He is my brother.4.( ) A:What’s this? B:_____(A) I am fine. (B) It is a pen. (C) This is black.5.( ) A:Is it a pencil? B:_____ (A) Yes, it isn’t. (B) No, it is. (C) Yes, it is.6.( ) A: What’s your name? B:_____(A) I’m Donny. (B) He is Chip. (C) You are Beth.7.( ) ____ is she? B:She is my big sister. (A) Who (B) What (C) How8.( ) A:Is she your big sister? B:_____(A) No, she is. (B) Yes, she is. (C) No, it is.9.( ) A: Is this a notebook? B:_____(A) Yes, it is a pen. (B) Yes, it is. (C) No, it is.10.( ) A:Hi, I am Beth. B:_____(A) I’m Fine. (B) Thank you! (C) Hi, I’m Lisa.三、Sentence Translation 50%1.他是我的爸爸,他不是我的哥哥。
e y athe .e o y othe .2.你准备好了吗?准备好了。
A e o ea y? e .3.谢谢!不客气。
Tha o ! o a e el o e.4.她是谁?她是我的妈妈?Who she? She y othe .5.他是你爷爷吗?是的,他是。
e ou a班級: K 1 授课教师: _______ Student’s name:__________Unit 3 On a Picnic一、Word Test:20%1.米饭: ice:2.鸡肉: ch ck3.蛋糕: a e4.糖: y5.水: a e6.果汁: uice7.牛奶: 8.茶: ea 9.书: oo10.笔:二、Grammar Test:30%1.( ) A:Do you like chicken? B:____(A) Yes, I like. (B) Yes, I do. (C) Yes, you do.2.( ) A:Are you hungry? B:____(A) Yes, I am. (B) Yes, I are. (C) Yes, you are.3.( ) A:What do you like? B:____(A) I like juice. (B) I like chickens. (C) I like waters.4.( ) A:____? Yes, she is. B:____(A) Are your mother thirsty? (B) is your mother thirsty?(C) Is your mother thirsty?5.( ) A:Do you like candy? B:____(A)Yes, I am. (B) Yes, I are. (C) Yes, I do.6.( ) A:Do you like milk? B:____(A) No, I am not. (B) No, I not. (C) No, I do not like milk.7.( ) A:Do you like green cake? B:____(A) Yes, I do. (B) Yes, I am. (C) Yes, you do.8.( ) A:Do you have a yellow crayon? B:____(A) No, I do not have (B) No, I have not. (C) No, I do not.9.( ) A:Do you like tea? B:____(A) No, I like not. (B) No, I do not. (C) No, I do not.10.( ) A:Do I like cake? B:____ (A) Yes, I do. (B) Yes, I am. (C) Yes, I like.三、Sentence Translation 50%1.我喜欢糖果。
i e y.2.你喜欢鸡肉吗?o o i e ch ck ?3.我渴了。
thi y.4.我不饿。
o u ry.5.你喜欢什么?Test Score:班級: K 1 授课教师: Student’s name:Unit 1-3 Review Test一、Word Test:30%1.笔记本: o e oo2.铅笔: e ci3.蜡笔: ayo4.铅笔盒: e ci a e5.擦子:e a e6.妈妈: othe7.爸爸: athe8.姐姐: i i e9.弟弟: i tle rothe 10.奶奶: ra othe11.鸡肉: ch ck 12.蛋糕: a e 13.糖: y14.水: a e 15.牛奶:二、Grammar Test:30%1.( ) A:Thank you! B: .(A) I am Peter. (B) You’re welcome.(C) He is my mother.2.( ) A:Who is he? B: .(A) He is tall (B) He is a book. (C) He is my brother.3.( ) A:What’s your name? B:(A) I’m Donny. (B) He is Chip. (C) You are Beth.4.( ) A: is she? B:She is my big sister.(A) Who (B) What (C) How5.( ) A: Is this a notebook? B:(A) Yes, it is a pen. (B) Yes, it is. (C) No, it is.6.( ) A:Hi, I am Beth. B:(A) I’m Fine. (B) Thank you! (C) Hi, I’m Lisa.7.( ) A:What is your name? B: .(A)Your name is Donny (B)You are Donny (C) My name is Peter8.( ) A: is this? B:It is a pencil. (A)What (B)Who (C)How9.( ) This pen is white,not . (A)fine (B)black (C) Donny10.( ) Your pen is in . (A)a pencil case (B)a book (C) a notebook.11.( ) A:How is this book? It is . (A) red (B) good (C) my book.12.( ) A:Do you like chicken? B:(A) Yes, I like. (B) Yes, I do. (C) Yes, you do.13.( ) A:Do you like your mother? B:(A)Yes, I am. (B) Yes, I are. (C) Yes, I do.14.( ) A:Do you have milk? B:15.( ) siter is a girl.(A) He (B) His (C)He’s16.( ) Is that boy brother? (A)you (B) I (C)her17.( ) A:Do you like tea or juice? B:(A)Yes, I do. (B) No, I don’t. (C)I like juice.18.( ) A:Do I like cake? B:(A) Yes, I do. (B) Yes, I am. (C) Yes, I like.19. ( ) Is your siter?(A)he (B) she (C) it20. ( ) is my father. (A)He (B) She (C)It三、Sentence Translation 40%1.这是一支铅笔,不是一支蜡笔。