分别解释直线生成算法dda法、中点画线法和bresenham法的基本原理

合集下载

直线算法的技巧

直线算法的技巧

直线算法的技巧直线算法是计算机图形学中最基本的算法之一,用于在屏幕上绘制直线。

本文将就直线算法的一些技巧进行详细讲解。

直线算法通常需要一个起始点(x1, y1)和一个终止点(x2, y2),然后在这两个点之间绘制一条直线。

最基本的直线算法是数字微分分析法(DDA)和中点画线法(Bresenham算法)。

这两种算法的核心思想都是利用直线的斜率来进行像素点的逼近。

在使用DDA算法绘制直线时,可以通过增加步长来减少精度损失。

DDA算法的步骤如下:1. 计算斜率:计算直线的斜率m = (y2 - y1) / (x2 - x1)。

2. 判断斜率:判断斜率的绝对值是否在0和1之间。

如果是,我们可以选择在x上递增逼近y或在y上递增逼近x。

3. 增加步长:计算递增的步长,对于长度较大的直线,可以通过增加步长来减少计算数量。

4. 开始绘制:从起始点开始,根据斜率和步长计算下一个要绘制的像素点的坐标。

5. 终止条件:当当前的坐标达到终止点时,终止绘制。

中点画线法(Bresenham算法)是一种更高效的直线算法,它通过使用整数运算和位移来避免了浮点数运算,提高了绘制速度。

Bresenham算法的步骤如下:1. 初始化:初始化起始点(x1, y1)和终止点(x2, y2),并计算dx = x2 - x1 和dy = y2 - y1 。

2. 计算斜率:判断斜率m = dy / dx,以决定使用什么方式增加x和y的值(水平递增或垂直递增)。

3. 计算误差:计算误差项E = -0.5,并对dx和dy进行判断,确定每个点移动时误差项的变化。

若dx > dy,则E += dy;否则,E += dx。

4. 绘制像素点:从起始点开始,每次根据误差项判断,决定是在y上递增还是在x上递增,并根据计算出的新的坐标绘制像素点。

5. 更新误差项:在每次绘制完成后,根据dx和dy更新误差项的值。

6. 终止条件:当当前的坐标达到终止点时,终止绘制。

分别解释直线生成算法dda法,中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法,中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法,中点画线法和
bresenham法的基本原理
直线生成算法DDA法、中点画线法和Bresenham法的基本原理如下:
1. DDA直线生成算法:基于差分运算的直线生成算法。

通过将直线分割成
若干个相邻的像素点,并按照一定的步长进行逐点绘制,实现直线的绘制。

算法主要涉及到线性插值的思想,即根据已知的两点坐标,通过计算它们之间的差值,然后根据这个差值和步长来确定新的像素点的位置。

2. 中点画线法:一种线段绘制算法,从线段的起点和终点出发,按照一定的规则向终点逐步逼近,并在途中以控制变量的方式得出每个像素点的坐标,从而绘制出所需的线条。

具体实现中,通过计算线段斜率的变化情况,分为斜率小于1和大于等于1两种情况,并采用Bresenham的对称性原理,以中点的颜色来控制每个像素点的生长方向,从而获得较高的绘制效率和图像质量表现。

3. Bresenham算法:通过一系列的迭代来确定一个像素点是否应该被绘制。

对于一条从点(x1,y1)到点(x2,y2)的直线,首先计算出斜率k。

然后,通过比较每个像素点的y值到直线上的y值,来决定哪些像素点应该被绘制。

当斜率k大于等于1时,在x方向上迭代,而对于每个x值,计算出y值,并将像素点(x,y)绘制。

当斜率k小于1时,在y方向上迭代,而对于每个y值,计算出x值,并将像素点(x,y)绘制。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。

DDA算法 中点画线算法 Bresenham算法

DDA算法 中点画线算法 Bresenham算法

实验1直接绘制实验(提示:#表示Project的编号,##表示Project题目)学号姓名上交时间1.问题描述如何利用OpenGL实现直线光栅化的DDA算法、中点画线算法和Bresenham算法2.算法描述DDA算法:据直线公式y = kx + b来推导出来的,其关键之处在于如何设定单位步进,即一个方向的步进为单位步进,另一个方向的步进必然是小于1。

中点划线法:在画直线段的过程中,当前像素点为(xp ,yp ),下一个像素点有两种可选择点P1(xp +1,yp )或P2(xp +1,yp +1)。

若M=(xp +1,yp +0.5)为P1与P2之中点,Q 为P理想直线与x=xp +1垂线的交点。

当M在Q的下方,则P2应为下一个像素点;M在Q的上方,应取P1为下一个像素点。

Bresenham算法:过各行、各列像素中心构造一组虚拟网格线,按直线从起点到终点的顺序计算直线各垂直网格线的交点,然后确定该列像素中与此交点最近的像素。

实验结果成功运行三个算法,并且能转换出通用Bresenham算法。

3.分析与评论(分析每个算法的运行时间,对你的本实验的工作进行评论,同时也可以对老师提出建议。

)附录: Source Code(in C)#include <GL/glut.h> //需要正确安装GLUT,安装方法如预备知识中所述void myDisplay(void){glClearColor(0.0, 0.0, 0.0, 0.0);glClear(GL_COLOR_BUFFER_BIT);glColor3f (1.0f, 1.0f, 1.0f);glRectf(-0.5f, -0.5f, 0.5f, 0.5f);glBegin (GL_TRIANGLES);glColor3f (1.0f, 0.0f, 0.0f); glVertex2f (0.0f, 1.0f);glColor3f (0.0f, 1.0f, 0.0f); glVertex2f (0.8f, -0.5f);glColor3f (0.0f, 0.0f, 1.0f); glVertex2f (-0.8f, -0.5f);glEnd ();glColor3f(1,0,0);glBegin(GL_LINE_LOOP);glVertex2f (0.0f, 0.5f);glVertex2f (0.4f, -0.25f);glVertex2f (-0.4f, -0.25f);glEnd ();glPointSize(3);glBegin (GL_POINTS);glColor3f (1.0f, 0.0f, 0.0f); glVertex2f (-0.4f, -0.4f);glColor3f (0.0f, 1.0f, 0.0f); glVertex2f (0.0f, 0.0f);glColor3f (0.0f, 0.0f, 1.0f); glVertex2f (0.4f, 0.4f);glEnd ();glFlush();}int main(intargc, char *argv[]){glutInit(&argc, argv);glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);glutInitWindowPosition(100, 100);glutInitWindowSize(400, 400);glutCreateWindow("Hello World!");glutDisplayFunc(&myDisplay);glutMainLoop();return 0;}通用算法:int Sign(int n){if(n>0) return 1;if(n==0) return 0;if(n<0) return -1;}void Bresenham(int x0,int y0,int x1,int y1,void (*setPixel)(intx,int y)){ int x,y,dx,dy,s1,s2,temp=0,interchange;x=x0; y=y0;dx=abs(x1-x0); dy=abs(y1-y0);s1=Sign(x1-x0); s2=Sign(y1-y0);if(dy>dx){temp=dx; dx=dy; dy=temp;interchange=1;}elseinterchange=0;int e=2*dy-dx;for(inti=1;i<=dx;++i){setPixel(x,y);while(e>0){if(interchange==1)x=x+s1;elsey=y+s2;e=e-2*dx;}if(interchange==1)y=y+s2;elsex=x+s1;e=e+2*dy;}}(以上是实验报告的最小要求,以后可以会根据各个Project的不同情况增加内容。

直线生成算法DDA、Midpoint、Bresenham

直线生成算法DDA、Midpoint、Bresenham

1、直线生成算法1.算法分析1)DDA设直线两端点:P1(x1,y1)及 P0(x0,y0),dx=x1-x0,dy=y1-y0直线斜率:k=dy/dx直线方程: y=k*x+b有:y1=k*x1+b=k*x0+k*dx+b=y0+k*dx当dx=1时,有y1=y0+k算法复杂度:加法+取整优点:避免了y=k*x+b 方程中的浮点乘法,比直接用点斜式画线快 缺点:需浮点数加法及取整运算,不利于硬件实现.2)Midpoint当前像素点为P(xP,yP),下一个像素点有两种可选择点P1(xP+1,yP),P2(xP+1,yP+1)。

若M=(xP+1,yP+0.5)为P1与P2的中点,Q 为理想直线与x=xP+1垂线的交点。

x Pi=(xi, yi ) M Q P1 p2y当M 在Q 的上方时,应取P1为下一点;当M 在Q 的下方时,应取P2为下一点;直线段L (P0(x0,y0),P1(x1,y1)),用方程F (x,y )=ax+by+c=0表示 a=y0-y1,b=x1-x0,c=x0y1-x1y0有点与L 的关系:线上:F (x,y )=0上方:F (x,y )>0下方:F (x,y )<0判别式:d=F(M)=F(xP+1,yP+0.5)=a(xP+1)+b(yP+0.5)+cD 是xP,yP 的线性函数,可采用增量计算,提高运算效率:1)若d>=0,取P1,d1=d+a,增量为a2)若d<=,取P2,d2=d+a+b,增量为a+b可用2d 代替d 来摆脱浮点运算,写出仅含整数运算的算法3)Bresenhamy x F(x,y)=0 F(x,y)>0 F(x,y)<0 (x1,y1)(x0,y0)设直线方程为y=kx+b,有y1=y0+k(x-x0)=y0+k是否增1取决于误差项d的值,初始值d0=0X每增加1,有d=d+k令e=d-0.5,e0=-0.5,增量为k当e>=0时,取当前像素(xi,yi)的右上方像素(xi+1,yi+1),e 减小1;当e<0时,更接近于右方像素(xi+1,yi)。

计算机图形学-三种直线生成算法及圆的生成算法

计算机图形学-三种直线生成算法及圆的生成算法

计算机科学与技术学院2013-2014学年第一学期《计算机图形学》实验报告班级:110341C学号:110341328姓名:田野教师:惠康华成绩:实验(一):平面图形直线和圆的生成一、实验目的与要求1.在掌握直线和圆的理论基础上,分析和掌握DDA生成直线算法、中点生成直线算法、Bresenham生成直线算法、中点画圆算法、Bresenham圆生成算法。

2.熟悉VC6.0MFC环境,利用C语言编程实现直线和圆的生成。

3.比较直线生成三种算法的异同,明确其优点和不足。

同时了解圆的生成算法适用范围。

二、实验内容1.掌握VC6.0环境中类向导和消息映射函数的概念,并且为本次实验做好编程准备工作。

2. 用C语言进行编程实现上述算法,并且调试顺利通过。

3. 在MFC图形界面中显示不同算法下的图形,并且注意对临界值、特殊值的检验。

完成后保存相关图形。

三、算法分析➢DDA直线生成算法描述:1)给定一直线起始点(x0,y0)和终点(x1,y1)。

分别计算dx=x1-x0,dy=y1-y0。

2)计算直线的斜率k=dy/dx。

当|k|<1时转向3);当|k|<=1时,转向4);3)当x每次增加1时,y增加k。

即(xi,yi)→(xi+1,yi+k)。

直到xi增加到x1。

并且每次把得到的坐标值利用系统函数扫描显示出来。

但要注意对y坐标要进行int(y+0.5)取整运算。

结束。

4)对y每次增加1时,x增加1/k,即(xi,yi)→(xi+1/k,yi+1)。

直到yi增加到y1. 并且每次把得到的坐标值利用系统函数扫描显示出来。

但要注意对x坐标要进行int(x+0.5)取整运算。

结束。

➢中点生成算法描述:算法基本思想:取当前点(xp,yp),那么直线下一点的可能取值只能近的正右方点P1(xp+1,yp)或者P2(xp+1,yp+1)。

为了确定好下一点,引入了这两点中的中点M(xp+1,yp+0.5)。

这时可以把改点带入所在直线方程,可以观察该中点与直线的位置关系。

简述画直线的几种操作方式

简述画直线的几种操作方式

简述画直线的几种操作方式一、概述画直线是计算机图形学中的基本操作之一,通常用于绘制线条、边框等。

在计算机图形学中,有多种方式可以实现画直线的功能。

本文将介绍几种常见的画直线操作方式。

二、DDA算法DDA算法是一种基本的画直线算法,它采用逐点比较的方式来确定像素点的位置。

具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,不断计算下一个像素点的位置,并在屏幕上绘制。

优点:实现简单,适用于硬件实现。

缺点:精度不高,容易出现锯齿状。

三、Bresenham算法Bresenham算法是另一种常见的画直线算法,它采用整数运算来确定像素点位置。

具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,根据当前位置和误差值选择下一个像素点,并在屏幕上绘制。

优点:精度高,画出的直线平滑。

缺点:实现复杂,不适用于硬件实现。

四、中点画线算法中点画线算法是一种基于Bresenham算法的改进版,它通过引入中点来减少计算量。

具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,根据当前位置和误差值选择下一个像素点,并在屏幕上绘制;4. 在误差值发生变化时,更新中点的位置。

优点:精度高,计算量较小。

缺点:实现复杂,不适用于硬件实现。

五、直线段裁剪直线段裁剪是指将一条直线段截取为位于窗口内部的一段直线。

常见的裁剪算法有Cohen-Sutherland算法和Liang-Barsky算法。

Cohen-Sutherland算法将窗口分为九个区域,并通过比较端点与窗口边界的关系来确定哪些部分需要保留。

Liang-Barsky算法则通过计算交点来确定截取后的直线段。

六、总结以上介绍了几种常见的画直线操作方式,包括DDA算法、Bresenham算法、中点画线算法以及直线段裁剪算法。

《计算机图形学》实验指导书

《计算机图形学》实验指导书

计算机图形学实验指导书袁科计算机技术实验中心目录实验一实现DDA、中点画线算法和Bresenham画线算法 (24)实验二实现Bezier曲线 (25)实验三实现B样条曲线 (26)实验四实现多边形填充的边界标志算法 (27)实验五实现裁剪多边形的Cohen-Sutherland算法 (28)实验六二维图形的基本几何变换 (30)实验七画图软件的编制 (31)实验一实现DDA、中点画线算法和Bresenham画线算法【实验目的】1、掌握直线的多种生成算法;2、掌握二维图形显示原理。

【实验环境】VC++6.0/ BC【实验性质及学时】验证性实验,2学时,必做实验【实验内容】利用任意的一个实验环境,编制源程序,分别实现直线的三种生成算法,即数字微分法(DDA)、中点画线法以及Bresenham画线算法。

【实验原理】1、数字微分法(Digital Differential Analyzer,DDA)算法思想:基于直线的微分方程来生成直线。

ε=1/max(|△x|,|△y|)max(|△x|,|△y|)=|△x|,即|k|≤1 的情况:max(|△x|,|△y|)=|△y|,此时|k|≥1:2、中点画线法算法思想:每次在最大位移方向上走一步,另一方向是否走步取决于误差项的判断。

3、Bresenham画线算法算法思想:其基本思想同中点算法一样,即每次在最大位移方向上走一步,而另一个方向是否走步取决于误差项的判断。

【实验要求】1.上交源程序;2.上交实验报告,实验报告内容如下:(1) 实验名称(2) 实验目的(3) 算法实现的设计方法及程序流程图(4) 程序结果分析【分析与思考】(1) 上述所阐述的三个算法,其基本算法只能适用于直线的斜率(|K|<=1) 的情形,如何将上述算法进行推广,使其能够处理任意斜率的直线?(2) 计算机显示屏幕的坐标圆心在哪里,与我们平时的习惯有什么差异,如何协调二者?实验二 实现Bezier 曲线【实验目的】1、掌握Bezier 曲线的定义;2、能编程实现N 次Bezier 曲线的绘制与显示。

计算机图形学直线DDA算法和Bresenham算法

计算机图形学直线DDA算法和Bresenham算法
{
Graphicsgraphics =this.CreateGraphics();
bmp =newBitmap(this.ClientRectangle.Width,this.ClientRectangle.Height);
DDAline(27, 19, 200, 183, bmp);
graphics.DrawImage(bmp,newRectangle(0, 0,this.ClientRectangle.Width,this.ClientRectangle.Height));
{
x++;
y = x + k;
}
else
{
y++;
x = y + (1 / k);
}
{
bmp.SetPixel(x, y,Color.Red);
}
}
}
privatevoidbutton1_Click(objectsender,EventArgse)
{
Graphicsgraphics =this.CreateGraphics();
④代码与运行结果;
usingSystem;
usingSystem.Collections.Generic;
ponentModel;
usingSystem.Data;
usingSystem.Drawing;
usingSystem.Linq;
usingSystem.Text;
③实验步骤:
1、在C#环境下,设计界面,添加4个文本框,三个命令按钮;
2、在代码编写窗口,编写DDA、中点直线生成算法、Bresenham直线生成算法子程序,子程序名分别设为DDALine,MidPointLine和BresenhamLine;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分别解释直线生成算法dda法、中点画线法和
bresenham法的基本原理
DDA直线生成算法、中点画线法和Bresenham法都是计算机图形学中用于生成直线的算法。

以下是这三种算法的基本原理:
1.DDA直线生成算法(Digital Differential Analyzer):
DDA算法是一种基于差分运算的直线生成算法。

其基本原理是,通过计算直线起点和终点之间的差值(横向差值dx 和纵向差值dy),并根据步长来决定下一个像素点的位置。

算法首先确定差值中绝对值较大的一方作为基准,步长设为1,另一方则按比例进行调整,以保持线段的斜率不变。

在实现过程中,DDA算法需要遍历每一个像素点,根据差值的正负和大小来确定新像素点的位置。

2.中点画线法:
中点画线法的基本原理是,通过计算线段上当前像素点与相邻两个像素点构成的线段与理想直线的距离,来决定下一个像素点的位置。

具体实现时,设定线段的中点为M,理想直线与线段的交点为Q。

通过比较M和Q的位置关系来确定下一个像素点:若M在Q上方,则取上方的像素点为下一个点;若M在Q下方,则取下方的像素点为下一个点;若M与Q重合,则可任意选择上方或下方的像素点。

中点
画线法以中点M作为判别标志,逐点生成直线。

3.Bresenham法:
Bresenham算法的原理是基于直线的斜率和截距来计算每个像素点的位置。

在计算机屏幕上,每个像素点都有一个坐标值。

Bresenham算法通过计算直线上每个像素点的坐标值来绘制直线,避免了使用浮点数运算,从而提高了计算效率。

在实现过程中,Bresenham算法根据直线的斜率以及当前像素点的位置,计算出下一个像素点的位置,并逐点绘制出直线。

相关文档
最新文档