DDA算法 中点画线算法 Bresenham算法
习题2第1题

习题21、 描述直线扫描的DDA 算法、中点画线算法和Bresenham 算法,并用程序实现出来。
答:(1)DDA 算法:已知过端点),(000y x P ,),(111y x P 的直线段),(10P P L ;直线斜率为y y k 011--=。
画线过程为:从x 的左端点x 0开始,向x 右端点步进,步长=1(像素),按b kx y +=计算相应的y 坐标,并取像素点))(,(y round x 作为当前点的坐标。
但这样做,计算每一个点需要做一个乘法、一个加法。
设步长为x ∆,有x x xi i ∆+=+1,于是x k b x k k b k y x x yii i i ∆+=+∆+=+=++11当1=∆x 时,则有k y yii +=+1。
即x每1,y 递增k (即直线斜率)。
这样,算法就由一个乘法和一个加法减少为一个加法。
DDA 画线算法程序如下:void DDALine(int x0,int y0,int x1,int y1,int color) { int x; float dx,dy,y,k; dx=x1-x0, dy=y1-y0; k=dy/dx, y=y0; for(x=x0;x<=x1;x++) { drawpixel(x,int(y+0.5).color); y=y+k; } }(2)中点画线算法:通过观察可以发现,画直线段的过程中,当前像素点为),(yx pp,下一个像素点有两种可选择点),1(1y xp p p+或)1,1(2++y xp pp。
若)5.0,1(++=y x pp M 为P P 21和的中点,Q 为理想直线与1+=xpx 垂线的交点。
当M 在Q 的下方时,p2应为下一个像素点;当M 在Q 的上方时,应取p1为下一点。
对直线段)),(),,((111y x p y x p L ,采用方程),(=++=c by ax y x F 表示,其中yx y x x x y y c b a 01111,,-=-=-=。
直线算法的技巧

直线算法的技巧直线算法是计算机图形学中最基本的算法之一,用于在屏幕上绘制直线。
本文将就直线算法的一些技巧进行详细讲解。
直线算法通常需要一个起始点(x1, y1)和一个终止点(x2, y2),然后在这两个点之间绘制一条直线。
最基本的直线算法是数字微分分析法(DDA)和中点画线法(Bresenham算法)。
这两种算法的核心思想都是利用直线的斜率来进行像素点的逼近。
在使用DDA算法绘制直线时,可以通过增加步长来减少精度损失。
DDA算法的步骤如下:1. 计算斜率:计算直线的斜率m = (y2 - y1) / (x2 - x1)。
2. 判断斜率:判断斜率的绝对值是否在0和1之间。
如果是,我们可以选择在x上递增逼近y或在y上递增逼近x。
3. 增加步长:计算递增的步长,对于长度较大的直线,可以通过增加步长来减少计算数量。
4. 开始绘制:从起始点开始,根据斜率和步长计算下一个要绘制的像素点的坐标。
5. 终止条件:当当前的坐标达到终止点时,终止绘制。
中点画线法(Bresenham算法)是一种更高效的直线算法,它通过使用整数运算和位移来避免了浮点数运算,提高了绘制速度。
Bresenham算法的步骤如下:1. 初始化:初始化起始点(x1, y1)和终止点(x2, y2),并计算dx = x2 - x1 和dy = y2 - y1 。
2. 计算斜率:判断斜率m = dy / dx,以决定使用什么方式增加x和y的值(水平递增或垂直递增)。
3. 计算误差:计算误差项E = -0.5,并对dx和dy进行判断,确定每个点移动时误差项的变化。
若dx > dy,则E += dy;否则,E += dx。
4. 绘制像素点:从起始点开始,每次根据误差项判断,决定是在y上递增还是在x上递增,并根据计算出的新的坐标绘制像素点。
5. 更新误差项:在每次绘制完成后,根据dx和dy更新误差项的值。
6. 终止条件:当当前的坐标达到终止点时,终止绘制。
分别解释直线生成算法dda法,中点画线法和bresenham法的基本原理

分别解释直线生成算法dda法,中点画线法和
bresenham法的基本原理
直线生成算法DDA法、中点画线法和Bresenham法的基本原理如下:
1. DDA直线生成算法:基于差分运算的直线生成算法。
通过将直线分割成
若干个相邻的像素点,并按照一定的步长进行逐点绘制,实现直线的绘制。
算法主要涉及到线性插值的思想,即根据已知的两点坐标,通过计算它们之间的差值,然后根据这个差值和步长来确定新的像素点的位置。
2. 中点画线法:一种线段绘制算法,从线段的起点和终点出发,按照一定的规则向终点逐步逼近,并在途中以控制变量的方式得出每个像素点的坐标,从而绘制出所需的线条。
具体实现中,通过计算线段斜率的变化情况,分为斜率小于1和大于等于1两种情况,并采用Bresenham的对称性原理,以中点的颜色来控制每个像素点的生长方向,从而获得较高的绘制效率和图像质量表现。
3. Bresenham算法:通过一系列的迭代来确定一个像素点是否应该被绘制。
对于一条从点(x1,y1)到点(x2,y2)的直线,首先计算出斜率k。
然后,通过比较每个像素点的y值到直线上的y值,来决定哪些像素点应该被绘制。
当斜率k大于等于1时,在x方向上迭代,而对于每个x值,计算出y值,并将像素点(x,y)绘制。
当斜率k小于1时,在y方向上迭代,而对于每个y值,计算出x值,并将像素点(x,y)绘制。
以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。
简述画直线的几种操作方式

简述画直线的几种操作方式一、概述画直线是计算机图形学中的基本操作之一,通常用于绘制线条、边框等。
在计算机图形学中,有多种方式可以实现画直线的功能。
本文将介绍几种常见的画直线操作方式。
二、DDA算法DDA算法是一种基本的画直线算法,它采用逐点比较的方式来确定像素点的位置。
具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,不断计算下一个像素点的位置,并在屏幕上绘制。
优点:实现简单,适用于硬件实现。
缺点:精度不高,容易出现锯齿状。
三、Bresenham算法Bresenham算法是另一种常见的画直线算法,它采用整数运算来确定像素点位置。
具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,根据当前位置和误差值选择下一个像素点,并在屏幕上绘制。
优点:精度高,画出的直线平滑。
缺点:实现复杂,不适用于硬件实现。
四、中点画线算法中点画线算法是一种基于Bresenham算法的改进版,它通过引入中点来减少计算量。
具体实现过程如下:1. 计算出两个端点之间的斜率k;2. 根据斜率k确定每个像素点在x轴和y轴上移动的距离;3. 从起始点开始,根据当前位置和误差值选择下一个像素点,并在屏幕上绘制;4. 在误差值发生变化时,更新中点的位置。
优点:精度高,计算量较小。
缺点:实现复杂,不适用于硬件实现。
五、直线段裁剪直线段裁剪是指将一条直线段截取为位于窗口内部的一段直线。
常见的裁剪算法有Cohen-Sutherland算法和Liang-Barsky算法。
Cohen-Sutherland算法将窗口分为九个区域,并通过比较端点与窗口边界的关系来确定哪些部分需要保留。
Liang-Barsky算法则通过计算交点来确定截取后的直线段。
六、总结以上介绍了几种常见的画直线操作方式,包括DDA算法、Bresenham算法、中点画线算法以及直线段裁剪算法。
《计算机图形学》实验指导书

计算机图形学实验指导书袁科计算机技术实验中心目录实验一实现DDA、中点画线算法和Bresenham画线算法 (24)实验二实现Bezier曲线 (25)实验三实现B样条曲线 (26)实验四实现多边形填充的边界标志算法 (27)实验五实现裁剪多边形的Cohen-Sutherland算法 (28)实验六二维图形的基本几何变换 (30)实验七画图软件的编制 (31)实验一实现DDA、中点画线算法和Bresenham画线算法【实验目的】1、掌握直线的多种生成算法;2、掌握二维图形显示原理。
【实验环境】VC++6.0/ BC【实验性质及学时】验证性实验,2学时,必做实验【实验内容】利用任意的一个实验环境,编制源程序,分别实现直线的三种生成算法,即数字微分法(DDA)、中点画线法以及Bresenham画线算法。
【实验原理】1、数字微分法(Digital Differential Analyzer,DDA)算法思想:基于直线的微分方程来生成直线。
ε=1/max(|△x|,|△y|)max(|△x|,|△y|)=|△x|,即|k|≤1 的情况:max(|△x|,|△y|)=|△y|,此时|k|≥1:2、中点画线法算法思想:每次在最大位移方向上走一步,另一方向是否走步取决于误差项的判断。
3、Bresenham画线算法算法思想:其基本思想同中点算法一样,即每次在最大位移方向上走一步,而另一个方向是否走步取决于误差项的判断。
【实验要求】1.上交源程序;2.上交实验报告,实验报告内容如下:(1) 实验名称(2) 实验目的(3) 算法实现的设计方法及程序流程图(4) 程序结果分析【分析与思考】(1) 上述所阐述的三个算法,其基本算法只能适用于直线的斜率(|K|<=1) 的情形,如何将上述算法进行推广,使其能够处理任意斜率的直线?(2) 计算机显示屏幕的坐标圆心在哪里,与我们平时的习惯有什么差异,如何协调二者?实验二 实现Bezier 曲线【实验目的】1、掌握Bezier 曲线的定义;2、能编程实现N 次Bezier 曲线的绘制与显示。
计算机图形学直线DDA算法和Bresenham算法

Graphicsgraphics =this.CreateGraphics();
bmp =newBitmap(this.ClientRectangle.Width,this.ClientRectangle.Height);
DDAline(27, 19, 200, 183, bmp);
graphics.DrawImage(bmp,newRectangle(0, 0,this.ClientRectangle.Width,this.ClientRectangle.Height));
{
x++;
y = x + k;
}
else
{
y++;
x = y + (1 / k);
}
{
bmp.SetPixel(x, y,Color.Red);
}
}
}
privatevoidbutton1_Click(objectsender,EventArgse)
{
Graphicsgraphics =this.CreateGraphics();
④代码与运行结果;
usingSystem;
usingSystem.Collections.Generic;
ponentModel;
usingSystem.Data;
usingSystem.Drawing;
usingSystem.Linq;
usingSystem.Text;
③实验步骤:
1、在C#环境下,设计界面,添加4个文本框,三个命令按钮;
2、在代码编写窗口,编写DDA、中点直线生成算法、Bresenham直线生成算法子程序,子程序名分别设为DDALine,MidPointLine和BresenhamLine;
DDA、Bresenham、Midpoint算法画直线报告1

课程名称计算机图形学实验名称DDA、Bresenham、Midpoint算法画直线一、实验目的及要求(1)理解窗口到视区的变换(2)理解MFC创建工程实现动画的原理(3) 学习MFC类库的概念与结构(4)学习使用VC++编写Win32应用的方法(单文档,多文档,对话框)(5)学习使用MFC的图形编程软件环境:Microsoft studio visual C++ 6.0 MFC硬件:计算机二、实验内容(1)添加代码实现DDA算法画直线(2)添加代码实现Bresenham算法画直线(3)添加代码实现Midpointline画直线(4) 添加代码实现画圆三、实验步骤选择工作环境添加工程名选择程序类型前几步省略全选默认值选择resource-Menu添加不同函数画直线和圆为每个函数建立类向导在fileview中打开source filesview.cpp输入各函数代码并编译运行无误四、实验源码// 直线和圆View.cpp : implementation of the CMyView class//#include "stdafx.h"#include "直线和圆.h"#include "直线和圆Doc.h"#include "直线和圆View.h"#ifdef _DEBUG#define new DEBUG_NEW#undef THIS_FILEstatic char THIS_FILE[] = __FILE__;#endif///////////////////////////////////////////////////////////////////////////// // CMyViewIMPLEMENT_DYNCREATE(CMyView, CView)BEGIN_MESSAGE_MAP(CMyView, CView)//{{AFX_MSG_MAP(CMyView)ON_COMMAND(ID_DDALINE, OnDdaline)ON_COMMAND(ID_MIDPOINTLINE, OnMidpointline)ON_COMMAND(ID_BRESENHAMLINE, OnBresenhamline)ON_COMMAND(ID_MIDPOINTCIRCLE, OnMidpointcircle)//}}AFX_MSG_MAP// Standard printing commandsON_COMMAND(ID_FILE_PRINT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_DIRECT, CView::OnFilePrint)ON_COMMAND(ID_FILE_PRINT_PREVIEW, CView::OnFilePrintPreview)END_MESSAGE_MAP()///////////////////////////////////////////////////////////////////////////// // CMyView construction/destructionCMyView::CMyView(){// TODO: add construction code here}CMyView::~CMyView(){}BOOL CMyView::PreCreateWindow(CREATESTRUCT& cs){// TODO: Modify the Window class or styles here by modifying// the CREATESTRUCT csreturn CView::PreCreateWindow(cs);}///////////////////////////////////////////////////////////////////////////// // CMyView drawingvoid CirclePoints(int x,int y,int color ,CDC* pDC ){pDC->SetPixel(x,y,color);pDC->SetPixel(y,x,color);pDC->SetPixel(-x,y,color);pDC->SetPixel(y,-x,color);pDC->SetPixel(x,-y,color);pDC->SetPixel(-y,x,color);pDC->SetPixel(-x,-y,color);pDC->SetPixel(-y,-x,color);}void Midpointcircle(int r,int color,CDC* pDC){int x,y;float d;x=0;y=r;d=1.25-r;CirclePoints(x,y,color,pDC);pDC->SetViewportOrg(200,100);while(x<=y){if(d<0)d+=2*x+3;else{d+=2*(x-y)+5; y--;}x++;CirclePoints(x,y,color,pDC);}}void DDA(int x0,int y0,int x1,int y1,int color,CDC* pDC){int x;float dx,dy,y,k;dx=x1-x0;dy=y1=y0;k=dy/dx;y=y0;for(x=x0;x<=x1;x++){pDC->SetPixel(x,int (y+0.5), color);y=y+k;}}void Bresenhamline(int x0,int y0,int x1,int y1,int color,CDC* pDC) {int x,y,dx,dy;float k,e;dx=x1-x0;dy=y1-y0 ;k=dy/dx;e=-0.5;x=x0;y=y0;for(int i=0;i<=dx;i++){pDC->SetPixel(x,y,color);x=x+1;e=e+k;if(e>=0){y++;e=e-1;}}}void Midpointline(int x0,int y0,int x1,int y1,int color,CDC* pDC) {int a,b,d1,d2,d,x,y;a=y0-y1;b=x1-x0;d=2*a+b;d1=2*a;d2=2*(a+b);x=x0;y=y0;pDC->SetPixel(x,y,color);while (x<x1){if(d<0){x++;y++;d+=d2;}else{x++;d+=d1;}pDC->SetPixel(x,y,color);}}void CMyView::OnDraw(CDC* pDC){CMyDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);Midpointcircle(100,RGB(0,168,168),pDC) ;DDA(0,0, 250,300,RGB (255,0,255),pDC);Midpointline(0,0, 500,200,RGB (255,255,0),pDC);Bresenhamline(0,0, 150,600,RGB (168,200,168),pDC);// TODO: add draw code for native data here}///////////////////////////////////////////////////////////////////////////// // CMyView printingBOOL CMyView::OnPreparePrinting(CPrintInfo* pInfo){// default preparationreturn DoPreparePrinting(pInfo);}void CMyView::OnBeginPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add extra initialization before printing}void CMyView::OnEndPrinting(CDC* /*pDC*/, CPrintInfo* /*pInfo*/){// TODO: add cleanup after printing}///////////////////////////////////////////////////////////////////////////// // CMyView diagnostics#ifdef _DEBUGvoid CMyView::AssertValid() const{CView::AssertValid();}void CMyView::Dump(CDumpContext& dc) const{CView::Dump(dc);}CMyDoc* CMyView::GetDocument() // non-debug version is inline{ASSERT(m_pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc)));return (CMyDoc*)m_pDocument;}#endif //_DEBUG///////////////////////////////////////////////////////////////////////////// // CMyView message handlersvoid CMyView::OnDdaline(){// TODO: Add your command handler code here}void CMyView::OnMidpointline(){// TODO: Add your command handler code here}void CMyView::OnBresenhamline(){// TODO: Add your command handler code here}void CMyView::OnMidpointcircle(){// TODO: Add your command handler code here}五.实验结果六. 实验总结分析通过做这个实验学会了使用这个软件,也了解到指针的用法,在做之初由于对指针用法的不熟悉,所以遇到很多问题,从提示中弹出的CDC类,通过对它的学习,我将源码中的drawpixel改写成调用CDC类的pDC指针的用法,再插入pDC->SetViewportOrg(200,100);实现了圆心的移动,实现了对直线的绘制,现在对它的操作已基本掌握了。
直线和圆弧的生成算法

第3章直线和圆弧的生成算法3.1直线图形的生成算法数学上的直线是没有宽度、由无数个点构成的集合,显然,光栅显示器只能近地似显示直线。
当我们对直线进行光栅化时,需要在显示器有限个像素中,确定最佳逼近该直线的一组像素,并且按扫描线顺序,对这些像素进行写操作,这个过程称为用显示器绘制直线或直线的扫描转换。
由于在一个图形中,可能包含成千上万条直线,所以要求绘制算法应尽可能地快。
本节我们介绍一个像素宽直线绘制的三个常用算法:数值微分法(DDA、中点画线法和Bresenham算法。
3.1.1逐点比较法3.1.2数值微分(DDA)法设过端点P o(x o , y°)、R(X1 , y1)的直线段为L( P0 , R),则直线段L的斜率为—沁生要在显示器显示厶必须确定最佳逼近Z的掃素集合。
我们从L的起点P0的横坐标X o向L的终点R的横坐标X1步进,取步长=1(个像素),用L 的直线方程y=kx+b计算相应的y坐标,并取像素点(x,round( y))作为当前点的坐标。
因为:y i+1 = kX i+1+b= k1X i +b+k x= y i+k x所以,当x =1; y i+1 = y i+k。
也就是说,当x每递增1,y递增k(即直线斜率)。
根据这个原理,我们可以写出DDA( Digital Differential Analyzer) 画线算法程序。
DDA画线算法程序: void DDALi ne(int xO,i nt yO,i nt x1,i nt y1,i nt color){ int x ;float dx, dy, y, k ;dx = x1-x0 ;dy=y1-y0 ;k=dy/dx, ;y=yO;for (x=xO ;x< x1 ;x++){ drawpixel (x, i nt(y+0.5), color);y=y+k;}}注意:我们这里用整型变量color表示像素的颜色和灰度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1直接绘制实验
(提示:#表示Project的编号,##表示Project题目)
学号姓名上交时间
1.问题描述
如何利用OpenGL实现直线光栅化的DDA算法、中点画线算法和Bresenham算法2.算法描述
DDA算法:据直线公式y = kx + b来推导出来的,其关键之处在于如何设定单位步进,即一个方向的步进为单位步进,另一个方向的步进必然是小于1。
中点划线法:在画直线段的过程中,当前像素点为(xp ,yp ),下一个像素点有两种可选择点P1(xp +1,yp )或P2(xp +1,yp +1)。
若M=(xp +1,yp +0.5)为P1与P2之中点,Q 为P理想直线与x=xp +1垂线的交点。
当M在Q的下方,则P2应为下一个像素点;
M在Q的上方,应取P1为下一个像素点。
Bresenham算法:过各行、各列像素中心构造一组虚拟网格线,按直线从起点到终点的顺序计算直线各垂直网格线的交点,然后确定该列像素中与此交点最近
的像素。
实验结果
成功运行三个算法,并且能转换出通用Bresenham算法。
3.分析与评论
(分析每个算法的运行时间,对你的本实验的工作进行评论,同时也可以对老师提出建议。
)
附录: Source Code(in C)
#include <GL/glut.h> //需要正确安装GLUT,安装方法如预备知识中所述void myDisplay(void)
{
glClearColor(0.0, 0.0, 0.0, 0.0);
glClear(GL_COLOR_BUFFER_BIT);
glColor3f (1.0f, 1.0f, 1.0f);
glRectf(-0.5f, -0.5f, 0.5f, 0.5f);
glBegin (GL_TRIANGLES);
glColor3f (1.0f, 0.0f, 0.0f); glVertex2f (0.0f, 1.0f);
glColor3f (0.0f, 1.0f, 0.0f); glVertex2f (0.8f, -0.5f);
glColor3f (0.0f, 0.0f, 1.0f); glVertex2f (-0.8f, -0.5f);
glEnd ();
glColor3f(1,0,0);
glBegin(GL_LINE_LOOP);
glVertex2f (0.0f, 0.5f);
glVertex2f (0.4f, -0.25f);
glVertex2f (-0.4f, -0.25f);
glEnd ();
glPointSize(3);
glBegin (GL_POINTS);
glColor3f (1.0f, 0.0f, 0.0f); glVertex2f (-0.4f, -0.4f);
glColor3f (0.0f, 1.0f, 0.0f); glVertex2f (0.0f, 0.0f);
glColor3f (0.0f, 0.0f, 1.0f); glVertex2f (0.4f, 0.4f);
glEnd ();
glFlush();
}
int main(intargc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);
glutInitWindowPosition(100, 100);
glutInitWindowSize(400, 400);
glutCreateWindow("Hello World!");
glutDisplayFunc(&myDisplay);
glutMainLoop();
return 0;
}
通用算法:
int Sign(int n){
if(n>0) return 1;
if(n==0) return 0;
if(n<0) return -1;
}
void Bresenham(int x0,int y0,int x1,int y1,void (*setPixel)(intx,int y)){ int x,y,dx,dy,s1,s2,temp=0,interchange;
x=x0; y=y0;
dx=abs(x1-x0); dy=abs(y1-y0);
s1=Sign(x1-x0); s2=Sign(y1-y0);
if(dy>dx){
temp=dx; dx=dy; dy=temp;
interchange=1;
}
else
interchange=0;
int e=2*dy-dx;
for(inti=1;i<=dx;++i){
setPixel(x,y);
while(e>0){
if(interchange==1)
x=x+s1;
else
y=y+s2;
e=e-2*dx;
}
if(interchange==1)
y=y+s2;
else
x=x+s1;
e=e+2*dy;
}
}
(以上是实验报告的最小要求,以后可以会根据各个Project的不同情况增加内容。
上交时排版要美观。
)。