程序框图高考真题

合集下载

程序框图练习题

程序框图练习题

2010~2014年高考真题备选题库第1节算法与程序框图1.(2014新课标全国Ⅰ,5分)执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=( )A. B.C. D.解析:选D 第一次循环:M=,a=2,b=,n=2;第二次循环:M=,a =,b=,n=3;第三次循环:M=,a=,b=,n=4,则输出M=,选D.2.(2014新课标全国Ⅱ,5分)执行如图所示的程序框图,如果输入的x,t 均为2,则输出的S=( )A.4 B.5C.6 D.7解析:选D k=1≤2,执行第一次循环,M=×2=2,S=2+3=5,k=1+1=2;k=2≤2,执行第二次循环,M=×2=2,S=2+5=7,k=2+1=3;k=3>2,终止循环,输出S=7.故选D.3.(2014安徽,5分)如图所示,程序框图(算法流程图)的输出结果是( )A.34 B.55C.78 D.89解析:选B 执行该程序框图(算法流程图)可得x=1,y=1,z=2;x=1,y =2,z=3;x=2,y=3,z=5;x=3,y=5,z=8;x=5,y=8,z=13;x=8,y=13,z=21;x=13,y=21,z=34;x=21,y=34,z=55,跳出循环.4.(2014福建,5分)阅读如图所示的程序框图,运行相应的程序,输出的n 的值为 ( )A.1 B.2C.3 D.4解析:选B 当n=1时,21>12成立,当n=2时,22>22不成立,所以输出n=2,故选B.5.(2014北京,5分)执行如图所示的程序框图,输出的S值为( )A.1 B.3C.7 D.15解析:选C 列表如下:S 0 1 3 7k 0 1 2 3 故输出的S值是7.6.(2014湖南,5分)执行如图所示的程序框图,如果输入的t∈[-2,2],则输出的S 属于( )A.[-6,-2] B.[-5,-1]C.[-4,5] D.[-3,6]解析:选D 由程序框图可知S是分段函数,且S=其值域为(-2,6]∪[-3,-1]=[-3,6],故选D.7.(2014陕西,5分)根据程序框图,对大于2的整数N ,输出的数列的通项公式是( )A.an=2n B.an=2(n-1)C.an=2n D.an=2n-1解析:选C 由初始值的特征可知,输出的数列首项为2,又ai=2×S,S=ai,i=i+1,∴=2,则输出的数列是首项为2,公比为2的等比数列,则通项公式为an=2n.8.(2014四川,5分)执行如图的程序框图,如果输入的x,y∈R,那么输出的S的最大值为( )A.0 B.1C.2 D.3解析:选C 分两种情况,当x,y满足x≥0,y≥0,x+y≤1时,运用线性规划知识先画出可行域,再将直线2x+y=0平移至过点(1,0),得到S的最大值为2;当x,y不满足x≥0,y≥0,x+y≤1时,S等于1,综合两种情况知应选C.9.(2014重庆,5分)执行如图所示的程序框图,则输出s的值为( )A.10 B.17C.19 D.36解析:选C 执行程序:k=2,s=0;s=2,k=3;s=5,k=5;s=10,k=9;s=19,k=17,此时不满足条件k<10,终止循环,输出结果为s=19,选C.10.(2014江西,5分)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为( )A.7 B.9C.10 D.11解析:选B i=1,S=0,第1次运行,S=0+lg=-lg 3>-1;第2次运行,i=3,S=lg+lg=lg=-lg 5>-1;第3次运行,i=5,S=lg+lg=lg=-lg 7>-1;第4次运行,i=7,S=lg+lg=lg=-lg 9>-1;第5次运行,i=9,S=lg+lg=lg=-lg 11<-1,跳出循环,输出i=9.11.(2014山东,5分)执行如图所示的程序框图,若输入的 x的值为1,则输出的 n的值为________.解析:12-4×1+3≤0,x=2,n=1;22-4×2+3≤0,x=3,n=2;32-4×3+3≤0,x=4,n=3,42-4×4+3>0,跳出循环,此时输出n的值,故输出的n的值为3.答案:312.(2014江苏,5分)如图是一个算法流程图,则输出的n的值是________.解析:该流程图共运行5次,各次2n的值分别是2,4,8,16,32,所以输出的n的值是5.答案:513.(2014浙江,5分)若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.解析:S=0,i=1;S=1,i=2;S=4,i=3;S=11,i=4;S=26,i=5;S=57,i=6,此时S>n,所以输出的结果为6.答案:614.(2014辽宁,5分)执行如图所示的程序框图,若输入n=3 ,则输出T=________.解析:输入n=3,则i=0,S=0,T=0,i≤n成立,故i=1,S=0+1=1,T=0+1=1,此时i=1≤n成立,故i=2,S=1+2=3,T=1+3=4,此时i =2≤n成立,故i=3,S=3+3=6,T=4+6=10,此时i=3≤n成立,故i=4,S=6+4=10,T=10+10=20,此时i=4≤n不成立,故输出T=20.答案:2015.(2014天津,5分)阅读如图所示的框图,运行相应的程序,输出 S的值为________.解析:S=0,n=3,第1次运行,S=0+(-2)3=-8,n=2,不满足条件;第2次运行,S=-8+(-2)2=-8+4=-4,n=1,满足条件,跳出循环,输出S的值为-4.答案:-416.阅读如图所示的程序框图,运行相应的程序,若输入n 的值为9,则输出S 的值为________ .解析:S=(21+22+…+29)+(1+2+…+9)=210-2+45=1 024+43=1 067.答案:1 06717.(2013新课标全国Ⅱ,5分)执行右面的程序框图,如果输入的N=4,那么输出的S=( )A.1+++B.1+++C.1++++D.1++++解析:本题主要考查程序框图的识读、循环结构等知识,意在考查考生对算法意义的理解与应用.按程序框图逐步计算可知:S=1+++.答案:B18.(2013山东,5分)执行两次如图所示的程序框图,若第一次输入的a的值为-1.2,第二次输入的a的值为1.2,则第一次、第二次输出的a的值分别为( )A.0.2,0.2B.0.2,0.8C.0.8,0.2D.0.8,0.8解析:本题主要考查程序框图的运行途径,考查读图能力和运算能力.两次运行结果如下:第一次:-1.2→-1.2+1→-0.2+1→0.8;第二次:1.2→1.2-1→0.2.答案:C19.(2013广东,5分)执行如图所示的程序框图,若输入n的值为3,则输出s的值是( )A.1 B.2C.4 D.7解析:本题主要考查程序框图知识,意在考查考生的推理论证能力、运算求解能力.根据程序框图,s=1+0+1+2=4.答案:C20.(2013安徽,5分)如图所示,程序框图(算法流程图)的输出结果为( )A. B.C. D.解析:本题主要考查程序框图的循环结构,计算输出结果,意在考查考生对循环结构的理解和累加求和.第一次循环后:s=0+,n=4;第二次循环后:s=0++,n=6;第三次循环后:s=0+++,n=8,跳出循环,输出s=0+++=.答案:C21.(2013江西,5分)阅读如下程序框图,如果输出i=4,那么空白的判断框中应填入的条件是( )A.S<8 B.S<9C.S<10 D.S<11解析:本题主要考查程序框图的概念、循环结构程序框图的应用,考查算法的基本思想.程序框图的运行过程为:i=1,S=0→i=1+1=2→i不是奇数→S=2×2+1=5→符合条件→i=2+1=3→i是奇数→S=2×3+2=8→符合条件→i=3+1=4→i不是奇数→S=2×4+1=9→不符合条件→输出i=4→结束.根据以上步骤,知应填入条件S<9.答案:B22.(2013江苏,5分)下图是一个算法的流程图,则输出的n的值是________.解析:本题考查算法的基本概念及流程图的运算法则,意在考查学生的逻辑推理能力及对循环结构的理解.算法流程图执行过程如下:n=1,a=2,a<20;n=2,a=8,a<20; n=3,a =26,a>20,输出n=3.答案:323.(2013浙江,4分)若某程序框图如图所示,则该程序运行后输出的值等于________.解析:本题主要考查算法的逻辑结构、循环结构的使用,程序框图及框图符号等基础知识,同时考查识图能力,逻辑思维能力和分析、解决问题能力.根据程序框图,可以逐个进行运算,k=1,S=1;S=1+,k=2;S=1++,k=3;S=1+++,k=4;S=1++++=,k=5,程序结束,此时S=.答案:24.(2013陕西,5分)根据下列算法语句,当输入x为60时,输出y的值为( )A.25 B.30C.31 D.61解析:本题考查考生对算法语句的理解和分段函数的求值.阅读算法语句易知,本题是一个求解分段函数f(x)=的值的算法,∴f(60)=25+0.6×(60-50)=31.答案:C25.(2012新课标全国,5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,aN,输出A,B,则( )A.A+B为a1,a2,…,aN的和B.为a1,a2,…,aN的算术平均数C.A和B分别是a1,a2,…,aN中最大的数和最小的数D.A和B分别是a1,a2,…,aN中最小的数和最大的数解析:结合题中程序框图,由当x>A时A=x可知A应为a1,a2,…,aN中最大的数,由当x<B时B=x可知B应为a1,a2,…,aN中最小的数.答案:C26.(2012陕西,5分)如图是计算某年级500名学生期末考试(满分为100分)及格率q的程序框图,则图中空白框内应填入( )A.q= B.q=C.q= D.q=解析:程序执行的过程是如果输入的成绩不小于60分即及格,就把变量M的值增加1,即变量M为成绩及格的人数,否则,由变量N统计不及格的人数,但总人数由变量i进行统计,不超过500就继续输入成绩,直到输入完500个成绩停止循环,输出变量q,变量q代表的含义为及格率,也就是=.答案:D27.(2012江苏,5分)下图是一个算法流程图,则输出的k的值是________.解析:由k2-5k+4>0得k<1或k>4,所以k=5.答案:528.(2012湖南,5分)如果执行如图所示的程序框图,输入x=4.5,则输出的数i=________.解析:执行程序,i,x的取值依次为i=1,x=3.5;i=2,x=2.5;i=3,x=1.5;i=4,x=0.5;结束循环,输出i的值为4.答案:429.(2012江西,5分)下图是某算法的程序框图,则程序运行后输出的结果是________.解析:此框图依次执行如下循环:第一次:T=0,k=1,sin >sin 0成立,a=1,T=T+a=1,k=2,2<6,继续循环;第二次:sin π>sin 不成立,a=0,T=T+a=1,k=3,3<6,继续循环;第三次:sin >sin π不成立,a=0,T=T+a=1,k=4,4<6,继续循环;第四次:sin 2π>sin 成立,a=1,T=T+a=2,k=5,5<6,继续循环;第五次:sin >sin 2π成立,a=1,T=T+a=3,k=6,跳出循环,输出的结果是3.答案:330.(2011新课标全国,5分)执行右图的程序框图,如果输入的N是6,那么输出的p是( )A.120 B.720C.1440 D.5040解析:由程序框图可得,输出的p=1×2×3×4×5×6=720.答案:B31.(2011天津,5分)下图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为( )A.S=S*(n+1)B.S=S*xn+1C.S=S*nD.S=S*xn解析:由题意可知,输出的是10个数的乘积,因此处理框中应是分别计算这10个数相乘,故循环体应为S=S*xn.答案:D32.(2011安徽,5分)如图所示,程序框图(算法流程图)的输出结果是______________.解析:第一次进入循环体有T=0+0,第二次有T=0+1,第三次有T=0+1+2,……,第n次有T=0+1+2+…+n-1(n=1,2,3,…),令T=>105,解得n>15,故n=16,k=15.答案:1533.(2011湖南 ,5分)若执行如图所示的框图,输入x1=1,x2=2,x3=3,=2,则输出的数等于______.解析:算法的功能是求解三个数的方差,输出的是S==.答案:34.(2011江苏,5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为____.Read a,bIf a>b Thenm ←aElsem ←bEnd IfPrint m解析:此题的伪代码的含义:输出两数的较大者,所以m=3.答案:335.(2010广东,5分)某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x1,…,x4(单位:吨).根据如图所示的程序框图,若x1,x2,x3,x4分别为1,1.5,1.5,2,则输出的结果s为__________.解析:运行程序框图可知,i、s1与s的值依次如下:s1:1,2.5,4,6,s:1,×2.5,×4,×6,i:2,3,4,5,当i=5时,终止循环,输出s=×6=1.5.答案:1.5。

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷

上海市(新版)2024高考数学人教版真题(综合卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题在中,,且交于点,,则()A.B.C.D.第(2)题有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3 根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是A.B.C.D.第(3)题已知向量,,则()A.B.C.D.第(4)题将个和个随机排成一行,则个不相邻的概率为()A.0.3B.0.5C.0.6D.0.8第(5)题执行如图所示的程序框图,则输出s的值为()A.B.C.D.第(6)题已知直三棱柱A.B.C.D.第(7)题已知复数,则在复平面内对应的点的坐标为()A.B.C.D.第(8)题已知函数是定义在上的奇函数且在上可导,若恒成立,则()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题下列说法正确的是()A.命题“,”的否定是“,”B.用二分法求函数在内的零点近似解时,在运算过程中得到,,,则可以将看成零点的近似值,且此时误差小于C.甲、乙、丙、丁四人围在圆桌旁,有种不同的坐法D.已知为平面直角坐标系中一点,将向量绕原点逆时针方向旋转角到的位置,则点坐标为第(2)题《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖臑”.如图在堑堵ABC−A1B1C1中,AC⊥BC,且AA1═AB═2.下列说法正确的是()A.四棱锥为“阳马”、四面体为“鳖臑”.B.若平面与平面的交线为,且与的中点分别为M、N,则直线、、相交于一点.C.四棱锥体积的最大值为.D.若是线段上一动点,则与所成角的最大值为.第(3)题下列函数中最小值为2的是()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题设,若,则的最大值为____________第(2)题若将函数的图象向右平移个单位,所得图象关于轴对称,则的最小正值是_____________.第(3)题若函数的导函数为,且满足,则_________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知双曲线C:,圆,其中.圆与双曲线有且仅有两个交点,线段的中点为.(1)记直线的斜率为,直线的斜率为,求.(2)当直线的斜率为3时,求点坐标.第(2)题某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产得灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:(Ⅰ)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)第(3)题已知函数.(1)讨论函数在上的单调性;(2)求证:.第(4)题已知函数.(1)若轴为曲线的切线,试求实数的值;(2)已知,若对任意实数,均有,求的取值范围.第(5)题将正奇数数列1,3,5,7,9…的各项按照上小下大、左小右大的原则写成如图的三角形数表.(1)设数表中每行的最后一个数依次构成数列,求数列的通项公式;(2)设,求数列的前n项和.。

【备战】高考数学 高频考点归类分析 程序框图(真题为例)

【备战】高考数学 高频考点归类分析 程序框图(真题为例)

程序框图典型例题:例1. (2012年全国课标卷理5分)如果执行下边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则【 】()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【答案】C 。

【考点】程序框图的结构。

【解析】根据程序框图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是:A 和B 分别是12,,...,n a a a 中最大的数和最小的数。

故选C 。

例2. (2012年北京市理5分)执行如图所示的程序框图,输出的S 值为【 】A. 2 B .4 C.8 D. 16【答案】C。

【考点】程序框图。

【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,程序的运行过程中各变量值变化如下表:-时,输出x 例3. (2012年天津市理5分)阅读下边的程序框图,运行相应的程序,当输入x的值为25的值为【】-(B)1(C)3(D)9(A)1【答案】C。

【考点】程序框图。

【分析】根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:例4. (2012年天津市文5分)阅读下边的程序框图,运行相应的程序,则输出S的值为【】(A)8 (B)18 (C)26 (D)80【答案】C。

【考点】程序框图。

【分析】根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:例5. (2012年安徽省理5分)如图所示,程序框图(算法流程图)的输出结果是【】C5()D8()A3()B4()【答案】B。

【考点】程序框图的结构。

【解析】根据程序框图所示的顺序,逐框分析程序中各变量、各语句的作用可知:该程序的作用是计算满x≤的最小项数:足4根据流程图所示的顺序,程序的运行过程中各变量值变化如下表:y。

2023年高考全国甲卷数学(理)真题(解析版)

2023年高考全国甲卷数学(理)真题(解析版)

2023年普通高等学校招生全国统一考试(全国甲卷)理科数学一、选择题1. 设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,()U M N ⋃=ð( ) A. {|3,}x x k k =∈Z B. {31,}x x k k Z =−∈∣ C. {32,}x x k k Z =−∈∣ D. ∅【答案】A 【解析】【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z U U ,U Z =,所以,(){}|3,U M N x x k k ==∈Z U ð. 故选:A .2. 设()()R,i 1i 2,a a a ∈+−=,则=a ( ) A. -1 B. 0 · C. 1 D. 2【答案】C 【解析】【分析】根据复数的代数运算以及复数相等即可解出. 【详解】因为()()()22i 1i i i 21i 2a a a a a a a+−=−++=+−=,所以22210a a =⎧⎨−=⎩,解得:1a =. 故选:C.3. 执行下面的程序框图,输出的B =( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行,即可解出.【详解】当1k =时,判断框条件满足,第一次执行循环体,123A =+=,325B =+=,112k =+=; 当2k =时,判断框条件满足,第二次执行循环体,358A =+=,8513B =+=,213k =+=; 当3k =时,判断框条件满足,第三次执行循环体,81321A =+=,211334B =+=,314k =+=; 当4k =时,判断框条件不满足,跳出循环体,输出34B =. 故选:B.4. 已知向量,,a b c r r r 满足1,2a b c ===r r r ,且0a b c ++=r r r r ,则cos ,a c b c 〈−−〉=r r r r ( )A. 45−B. 25−C.25D.45【答案】D 【解析】【分析】作出图形,根据几何意义求解. 【详解】因为0a b c ++=rrrr,所以a b c +=-rrr,即2222a b a b c ++⋅=rrrr r,即1122a b ++⋅=r r ,所以0a b ⋅=rr .如图,设,,OA a OB b OC c ===u u u r u u u r u u u r r r r ,由题知,1,2,OA OB OC OAB ===V 是等腰直角三角形,AB 边上的高22,22OD AD ==, 所以232222CD CO OD =+==, 1tan ,cos 310AD ACD ACD CD ∠==∠=, 2cos ,cos cos 22cos 1a c b c ACB ACD ACD 〈−−〉=∠=∠=∠−r r r r2421510=⨯−=. 故选:D.5. 设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =,5354S S =−,则4S =( ) A.158B.658C. 15D. 40【答案】C 【解析】【分析】根据题意列出关于q 的方程,计算出q ,即可求出4S . 【详解】由题知()23421514q q q q q q++++=++−,即34244q q q q +=+,即32440q q q +−−=,即(2)(1)(2)0q q q −++=. 由题知0q >,所以2q =. 所以4124815S =+++=. 故选:C.6. 某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A. 0.8 B. 0.6C. 0.5D. 0.4【答案】A 【解析】【分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【详解】同时爱好两项的概率为0.50.60.70.4+−=,记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==,所以()0.4()0.8()0.5P AB P BA P A ===∣.故选:A .7. 设甲:22sin sin 1αβ+=,乙:sin cos 0αβ+=,则( ) A. 甲是乙的充分条件但不是必要条件 B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】【分析】根据充分条件、必要条件的概念及同角三角函数的基本关系得解. 【详解】当22sin sin 1αβ+=时,例如π,02αβ==但sin cos 0αβ+≠, 即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,2222sin sin (cos )sin 1αβββ+=−+=, 即sin cos 0αβ+=能推出22sin sin 1αβ+=. 综上可知,甲是乙的必要不充分条件. 故选:B8. 已知双曲线2222:1(0,0)x y C a b a b−=>>5C 的一条渐近线与圆22(2)(3)1x y −+−=交于A ,B 两点,则||AB =( )A.55B.55C.355D.55【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由5e =,则222222215c a b b a a a+==+=,解得2ba=, 所以双曲线的一条渐近线不妨取2y x =,则圆心(2,3)到渐近线的距离25521d ==+, 所以弦长22145||22155AB r d =−=−=. 故选:D9. 现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A. 120 B. 60C. 30D. 20【答案】B 【解析】【分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.10. 函数()y f x =的图象由函数πcos 26y x ⎛⎫=+⎪⎝⎭的图象向左平移π6个单位长度得到,则()y f x =的图象与直线1122y x =−的交点个数为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得()sin 2f x x =−,再作出()f x 与1122y x =−的部分大致图像,考虑特殊点处()f x 与1122y x =−的大小关系,从而精确图像,由此得解. 【详解】因为πcos 26y x ⎛⎫=+⎪⎝⎭向左平移π6个单位所得函数为πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以()sin 2f x x =−,而1122y x =−显然过10,2⎛⎫− ⎪⎝⎭与()1,0两点,作出()f x 与1122y x =−的部分大致图像如下,考虑3π3π7π2,2,2222x x x =−==,即3π3π7π,,444x x x =−==处()f x 与1122y x =−的大小关系,当3π4x =−时,3π3πsin 142f ⎛⎫⎛⎫−=−−=− ⎪ ⎪⎝⎭⎝⎭,13π1π4284312y +⎛⎫=⨯−−=−<− ⎪⎝⎭; 当3π4x =时,3π3πsin 142f ⎛⎫=−= ⎪⎝⎭,13π13π412428y −=⨯−=<;当7π4x =时,7π7πsin 142f ⎛⎫=−= ⎪⎝⎭,17π17π412428y −=⨯−=>;所以由图可知,()f x 与1122y x =−的交点个数为3. 故选:C.11. 已知四棱锥P ABCD −的底面是边长为4的正方形,3,45PC PD PCA ==∠=︒,则PBC V 的面积为( )A. 22B. 32C. 2D. 2【答案】C 【解析】【分析】法一:利用全等三角形的证明方法依次证得PDO PCO ≅V V ,PDB PCA ≅V V ,从而得到PA PB =,再在PAC △中利用余弦定理求得17PA =,从而求得17PB 由此在PBC V 中利用余弦定理与三角形面积公式即可得解;法二:先在PAC △中利用余弦定理求得17PA =1cos 3PCB ∠=,从而求得3PA PC ⋅=−u u u r u u u r ,再利用空间向量的数量积运算与余弦定理得到关于,PB BPD ∠的方程组,从而求得17PB 由此在PBC V 中利用余弦定理与三角形面积公式即可得解. 【详解】法一:连结,AC BD 交于O ,连结PO ,则O 为,AC BD 的中点,如图,因为底面ABCD 为正方形,4AB =,所以42AC BD ==22DO CO ==, 又3PC PD ==,PO OP =,所以PDO PCO ≅V V ,则PDO PCO ∠=∠, 又3PC PD ==,42AC BD ==PDB PCA ≅V V ,则PA PB =, 在PAC △中,3,42,45PC AC PCA ==∠=︒,则由余弦定理可得22222cos 329223172PA AC PC AC PC PCA =+−⋅∠=+−⨯⨯=, 故17PA =,则17PB故在PBC V 中,7,43,1P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +−+−∠===⋅⨯⨯,又0πPCB <∠<,所以222sin 1cos 3PCB PCB ∠=−∠=, 所以PBC V 的面积为1122sin 342223S PC BC PCB =⋅∠=⨯⨯⨯= 法二:连结,AC BD 交于O ,连结PO ,则O 为,AC BD 的中点,如图,因为底面ABCD 为正方形,4AB =,所以42AC BD == 在PAC △中,3,45PC PCA =∠=︒,则由余弦定理可得22222cos 329223172PA AC PC AC PC PCA =+−⋅∠=+−⨯⨯=,故17PA =,所以22217cos 2172173PA PC AC APC PA PC +−∠===−⋅⨯⨯,则17cos 173317PA PC PA PC APC ⎛⋅=∠=⨯−=− ⎝⎭u u u r u u u r u u u r u u u r ,不妨记,PB m BPD θ=∠=,因为()()1122PO PA PC PB PD =+=+u u u r u u u r u u u r u u ur u u u r ,所以()()22PA PC PB PD +=+u u u r u u u r u u u r u u u r ,即222222PA PC PA PC PB PD PB PD ++⋅=++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,则()217923923cos m m θ++⨯−=++⨯⨯,整理得26cos 110m m θ+−=①,又在PBD △中,2222cos BD PB PD PB PD BPD =+−⋅∠,即23296cos m m θ=+−,则26cos 230m m θ−−=②,两式相加得22340m −=,故17PB m ==故在PBC V 中,7,43,1P PB C C B ===,所以222916171cos 22343PC BC PB PCB PC BC +−+−∠===⋅⨯⨯,又0πPCB <∠<,所以222sin 1cos 3PCB PCB ∠=−∠=, 所以PBC V 的面积为1122sin 342223S PC BC PCB =⋅∠=⨯⨯⨯= 故选:C.12. 设O 为坐标原点,12,F F 为椭圆22:196x y C +=两个焦点,点 P 在C 上,123cos 5F PF ∠=,则||OP =( )A.135B.302C.145D.352【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出12PF F △的面积,即可得到点P 的坐标,从而得出OP 的值;方法二:利用椭圆的定义以及余弦定理求出221212,PF PF PF PF +,再结合中线的向量公式以及数量积即可求出;方法三:利用椭圆的定义以及余弦定理求出2212PF PF +,即可根据中线定理求出.【详解】方法一:设12π2,02F PF θθ∠=<<,所以122212tantan 2PF F F PF S b b θ∠==V , 由22212222cos sin 1tan 3cos cos 2cos +sin 1tan 5F PF θθθθθθθ−−∠====+,解得:1tan 2θ=, 由椭圆方程可知,222229,6,3a b c a b ===−=, 所以,1212111236222PF F p p S F F y y =⨯⨯=⨯=⨯V ,解得:23p y =, 即2399162p x ⎛⎫=⨯−= ⎪⎝⎭,因此22930322p p OP x y =+=+=. 的故选:B .方法二:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +−∠=,即2212126125PF PF PF PF +−=②,联立①②, 解得:22121215,212PF PF PF PF =+=, 而()1212PO PF PF =+u u u r u u u r u u u u r ,所以1212OP PO PF PF ==+u u u r u u u r u u u u r, 即22121122111315302212222522PO PF PF PF PF PF PF =+=+⋅+=+⨯⨯=u u u r u u u r u u u u r u u u r u u u r u u u u r u u u u r . 故选:B .方法三:因为1226PF PF a +==①,222121212122PF PF PF PF F PF F F +−∠=, 即2212126125PF PF PF PF +−=②,联立①②,解得:221221PF PF +=, 由中线定理可知,()()222212122242OP F F PF PF +=+=,易知1223F F =302OP =.故选:B .【点睛】本题根据求解的目标可以选择利用椭圆中的二级结论焦点三角形的面积公式快速解出,也可以常规利用定义结合余弦定理,以及向量的数量积解决中线问题的方式解决,还可以直接用中线定理解决,难度不是很大.二、填空题13. 若()()2π1sin 2f x x ax x ⎛⎫=−+++ ⎪⎝⎭为偶函数,则=a ________. 【答案】2 【解析】【分析】利用偶函数性质得到ππ22f f ⎛⎫⎛⎫−= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解. 【详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==−+++=−++ ⎪⎝⎭为偶函数,定义域为R , 所以ππ22f f ⎛⎫⎛⎫−= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫−+=−+ ⎪ −⎪ ⎪⎝⎭⎝⎭−−⎝+⎭,的则22πππ2π1212a −⎛⎫⎛⎫=+− ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =−++=++,所以()()()()221cos s 1co f x x x x x f x −=−++++−==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.14. 若x ,y 满足约束条件3232331x y x y x y −≤⎧⎪−+≤⎨⎪+≥⎩,设32z x y =+的最大值为____________.【答案】15 【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可. 【详解】作出可行域,如图,由图可知,当目标函数322zy x =−+过点A 时,z 有最大值,由233323x y x y −+=⎧⎨−=⎩可得33x y =⎧⎨=⎩,即(3,3)A ,所以max 332315z =⨯+⨯=. 故答案为:1515. 在正方体1111ABCD A B C D −中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点. 【答案】12 【解析】【分析】根据正方体的对称性,可知球心到各棱距离相等,故可得解.【详解】不妨设正方体棱长为2,EF 中点为O ,取CD ,1CC 中点,G M ,侧面11BB C C 的中心为N ,连接,,,,FG EG OM ON MN ,如图,由题意可知,O 为球心,在正方体中,22222222EF FG EG =+=+=即2R =,则球心O 到1CC 的距离为2222112OM ON MN =+=+=,所以球O 与棱1CC 相切,球面与棱1CC 只有1个交点,同理,根据正方体的对称性知,其余各棱和球面也只有1个交点, 所以以EF 为直径的球面与正方体每条棱的交点总数为12. 故答案为:1216. 在ABC V 中,60,2,6BAC AB BC ∠=︒==,BAC ∠的角平分线交BC 于D ,则AD =_________. 【答案】2 【解析】【分析】方法一:利用余弦定理求出AC ,再根据等面积法求出AD ;方法二:利用余弦定理求出AC ,再根据正弦定理求出,B C ,即可根据三角形的特征求出.【详解】如图所示:记,,AB c AC b BC a ===,方法一:由余弦定理可得,22222cos606b b +−⨯⨯⨯=o ,因为0b >,解得:13b =+ 由ABC ABD ACD S S S =+V V V 可得,1112sin 602sin 30sin 30222b AD AD b ⨯⨯⨯=⨯⨯⨯+⨯⨯⨯o o o , 解得:2313323312b AD b +===++. 故答案为:2.方法二:由余弦定理可得,22222cos606b b +−⨯⨯⨯=o ,因为0b >,解得:13b =+ 由正弦定理可得,62sin 60sin sin b B C==o,解得:62sin 4B =,2sin 2C =, 因为1362+>>45C =o ,180604575B =−−=o o o o ,又30BAD ∠=o ,所以75ADB ∠=o ,即2AD AB ==. 故答案为:2.【点睛】本题压轴相对比较简单,既可以利用三角形的面积公式解决角平分线问题,也可以用角平分定义结合正弦定理、余弦定理求解,知识技能考查常规.三、解答题17. 设n S 为数列{}n a 的前n 项和,已知21,2n n a S na ==. (1)求{}n a 的通项公式; (2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)1n a n =−(2)()1222nn T n ⎛⎫=−+ ⎪⎝⎭【解析】【分析】(1)根据11,1,2n nn S n a S S n −=⎧=⎨−≥⎩即可求出;(2)根据错位相减法即可解出. 【小问1详解】因为2n n S na =,当1n =时,112a a =,即10a =; 当3n =时,()33213a a +=,即32a =,当2n ≥时,()1121n n S n a −−=−,所以()()11221n n n n n S S a na n a −−−==−−, 化简得:()()121n n n a n a −−=−,当3n ≥时,131122n n a a an n −====−−L ,即1n a n =−, 当1,2,3n =时都满足上式,所以()*1N n a n n =−∈.【小问2详解】因为122n n n a n +=,所以12311111232222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,2311111112(1)22222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++−⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,两式相减得,123111111111222222111222211n n nn n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎣⎦+−⎝=−⎭⨯−⨯L , 11122n n ⎛⎫⎛⎫=−+ ⎪⎪⎝⎭⎝⎭,即()1222nn T n ⎛⎫=−+ ⎪⎝⎭,*N n ∈.18. 如图,在三棱柱111ABC A B C -中,1AC ⊥底面ABC ,190,2ACB AA ∠=︒=,1A 到平面11BCC B 的距离为1.(1)证明:1AC AC =; (2)已知1AA 与1BB 的距离为2,求1AB 与平面11BCC B 所成角的正弦值.【答案】(1)证明见解析 (2)1313【解析】【分析】(1)根据线面垂直,面面垂直的判定与性质定理可得1AO ⊥平面11BCC B ,再由勾股定理求出O 为中点,即可得证;(2)利用直角三角形求出1AB 的长及点A 到面的距离,根据线面角定义直接可得正弦值. 【小问1详解】 如图,1A C ⊥Q 底面ABC ,BC ⊂面ABC ,1AC BC ∴⊥,又BC AC ⊥,1,AC AC ⊂平面11ACC A ,1AC AC C ⋂=, BC ∴⊥平面ACC 1A 1,又BC ⊂平面11BCC B ,∴平面11ACC A ⊥平面11BCC B ,过1A 作11AO CC ⊥交1CC 于O ,又平面11ACC A I 平面111BCC B CC =,1A O ⊂平面11ACC A , 1A O ∴⊥平面11BCC B1A Q 到平面11BCC B 的距离为1,11∴=AO , 在11Rt ACC △中,111112,AC AC CC AA ⊥==,设CO x =,则12C O x =−,11111,,AOC AOC ACC Q △△△为直角三角形,且12CC =,22211CO AO AC +=,2221111AO OC C A +=,2221111AC AC C C +=,2211(2)4x x ∴+++−=,解得1x =,1112AC AC AC ∴=== 1A C AC ∴=小问2详解】111,,AC AC BC AC BC AC =⊥⊥Q , 1Rt Rt ACB ACB ∴△≌△ 1BA BA ∴=,过B 作1BD AA ⊥,交1AA 于D ,则D 为1AA 中点, 由直线1AA 与1BB 距离为2,所以2BD =11A D =Q ,2BD =,15A B AB ∴==,在Rt ABC △,223BC AB AC ∴=−=,延长AC ,使AC CM =,连接1C M ,由1111,CM AC CM AC =∥知四边形11ACMC 为平行四边形, 11C M A C ∴∥,1C M ∴⊥平面ABC ,又AM ⊂平面ABC ,1C M AM ∴⊥则在1Rt AC M △中,112,AM AC C M AC ==,2211(2)AC AC AC ∴=+ 在11Rt AB C △中,2211(2)AC AC AC =+,113B C BC == 2221(22)(2)(3)13AB ∴=++=又A 到平面11BCC B 距离也为1, 所以1AB 与平面11BCC B 131313=. 19. 一项试验旨在研究臭氧效应.实验方案如下:选40只小白鼠,随机地将其中20只分配到实验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).(1)设X 表示指定的两只小白鼠中分配到对照组的只数,求X 的分布列和数学期望;【(2)实验结果如下:对照组的小白鼠体重的增加量从小到大排序为: 15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.1 32.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2 实验组的小白鼠体重的增加量从小到大排序为:7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.2 19.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(i )求40只小鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于的数据的个数,完成如下列联表:m <m ≥对照组 实验组(ii )根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异.附:()()()()22(),n ad bc K a b c d a c b d −=++++ 0k0.100 0.050 0.010()20P k k ≥2.7063.841 6.635【答案】(1)分布列见解析,()1E X = (2)(i )23.4m =;列联表见解析,(ii )能 【解析】【分析】(1)利用超几何分布的知识即可求得分布列及数学期望; (2)(i )根据中位数的定义即可求得23.4m =,从而求得列联表; (ii )利用独立性检验的卡方计算进行检验,即可得解. 【小问1详解】依题意,X 的可能取值为0,1,2,则022020240C C 19(0)C 78P X ===,120224010C C 20(1)C 39P X ===,202020240C C 19(2)C 78P X ===, 所以X 分布列为:X12P1978 20391978故192019()0121783978E X =⨯+⨯+⨯=. 【小问2详解】(i )依题意,可知这40只小白鼠体重增量的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,观察数据可得第20位为23.2,第21位数据为23.6, 所以23.223.623.42m +==,故列联表为:m <m ≥合计 对照组 6 14 20 实验组 14 6 20 合计202040(ii )由(i )可得,2240(661414) 6.400 3.84120202020K ⨯⨯−⨯==>⨯⨯⨯,所以能有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异. 20. 已知直线210x y −+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||415AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,0FM FN ⋅=u u u u r u u u r,求MFN △面积的最小值. 【答案】(1)2p = (2)1282−【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出p ;的(2)设直线MN :x my n =+,()()1122,,,,M x y N x y 利用0FM FN ⋅=u u u u r u u u r,找到,m n 的关系,以及MFN △的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设()(),,,A A B B A x y B x y ,由22102x y y px−+=⎧⎨=⎩可得,2420y py p −+=,所以4,2A B A B y y p y y p +==, 所以()()()222554415A B A B A B A B A B AB x x y y y y y y y =−+−=−=+−=即2260p p −−=,因为0p >,解得:2p =.【小问2详解】因为()1,0F ,显然直线MN 的斜率不可能为零, 设直线MN :x my n =+,()()1122,,,M x y N x y ,由24y x x my n⎧=⎨=+⎩可得,2440y my n −−=,所以,12124,4y y m y y n +==−, 22161600m n m n ∆=+>⇒+>,因为0FM FN ⋅=u u u u r u u u r,所以()()1212110x x y y −−+=, 即()()1212110my n my n y y +−+−+=,亦即()()()()2212121110m y y m n y y n ++−++−=,将12124,4y y m y y n +==−代入得,22461m n n =−+,()()22410m n n +=−>,所以1n ≠,且2610n n −+≥,解得322n ≥+或322n ≤−. 设点F 到直线MN 的距离为d ,所以211n d m−=+()()22222121212111616MN x x y y m y y m m n =−+−=+−=++()2222146116211m n n n m =+−++=+−,所以MFN △的面积()2221112111221n S MN d m n m −=⨯⨯=+−=−+,而322n ≥+322n ≤−,所以,当322n =−MFN △的面积(2min 2221282S =−=−.【点睛】本题解题关键是根据向量的数量积为零找到,m n 的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值. 21. 已知函数3sin π(),0,cos 2x f x ax x x ⎛⎫=−∈ ⎪⎝⎭(1)当8a =时,讨论()f x 的单调性;(2)若()sin 2f x x <恒成立,求a 的取值范围. 【答案】(1)答案见解析. (2)(,3]−∞ 【解析】【分析】(1)求导,然后令2cos t x =,讨论导数的符号即可;(2)构造()()sin 2g x f x x =−,计算()g x '的最大值,然后与0比较大小,得出a 的分界点,再对a 讨论即可. 【小问1详解】326cos cos 3sin cos sin ()cos x x x x xf x a x'+=− 22244cos 3sin 32cos cos cos x x xa a x x+−=−=−令2cos x t =,则(0,1)t ∈则2223223()()t at t f x g t a t t'−+−==−= 当222823(21)(43)8,()()t t t t a f x g t t t'+−−+==== 当10,2t ⎛⎫∈ ⎪⎝⎭,即ππ,,()042x f x '⎛⎫∈< ⎪⎝⎭. 当1,12t ⎛⎫∈ ⎪⎝⎭,即π0,,()04x f x '⎛⎫∈> ⎪⎝⎭.所以()f x π0,4⎛⎫ ⎪⎝⎭上单调递增,在ππ,42⎛⎫ ⎪⎝⎭上单调递减 【小问2详解】设()()sin 2g x f x x =−()22222323()()2cos 2()22cos 12(21)24at t g x f x x g t x t a t t t t ''+−=−=−−=−−=+−+−设223()24t a t t t ϕ=+−+− 322333264262(1)(22+3)()40t t t t t t t t t tϕ'−−+−+=−−+==−> 所以()(1)3t a ϕϕ<=−. 1︒若(,3]a ∈−∞,()()30g x t a ϕ'=<−≤即()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,所以()(0)0g x g <=. 所以当(,3],()sin 2a f x x ∈−∞<,符合题意.2︒若(3,)a ∈+∞ 当22231110,333t t t t ⎛⎫→−=−−+→−∞ ⎪⎝⎭,所以()t ϕ→−∞. (1)30a ϕ=−>.所以0(0,1)t ∃∈,使得()00t ϕ=,即00,2x π⎛⎫∃∈ ⎪⎝⎭,使得()00g x '=. 当()0,1,()0t t t ϕ∈>,即当()00,,()0,()x x g x g x '∈>单调递增.所以当()00,,()(0)0x x g x g ∈>=,不合题意.综上,a 的取值范围为(,3]−∞.【点睛】关键点点睛:本题采取了换元,注意复合函数的单调性cos t x =在定义域内是减函数,若00cos t x =,当()0,1,()0t t t ϕ∈>,对应当()00,,()0x x g x '∈>. 四、选做题在22. 已知点(2,1)P ,直线2cos :1sin x t l y t αα=+⎧⎨=+⎩(t 为参数),α为l 的倾斜角,l 与x 轴正半轴,y 轴正半轴分别交于A ,B 两点,且||||4PA PB ⋅=.(1)求α;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求l 的极坐标方程.【答案】(1)3π4(2)cos sin 30ρθρθ+−=【解析】【分析】(1)根据t 的几何意义即可解出;(2)求出直线l 的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为l 与x 轴,y 轴正半轴交于,A B 两点,所以ππ2α<<, 令0x =,12cos t α=−,令0y =,21sin t α=−, 所以21244sin cos sin 2PA PB t t ααα====,所以sin 21α=±, 即π2π2k α=+,解得π1π,42k k α=+∈Z , 因为ππ2α<<,所以3π4α=. 【小问2详解】由(1)可知,直线l 的斜率为tan 1α=−,且过点()2,1,所以直线l 的普通方程为:()12y x −=−−,即30x y +−=,由cos ,sin x y ρθρθ==可得直线l 的极坐标方程为cos sin 30ρθρθ+−=. 23. 设0a >,函数()2f x x a a =−−.(1)求不等式()f x x <的解集;(2)若曲线()y f x =与x 轴所围成的图形的面积为2,求a .【答案】(1),33a a ⎛⎫ ⎪⎝⎭(2)2【解析】【分析】(1)分x a ≤和x a >讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若x a ≤,则()22f x a x a x =−−<,即3x a >,解得3a x >,即3a x a <≤, 若x a >,则()22f x x a a x =−−<,解得3x a <,即3a x a <<,综上,不等式的解集为,33a a ⎛⎫⎪⎝⎭. 【小问2详解】 2,()23,x a x a f x x a x a −+≤⎧=⎨−>⎩. 画出()f x 的草图,则()f x 与x 轴围成ABC V ,ABC V 的高为3,,0,,022a a a A B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以||=AB a , 所以211||222ABC S AB a a =⋅==V ,解得2a =.。

高中数学 算法和程序框图 高考真题 自助学习自助餐 阅览题浏览题

高中数学 算法和程序框图 高考真题 自助学习自助餐 阅览题浏览题

高中数学算法和程序框图高考真题自助学习自助餐阅览题浏览题学校:___________姓名:___________班级:___________考号:___________一、单选题1.执行如图所示的程序框图,输出的s值为A.B.C.D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.2.为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.3.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入( )A . 1000A >和1n n =+B . 1000A >和2n n =+C . 1000A ≤和1n n =+D . 1000A ≤和2n n =+【答案】D【解析】由题意,因为321000n n ->,且框图中在“否”时输出,所以判定框内不能输入1000A >,故填1000A ≤,又要求n 为偶数且初始值为0,所以矩形框内填2n n =+,故选D.点睛:解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了两个空格需要填写,所以需要抓住循环的重点,偶数该如何增量,判断框内如何进行判断可以根据选项排除.4.执行两次下图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( )A . 0,0B . 1,1C . 0,1D . 1,0【答案】D【解析】第一次227,27,3,37,1x b a === ;第二次229,29,3,39,0x b a =<===,选D.【名师点睛】识别算法框图和完善算法框图是高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的实际问题;第三,按照题目的要求完成解答.对框图的考查常与函数和数列等相结合,进一步强化框图问题的实际背景.5.若执行右侧的程序框图,当输入的x 的值为4时,输出的y 的值为2,则空白判断框中的条件可能为( )A . 3x >B . 4x >C . 4x ≤D . 5x ≤【答案】B【解析】由题意得4x = 时判断框中的条件应为不满足,所以选B.6.执行如图所示的程序框图,则输出的S 的值是A.4 B.C.D.1【答案】D【解析】初始:S=4,i=1第一次循环:1<6,第二次循环:2<6,第三次循环:3<6,第四次循环:4<6,第五次循环:5<6,6<6不成立,此时跳出循环,输出S的值,S值为-1,故选D.考点定位:本题考查程序框图,意在考查考生对循环结构框图的理解应用能力7.执行下面的程序框图,如果输入的,则输出的A . 2B . 3C . 4D . 5【答案】B【解析】阅读流程图,初始化数值.循环结果执行如下: 第一次:; 第二次:; 第三次:; 第四次:; 第五次:; 第六次:; 结束循环,输出.故选B. 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.求解时,先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,如:是求和还是求项.8.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A . 5B . 4C . 3D . 2【答案】D【解析】阅读程序框图,程序运行如下:首先初始化数值: 1,100,0t M S ===,然后进入循环体:此时应满足t N ≤,执行循环语句: 100,10,1210M S S M M t t =+==-=-=+=; 此时应满足t N ≤,执行循环语句: 90,1,1310M S S M M t t =+==-==+=; 此时满足91S <,可以跳出循环,则输入的正整数N 的最小值为2.故选D.【名师点睛】对算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的起始条件、循环次数、循环的终止条件,更要通过循环规律,明确程序框图研究的数学问题,是求和还是求项.9.执行如图所示的程序框图,如果输入的,则输出的属于( )A .B .C .D .【答案】D【解析】试题分析:当时,运行程序如下,,当时,,则,故选D. 考点:程序框图 二次函数10.阅读下边的程序框图,运行相应的程序,则输出S 的值为A . 2B . 4C . 6D . 8【答案】B【解析】试题分析:依次循环: 8,2;2,3;4,4,S n S n S n ======结束循环,输出4S =,选B.【考点】循环结构的程序框图【名师点睛】算法与流程图的考查,侧重于对循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构,其次要重视循环起始条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.视频11.执行如图的程序框图,如果输入的,则输出的值满足( )A .B .C .D .【答案】C【解析】试题分析:运行程序,,判断否,,判断否,,判断是,输出,满足.考点:程序框图.12.执行如图所示的程序框图,则输出s的值为()A.B.C.D.【答案】D【解析】初始条件:,第1次判断0<8,是,第2次判断2<8,是,第3次判断4<8,是,第4次判断6<8,是,第5次判断8<8,否,输出;故选D.考点:程序框图.视频13.阅读下边的程序框图,运行相应的程序,则输出i 的值为( )A . 2B . 3C . 4D . 5【答案】C【解析】由程序框图可知:故选C. 考点:本题主要考查程序框图及学生分析问题解决问题的能力.视频14.阅读如图所示的程序框图,运行相应的程序,则输出S 的值为()A . -10B . 6C . 14D . 18【答案】B【解析】模拟法:输入20,1S i ==;21,20218,25i S =⨯=-=>不成立;224,18414,45i S =⨯==-=>不成立248,1486,85i S =⨯==-=>成立输出6,故选B.考点:本题主要考查程序框图与模拟计算的过程.视频15. 执行如图所示的程序框图,输出S 的值为( )A . -B .C . -12D . 12【答案】D【解析】试题分析:由已知可得,故选D.考点:程序框图.视频16.执行如图所示的程序框图,输出S 的值是( )(A )2-(B )2(C )-12 (D )12【答案】D 【解析】这是一个循环结构,每次循环的结果依次为:2;3;4;5k k k k ====,大于4,所以输出的51sin62S π==,选D. 考点:程序框图.17.根据右边框图,当输入为6时,输出的( )A .B .C .D .【答案】D【解析】该程序框图运行如下:,,,,故答案选.考点:程序框图的识别.视频18.根据右边的图,当输入x 为2006时,输出的y =( )A .28B .10C .4D .2 【答案】B【解析】初始条件:2006x =;第1次运行:2004x =;第2次运行:2002x =;第3次运行:2000x =;⋅⋅⋅⋅⋅⋅;第1003次运行:0x =;第1004次运行:2x =-.不满足条件0?x ≥,停止运行,所以输出的23110y =+=,故选B . 【考点定位】程序框图.19.19.执行如图所示的程序框图(算法流程图),输出的n 为( )A . 3B . 4C . 5D . 6 【答案】B【解析】执行第一次循环体:此时执行第二次循环体:此时执行第三次循环体:此时,此时不满足,判断条件,输 出n=4,故选B.考点:本题主要考查程序框图以及循环结构的判断.视频20.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M = ( )A .203 B . 72 C . 165 D . 158【答案】D【解析】试题分析:根据题意由13≤成立,则循环,即1331,2,,2222M a b n =+====;又由23≤成立,则循环,即28382,,,33323M a b n =+====;又由33≤成立,则循环,即3315815,,,428838M a b n =+====;又由43≤不成立,则出循环,输出158M =.考点:算法的循环结构视频21.(2014•福建)阅读如图所示的程序框图,运行相应的程序,输出的n 的值为( )A.1 B.2 C.3 D.4【答案】B【解析】试题分析:根据框图的流程模拟运行程序,直到不满足条件2n>n2,跳出循环,确定输出的n值.解:由程序框图知:第一次循环n=1,21>1;第二次循环n=2,22=4.不满足条件2n>n2,跳出循环,输出n=2.故选:B.考点:程序框图.视频22.执行右面的程序框图,若输入的分别为1,2,3,则输出的M=()A.B.C.D.【答案】D【解析】试题分析:程序在执行过程中, 1,2,3a b k ===, 1n =;1331,2,,2222M a b n =+====; 28382,,,33323M a b n =+====; 3315815,,,428838M a b n =+====,程序结束,输出158M =.【考点定位】程序框图.视频23.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为( )A . 0B . 1C . 2D . 3 【答案】C【解析】试题分析:该程序执行以下运算:已知0{0 1x y x y ≥≥+≤,求2S x y =+的最大值.作出0{0 1x y x y ≥≥+≤表示的区域如图所示,由图可知,当1{ 0x y ==时, 2S x y =+最大,最大值为202S =+=.选C.【考点定位】程序框图与线性规划.视频24.根据右边框图,对大于2的整数,得出数列的通项公式是()A.B.C.D.【答案】C【解析】试题分析:当时,;当时,;当时,;由此得出数列的通项公式为,故选C.考点:程序框图的识别.25.阅读右图所示的程序框图,运行相应的程序,输出的得值等于()A.18 B.20 C.21 D.41【答案】B【解析】试题分析:依题意可得当,当,当.故选B. 考点:程序框图.26.执行右面的程序框图,如果输入的x,t均为2,则输出的S ()(A )4 (B )5 (C )6 (D )7 【答案】D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===; 2,7,3M S k ===,程序结束,输出7S =.考点:程序框图.27.执行如图所示的程序框图,输出的值为( )A .B .C .D .【答案】C【解析】当时,;当时,;当时,;当时,输出,故选C.考点:本小题主要考查程序框图的基础知识,难度不大,程序框图是高考新增内容,是高考的重点知识,熟练本部分的基础知识是解答的关键.视频28.执行如题图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A . 12s >B . 35s > C . 710s > D . 45s > 【答案】C【解析】试题分析: 9,1k s ==条件成立,运行第一次, 9,810s k == 条件成立,运行第二次, 9884,7109105s k =⨯=== 条件成立,运行第三次, 477,65810s k =⨯== 条件不成立,输出6k =由此可知判断框内可填入的条件是: 710s > 故选C.考点:循环结构.视频29.阅读下面的程序框图,运行相应的程序,输出S 的值为( )A . 15B . 105C . 245D . 945【答案】B【解析】试题分析:采用列举法列出运算各步结果结束算法,输出,故选B .考点:算法与程序框图.视频30.执行如图所示的程序框图,如果输入的,则输出的S 属于( )A .B .C .D . 【答案】D【解析】试题分析:当[)2,0t ∈-时,运行程序如下, (](]2211,9,32,6t t S t =+∈=-∈-,当[]0,2t ∈时, []33,1S t =-∈--,则][][(2,63,13,6S ⎤∈-⋃--=-⎦,故选D. 考点:程序框图 二次函数值域31.当m=7,n=3时,执行如图所示的程序框图,输出的S值为()A.7 B.42 C.210 D.840【答案】C【解析】试题分析:当m输入的m=7,n=3时,判断框内的判断条件为k<5,故能进入循环的k依次为7,6,5.顺次执行S=S·k,则有S=7·6·5=210,选C考点:程序框图视频32.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.89【答案】B【解析】试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,故选B.考点:1.程序框图的应用.33.(5分)(2011•陕西)如图框图,当x1=6,x2=9,p=8.5时,x3等于()A.7 B.8 C.10 D.11【答案】B【解析】试题分析:从程序框图中得到求p的解析式;列出方程,求出x3的值.解:∵∴解得x3=8故选B点评:本题考查通过程序框图能判断出框图的功能.视频34.(5分)(2011•福建)阅读如图所示的程序框图,运行相应的程序,输出的结果是()A.3 B.11 C.38 D.123【答案】B【解析】试题分析:通过框图的要求;将第一次循环的结果写出,通过判断框;再将第二次循环的结果写出,通过判断框;输出结果.解;经过第一次循环得到a=12+2=3经过第一次循环得到a=32+2=11不满足判断框的条件,执行输出11故选B点评:本题考查程序框图中的循环结构常采用将前几次循环的结果写出找规律.35.执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为( )A . 105B . 16C . 15D . 1【答案】C【解析】试题分析:根据程序框图确定框图所要执行的运算,由输入的依次进行运算求,根据判断框中的条件判断运算是否执行,得到结果,故选C .考点:程序框图.视频36.图中, 1x , 2x , 3x 为某次考试三个评阅人对同一道题的独立评分, p 为该题的最终得分,当16x =, 29x =, 8.5p =时, 3x 等于( )A . 11B . 10C . 8D . 7【答案】C【解析】先读懂右图的逻辑顺序,然后进行计算判断,其中判断条件3132x x x x -<-是否成立是解答本题的关键.16x =,29x =,1232x x -=…不成立,即为“否”,所以再输入3x ;由绝对值的意义(一个点到另一个点的距离)和不等式3132x x x x -<-知,点3x 到点1x 的距离小于点3x 到2x 的距离,所以当37.5x <时, 3132x x x x -<-成立,即为“是”,此时23x x =,所以132x x p +=,即368.52x +=,解得311x = 7.5>,不合题意;当37.5x …时, 3132x x x x -<-不成立,即为“否”,此时13x x =,所以322x x p +=,即398.52x +=,解得38x = 7.5>,符合题意,故选C .视频37.阅读右边的程序框图, 运行相应的程序, 则输出n 的值为( )(A) 7 (B) 6 (C) 5 (D) 4【答案】D【解析】当n=1时,计算出1S =-;当n=2时,计算出121S =-+=;当n=3时,计算出132S =-=-;当n=4时,计算出242S =-+=,此时,输出n ,故选D.【考点定位】本小题主要考查程序框图的基础知识,解答本类题目的关键是搞清楚是一个什么样的算法、最后算到哪一步结束,程序框图经常与其它知识结合起来考查(如数列求和等),难度不大.38.执行右面的程序框图,如果输入的N=4,那么输出的S= ( )(A )1(B )1+(C)1++++(D)1++++【答案】B【解析】当k=1时,计算出的T=1,S=1;当k=2时,计算出的T=12,S=1+12;当k=3时,计算出的T=123⨯,S=1+12+132⨯;当k=4时,计算出的T=1234⨯⨯,S=1+12+132⨯+1234⨯⨯,故选B.【考点定位】本小题主要考查了程序框图的基础知识,解答本类题目的关键是搞清楚是一个什么样的算法、最后算到哪一步结束,程序框图经常与其它知识结合起来考查(如数列求和等),难度不大.二、填空题39.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.40.(2017·江苏,4)如图是一个算法流程图,若输入x的值为,则输出y的值是____.【答案】-2【解析】由题意得,故答案为.点睛:算法与流程图的考查,侧重于对流程图循环结构、条件结构和伪代码的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环的初始条件、循环次数、循环的终止条件,要通过循环规律,明确流程图研究的数学问题,是求和还是求项.41.执行右面的程序框图,若输入的x 的值为1,则输出的n 的值为 .【答案】3【解析】框图中的条件即13x ≤≤.运行程序:1,0,x n ==符合条件13x ≤≤, 2,1x n ==;符合条件13x ≤≤, 3,2x n ==;符合条件13x ≤≤, 4,3x n ==;不符合条件13x ≤≤,输出3n =.答案为3.考点:算法与程序框图.视频42.执行右边的程序框图,若输入n 的值为3,则输出的S 的值为________.【答案】1【解析】试题分析:按程序运行的过程,运行一遍程序: 3,1,0n i S ===, 1S =,循环, 2,1i S =,循环, 3,11i S ===,退出循环,输出S 的值为1.【考点】程序框图【名师点睛】自新课标学习算法以来,程序框图成为常见考点,一般说来难度不大,易于得分.题目以程序运行结果为填空内容,考查考生对各种分支及算法语言的理解和掌握情况,本题能较好地考查考生应用所学知识分析问题、解决问题的能力等.视频43.阅读下边的程序框图,运行相应的程序,则输出S 的值为_______.【答案】4【解析】试题分析:第一次循环:8,2S n ==;第二次循环:2,3S n ==;第三次循环:4,4S n ==;结束循环,输出 4.S =【考点】循环结构流程图【名师点睛】算法与程序框图的考查,侧重于对程序框图中循环结构的考查.先明晰算法及程序框图的相关概念,其次重视循环次数、终止条件,更要通过循环规律,明确程序框图研究的数学问题是求和还是求项.44.44.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7【解析】第一次循环: 3,4S I ==;第二次循环: 5,7S I ==;第三次循环: 7,10S I ==;结束循环,输出7.S =考点:循环结构流程图视频45.执行右边的程序框图,若输入的x 的值为1,则输出的y 的值是 .【答案】13【解析】第一次执行程序,满足条件2,112x x <=+=;第二次执行程序,不满足条件22,32113x y <=⨯+=,输出13y =,结束.答案为13. 考点:算法与程序框图.视频46.【2015高考山东,理13】执行右边的程序框图,输出的T 的值为 .【答案】116【解析】初始条件1,1,3n T n ==< 成立方 ;运行第一次:11311,2,322T xdx n n =+=+==<⎰ 成立; 运行第二次:12033111,3,32236T x dx n n =+=+==<⎰ 不成立;输出T 的值:11.6 结束 所以答案应填:11.6考点:1、程序框图;2、定积分.47.执行如图所示的程序框图(算法流程图),输出的n 为________.【答案】4【解析】由题意,程序框图循环如下:①;②;③;④,此时,所以输出.考点:1.程序框图的应用.视频48.如图是一个算法流程图,则输出的n 的值是_____________.【答案】5【解析】本题实质上就是求不等式220n >的最小整数解. 220n>整数解为5n ≥,n因此输出的5【考点】程序框图.视频49.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.【答案】6【解析】试题分析:当,,则第一次运行,;第二次运行,;第三次运行,;第四次运行,;第五次运行,终止循环,故输出.考点:程序框图,直到型循环结构,容易题.视频50.阅读右边的框图,运行相应的程序,输出S的值为________.【答案】 4.-【解析】试题分析:由题意得:第一次循环: ()3028,2,S n =+-=-=第一次循环:()2824,1,S n =-+-=-=结束循环,输出S 的值为 4.-考点:循环结构流程图视频51.执行右侧的程序框图,若输入9x =,则输出y = .【答案】299C 【解析】试题分析:第一次运行后y=5,第二次运行后y=113,第三次运行后299y =,此时291141939y x -=-=<,满足条件,故输出299y =. 考点:程序框图.视频52.设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a (例如815a =,则()158I a =, ()851D a =).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = .【答案】495【解析】试题分析:取,则,所以;由,则,所以; 由,则,所以; 由,则,故输出.考点:新定义题型,程序框图,当型循环结构,容易题.程序框图问题,关键是要根据不同条件,执行不同的步骤,从而推理出正确的结论.视频53.53.(2012•广东)执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为 _________ .【答案】8【解析】当i=2,k=1时,s=2,;当i=4,k=2时,s=(2×4)=4;当i=6,k=3时,s=(4×6)=8;当i=8,k=4时,不满足条件“i<8”,退出循环,则输出的s=8视频54.(2011•山东)执行如图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是_________.【答案】68【解析】程序在运行过程中各变量的值如下表示:此时y 值为68.视频55.(2011•浙江)某程序框图如图所示,则该程序运行后输出的k 的值是 _________ .【答案】5【解析】程序在运行过程中各变量的值如下表示: 第一圈 k=3 a=43b=34 第二圈 k=4 a=44b=44第三圈k=5 a=45b=54此时a>b,退出循环,k值为5视频56.(2013•浙江)某程序框图如图所示,则该程序运行后输出的值等于_________.【答案】【解析】由题意可知,该程序的作用是求解S=1++++的值.而S=1++++=1+1﹣+﹣+﹣+﹣=.故答案为:.视频57.(2013•湖北)阅读如图所示的程序框图,运行相应的程序.若输入m的值为2,则输出的结果i=_________.【答案】4【解析】框图首先给累积变量A,B赋值1,1,给循环变量i赋值0.若输入m的值为2,执行i=1+1,A=1×2=2,B=1×1=1;判断2<1不成立,执行i=1+1=2,A=2×2=4,B=1×2=2;判断4<2不成立,执行i=2+1=3,A=4×2=8,B=2×3=6;判断8<6不成立,执行i=3+1=4,A=8×2=16,B=6×4=24;判断16<24成立,跳出循环,输出i的值为4.故答案为4.视频58.(2013•湖北)阅读如图所示的程序框图,运行相应的程序,输出的结果i= _________.【答案】5【解析】框图首先给变量a和变量i赋值,a=4,i=1.判断10=4不成立,判断10是奇数不成立,执行,i=1+1=2;判断5=4不成立,判断5是奇数成立,执行a=3×5+1=16,i=2+1=3; 判断16=4不成立,判断16是奇数不成立,执行,i=3+1=4; 判断8=4不成立,判断8是奇数不成立,执行,i=4+1=5;判断4=4成立,跳出循环,输出i 的值为5. 故答案是5.视频59.若执行如图所示的框图,输入1231,2,3,2x x x x ====,则输出的数等于 。

2020普通高等高等学校统一招生(新课标I)(文数)(含详细答案及解析)(全国1卷高考数学真题)

2020普通高等高等学校统一招生(新课标I)(文数)(含详细答案及解析)(全国1卷高考数学真题)

绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A. {4,1}-B. {1,5}C. {3,5}D. {1,3}【答案】D 【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.2.若312i i z =++,则||=z ( ) A. 0 B. 1C.2D. 2【答案】C 【解析】【分析】先根据21i =-将z 化简,再根据向量的模的计算公式即可求出. 【详解】因为31+21+21z i i i i i =+=-=+,所以22112z =+=.故选:C .【点睛】本题主要考查向量的模的计算公式的应用,属于容易题.3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.514- B.512- C.514+ D.512+ 【答案】C 【解析】【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案. 【详解】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab-=,化简得24()210b b a a -⋅-=,解得154b a +=(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A. 15B.25 C.12D. 45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.故选:A【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题. 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A. y a bx =+ B. 2y a bx =+C. e x y a b =+D. ln y a b x =+【答案】D 【解析】【分析】根据散点图的分布可选择合适的函数模型. 【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+.故选:D 【点睛】本题考查函数模型的选择,主要观察散点图的分布,属于基础题.6.已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 4【答案】B 【解析】【分析】当直线和圆心与点(1,2)的连线垂直时,所求的弦长最短,即可得出结论.【详解】圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3,设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,此时22||(31)(2)22CP =-+-=根据弦长公式得最小值为229||2982CP -=-=.故选:B.【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.7.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A.10π9 B. 7π6 C. 4π3D. 3π2【答案】C 【解析】【分析】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,即可得到4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭,结合4,09π⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点即可得到4962πππω-⋅+=-,即可求得32ω=,再利用三角函数周期公式即可得解.【详解】由图可得:函数图象过点4,09π⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点,所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω===故选:C 【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题. 8.设3log 42a =,则4a -=( )A.116B.19C.18D.16【答案】B 【解析】【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由3log 42a =可得3log 42a =,所以49a =,所以有149a-=,故选:B .【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.9.执行下面的程序框图,则输出的n =( )A. 17B. 19C. 21D. 23【答案】C 【解析】【分析】根据程序框图的算法功能可知,要计算满足135100n ++++>的最小正奇数n ,根据等差数列求和公式即可求出.【详解】依据程序框图的算法功能可知,输出的n 是满足135100n ++++>的最小正奇数,因为()()211112135110024n n n n -⎛⎫+⨯+ ⎪⎝⎭++++==+>,解得19n >,所以输出的21n =.故选:C. 【点睛】本题主要考查程序框图的算法功能的理解,以及等差数列前n 项和公式的应用,属于基础题. 10.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A. 12B. 24C. 30D. 32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q qq ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.11.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( )A.72B. 3C.52D. 2【答案】B 【解析】 【分析】由12F F P 是以P 为直角直角三角形得到2212||||16PF PF +=,再利用双曲线的定义得到12||||2PF PF -=,联立即可得到12||||PF PF ,代入12F F P S =△121||||2PF PF 中计算即可. 【详解】由已知,不妨设12(2,0),(2,0)F F -,则1,2a c ==,因为121||1||2OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以2124||||PF PF =-=2212||||2PF PF +-12||||162PF PF =-12||||PF PF ,解得12||||6PF PF =,所以12F F P S =△121||||32PF PF = 故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.12.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意, 得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则z =x +7y 的最大值为______________.【答案】1 【解析】【分析】首先画出可行域,然后结合目标函数的几何意义即可求得其最大值. 【详解】绘制不等式组表示的平面区域如图所示,目标函数7z x y =+即:1177y x z =-+, 其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点A 的坐标为:1,0A ,据此可知目标函数的最大值为:max 1701z =+⨯=. 故答案为:1.【点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.14.设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________. 【答案】5 【解析】 【分析】根据向量垂直,结合题中所给的向量的坐标,利用向量垂直的坐标表示,求得结果. 【详解】由a b ⊥可得0a b ⋅=, 又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=, 即5m =, 故答案为:5.【点睛】本题考查有关向量运算问题,涉及到的知识点有向量垂直的坐标表示,属于基础题目. 15.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.【答案】2y x = 【解析】 【分析】设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可.【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =.【点睛】本题考查导数的几何意义,属于基础题.16.数列{}n a 满足2(1)31nn n a a n ++-=-,前16项和为540,则1a = ______________.【答案】7 【解析】 【分析】对n 为奇偶数分类讨论,分别得出奇数项、偶数项的递推关系,由奇数项递推公式将奇数项用1a 表示,由偶数项递推公式得出偶数项的和,建立1a 方程,求解即可得出结论.【详解】2(1)31nn n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S ,16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=, 17a ∴=故答案为:7.【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力,属于较难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A ,B ,C ,D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务? 【答案】(1)甲分厂加工出来的A 级品的概率为0.4,乙分厂加工出来的A 级品的概率为0.28;(2)选甲分厂,理由见解析.【解析】 【分析】(1)根据两个频数分布表即可求出;(2)根据题意分别求出甲乙两厂加工100件产品的总利润,即可求出平均利润,由此作出选择. 【详解】(1)由表可知,甲厂加工出来的一件产品为A 级品的概率为400.4100=,乙厂加工出来的一件产品为A 级品的概率为280.28100=; (2)甲分厂加工100件产品的总利润为()()()()4090252050252020252050251500⨯-+⨯-+⨯--⨯+=元, 所以甲分厂加工100件产品的平均利润为15元每件;乙分厂加工100件产品的总利润为()()()()2890201750203420202150201000⨯-+⨯-+⨯--⨯+=元,所以乙分厂加工100件产品的平均利润为10元每件.故厂家选择甲分厂承接加工任务.【点睛】本题主要考查古典概型的概率公式的应用,以及平均数的求法,并根据平均值作出决策,属于基础题. 18.ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°. (1)若a =3c ,b =27,求ABC 的面积; (2)若sin A +3sin C =2,求C . 【答案】(1)3;(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论; (2)将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,23,c a ABC ∴==∴△的面积1sin 32S ac B ==; (2)30A C +=︒,sin 3sin sin(30)3sin A C C C ∴+=︒-+132cos sin sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.【点睛】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题. 19.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO 23π,求三棱锥P −ABC 的体积. 【答案】(1)证明见解析;(26. 【解析】 【分析】(1)根据已知可得PA PB PC ==,进而有PAC ≌PBC ,可得90APC BPC ∠=∠=,即PB PC ⊥,从而证得PC ⊥平面PAB ,即可证得结论;(2)将已知条件转化为母线l 和底面半径r 的关系,进而求出底面半径,由正弦定理,求出正三角形ABC 边长,在等腰直角三角形APC 中求出AP ,在Rt APO 中,求出PO ,即可求出结论.【详解】(1)连接,,OA OB OC ,D 为圆锥顶点,O 为底面圆心,OD ∴⊥平面ABC ,P 在DO 上,,OA OB OC PA PB PC ==∴==,ABC 是圆内接正三角形,AC BC ∴=,PAC ≌PBC ,90APC BPC ∴∠=∠=︒,即,PB PC PA PC ⊥⊥,,PA PB P PC =∴⊥平面,PAB PC ⊂平面PAC ,∴平面PAB ⊥平面PAC ;(2)设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为3,3rl rl ππ==2222OD l r =-=,解得1,3r l ==2sin 603AC r ==,在等腰直角三角形APC 中,2622AP AC ==, 在Rt PAO 中,2262142PO AP OA =-=-=, ∴三棱锥P ABC -的体积为112363332P ABC ABC V PO S -=⋅=⨯=△.【点睛】本题考查空间线、面位置关系,证明平面与平面垂直,求锥体的体积,注意空间垂直间的相互转化,考查逻辑推理、直观想象、数学计算能力,属于中档题.20.已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞.【解析】 【分析】(1)将1a =代入函数解析式,对函数求导,分别令导数大于零和小于零,求得函数的单调增区间和减区间;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,将其转化为2x e a x =+有两个解,令()(2)2x eh x x x =≠-+,求导研究函数图象的走向,从而求得结果.【详解】(1)当1a =时,()(2)xf x e x =-+,'()1x f x e =-,令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞; (2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-,所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e+∞.【点睛】本题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,根据零点个数求参数的取值范围,在解题的过程中,也可以利用数形结合,将问题转化为曲线xy e =和直线(2)y a x =+有两个交点,利用过点(2,0)-的曲线xy e =的切线斜率,结合图形求得结果.21.已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.【答案】(1)2219x y +=;(2)证明详见解析.【解析】 【分析】(1)由已知可得:(),0A a -, (),0B a ,()0,1G ,即可求得21AG GB a ⋅=-,结合已知即可求得:29a =,问题得解.(2)设()06,P y ,可得直线AP方程为:()039y y x =+,联立直线AP 的方程与椭圆方程即可求得点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭,同理可得点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭,当203y ≠时,可表示出直线CD 的方程,整理直线CD 的方程可得:()02043233y y x y ⎛⎫=- ⎪-⎝⎭即可知直线过定点3,02⎛⎫ ⎪⎝⎭,当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭,命题得证. 【详解】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a +=>可得:(),0A a -, (),0B a ,()0,1G∴(),1AG a =,(),1GB a =- ∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)证明:设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+ 联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭ 整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭. 当203y =时,直线CD :32x =,直线过点3,02⎛⎫⎪⎝⎭. 故直线CD 过定点3,02⎛⎫⎪⎝⎭. 【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.(二)选考题:共10分。

经典程序框图高考真题.doc

经典程序框图高考真题.doc

•精品.程序框图高考真题一、选择题(本大题共16小题,共80.0分) 1.中国古代有汁算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程 序框图,若输入的入=2, 〃=2,依次输入的"为2, 2, 5,则输出的片()A. 7B. 12C. 17D. 34A.0 开始)B.2C.4D. 145=1 S=S ・ (3-/>1/输出S /结束/输入S //=1 !=7+ 1a=a-b b=b ・a2.执行如图的程序框图,如果输入的则输出的S=( )A. 2B. 3C. 4D. 53.阅读如图所示的程序框图,运行相应的程序,则输出s的值为( )A.-lB.OC. 1D. 34.如图程序框图的算法思路源于我国古代数学拿著《九章算术》中的“更相减损术”.执行该程序框图,若输入G 〃分别为14, 18,则输出的</=( )•精品.5.执行如图所示的程序框图,则输出s 的值为((爭艮〕A. 10B. 17C. 19D. 366.执行下而的程序框图,如果输入的*0,)=1, ”=1,则输岀x,),的值满足()A. y=2rB. v=3x C・ y=4x D・ y=5x7.执行如图程序框图,如果输入的记6,那么输出的心()8.如图所示的程序框图是为了求出满足3^>1000的最小偶数几那么在<3>和| |两个空白框中.A. A>1000 和川=卄1C. A<1000 和n=n+\可以分别填入()B. A>1000 和n=n+2D. A<1000 和n=n+2k=2, s=0结束A. 3C. 5B. 4D. 6k=2k-l[结束]9.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5B.4C.3D.2)10.执行如图所示的程序框图,输出的S值为A. 2B. |C. |D. |11.若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为(A. Q3B.A>4C.A<4D.A<55=0Z=7+l/输出s / 12•阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A. 2B. 1C. 0D.-1•精品.14.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书 九章》中提岀的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的 程序框图给岀了利用秦九韶算法求多项式值的一个实例,若输入”,X 的值分别为3, 2,则输岀u 的值为()13.执行如图所示的程序框图,如果输入,匸3,则输出的S 二(z=-LS=O)A. 35B.20C. 18D.915.执行如图所示的程序框图,输出s的值为()A样B.fC馬D冷开始fc=l k=k^l16.执行如图所示的程序框图(算法流程图),输岀的〃为() A.3B.4C.5D.6开始"1, w-1T ------ 结束二、填空题(本大题共2小题,共10.0分)17.如图是一个算法流程图:若输入x的值为若,则输出y的值是 ________•精品.S<-1 While J<SgS + 23 + 3End While Print S18•很据如图所示的伪代码,可知输岀的结果S 为 _______。

2009-2013年北京高考真题--程序框图试题汇编

2009-2013年北京高考真题--程序框图试题汇编

高考真题分类汇编-教师卷
题号 得分

总分
△注意事项: 1.本系列试题包含 2009 至 2013 年北京市高考真题,并经过精心校对。 2.本系列文档包含全部试题分类汇编,命名规律为: 2009-2013 年北京高考真题--******试题汇编。 3.本系列试题涵盖北京高考所有学科,均有相关实体书出售。 i. 、选择题(本大题共 3 小题,每小题 0 分,共 0 分。在每小题给出的四个选项中,只有一 个选项是符合题目要求的) 1.(2011 年北京高考真题数学(文))执行如图所示的程序 框图,若输入 A 的值为 2,则输入的 P 值为 A.2B.3C.4D.5
C.
A. 1
13 21
) B.
3. (2013 年北京高考真题数学(文)) 执行如图所示的程序框图,
【答案解析】C
【答案解析】C
输出的 S 值为(
2 3 610 D. 987【答案解析】C 2.(2012 年北京高考真题数学(文)) 执行如图所示的程序框图,输出的 S 值为 (A) 2 (B) 4 (C) 8 (D) 16
开始
k=0, S=1 k=k+1 S=S∙ 2k k <3 否 输出S 是
结束
_________高考题库,荣誉出品__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●
2009-2013 年北京高考真题--程序框图汇编
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

程序框图高考真题
一、选择题(本大题共16小题,共80.0分)
1.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程
序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()
A.7
B. 12
C. 17
D. 34
2.执行如图的程序框图,如果输入的a=-1,则输出的S=()
A. 2
B. 3
C. 4
D. 5
3.阅读如图所示的程序框图,运行相应的程序,则输出s的值为()
A. -1
B. 0
C. 1
D. 3
4.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执
行该程序框图,若输入a,b分别为14,18,则输出的a=()
A. 0
B. 2
C. 4
D. 14
5.执行如图所示的程序框图,则输出s的值为()
A. 10
B. 17
C. 19
D. 36
6.执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()
A. y=2x
B. y=3x
C. y=4x
D. y=5x
7.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=( )
A. 3
B. 4
C. 5
D. 6
8.如图所示的程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和
两个空白框中,可以分别填入()
A. A>1000和n=n+1
B. A>1000和n=n+2
C. A≤1000和n=n+1
D. A≤1000和n=n+2
9.执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为
A. 5
B. 4
C. 3
D. 2
10.执行如图所示的程序框图,输出的S值为()
A. 2
B.
C.
D.
11.若执行右侧的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断
框中的条件可能为()
A.x>3
B. x>4
C. x≤4
D. x≤5
12.阅读如图所示的程序框图,运行相应的程序,则输出的结果为()
A. 2
B. 1
C. 0
D. -1
13.执行如图所示的程序框图,如果输入n=3,则输出的S=()
A.
B.
C.
D.
14.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书
九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()
A. 35
B. 20
C. 18
D. 9
15.执行如图所示的程序框图,输出s的值为()
A. -
B.
C. -
D.
16.执行如图所示的程序框图(算法流程图),输出的n为()
A. 3
B. 4
C. 5
D. 6
二、填空题(本大题共2小题,共10.0分)
17.如图是一个算法流程图:若输入x的值为,则输出y的值是______ .
18.根据如图所示的伪代码,可知输出的结果S为______ .。

相关文档
最新文档